This list of publications closely related to parallel-in-time integration is probably not complete. Please feel free to add any missing publications through a pull request on GitHub .

Statistics

Your screen is too small for the diagram to display.


top

2024

  1. I. Bossuyt, S. Vandewalle, and G. Samaey, “Micro-macro Parareal, from ODEs to SDEs and back again,” arXiv:2401.01798v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2401.01798v1
    @unpublished{BossuytEtAl2024,
      author = {Bossuyt, Ignace and Vandewalle, Stefan and Samaey, Giovanni},
      howpublished = {arXiv:2401.01798v1 [math.NA]},
      title = {Micro-macro Parareal, from ODEs to SDEs and back again},
      url = {http://arxiv.org/abs/2401.01798v1},
      year = {2024}
    }
    
  2. R. Cao, S. Hou, and L. Ma, “A Pipeline-Based ODE Solving Framework,” IEEE Access, vol. 12, pp. 37995–38004, 2024.
    @article{CaoEtAl2024,
      author = {Cao, Ruixia and Hou, Shangjun and Ma, Lin},
      doi = {10.1109/ACCESS.2024.3375305},
      journal = {IEEE Access},
      number = {},
      pages = {37995-38004},
      title = {A Pipeline-Based ODE Solving Framework},
      volume = {12},
      year = {2024}
    }
    
  3. P. Freese, S. Götschel, T. Lunet, D. Ruprecht, and M. Schreiber, “Parallel performance of shared memory parallel spectral deferred corrections,” arXiv:2403.20135v1 [cs.CE], 2024 [Online]. Available at: http://arxiv.org/abs/2403.20135v1
    @unpublished{FreeseEtAl2024,
      author = {Freese, Philip and Götschel, Sebastian and Lunet, Thibaut and Ruprecht, Daniel and Schreiber, Martin},
      howpublished = {arXiv:2403.20135v1 [cs.CE]},
      title = {Parallel performance of shared memory parallel spectral deferred corrections},
      url = {http://arxiv.org/abs/2403.20135v1},
      year = {2024}
    }
    
  4. X.-M. Gu, J. Liu, and C. W. Oosterlee, “Parallel-in-Time Iterative Methods for Pricing American Options,” arXiv:2405.08280v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2405.08280v1
    @unpublished{GuEtAl2024,
      author = {Gu, Xian-Ming and Liu, Jun and Oosterlee, Cornelis W.},
      howpublished = {arXiv:2405.08280v1 [math.NA]},
      title = {Parallel-in-Time Iterative Methods for Pricing American Options},
      url = {http://arxiv.org/abs/2405.08280v1},
      year = {2024}
    }
    
  5. A. Q. Ibrahim, S. Götschel, and D. Ruprecht, “Space-time parallel scaling of Parareal with a Fourier Neural Operator as coarse propagator,” arXiv:2404.02521v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2404.02521v1
    @unpublished{IbrahimEtAl2024,
      author = {Ibrahim, Abdul Qadir and Götschel, Sebastian and Ruprecht, Daniel},
      howpublished = {arXiv:2404.02521v1 [math.NA]},
      title = {Space-time parallel scaling of Parareal with a Fourier Neural Operator as coarse propagator},
      url = {http://arxiv.org/abs/2404.02521v1},
      year = {2024}
    }
    
  6. N. Janssens and J. Meyers, “Parallel-in-time multiple shooting for optimal control problems governed by the Navier–Stokes equations,” Computer Physics Communications, vol. 296, p. 109019, Mar. 2024 [Online]. Available at: http://dx.doi.org/10.1016/j.cpc.2023.109019
    @article{JanssensEtAl2024,
      author = {Janssens, N. and Meyers, J.},
      doi = {10.1016/j.cpc.2023.109019},
      issn = {0010-4655},
      journal = {Computer Physics Communications},
      month = mar,
      pages = {109019},
      publisher = {Elsevier BV},
      title = {Parallel-in-time multiple shooting for optimal control problems governed by the Navier–Stokes equations},
      url = {http://dx.doi.org/10.1016/j.cpc.2023.109019},
      volume = {296},
      year = {2024}
    }
    
  7. A. Kumar, “Investigation of Second Order Taylor Series in the Coarse Operator of Parareal Algorithm for Power System Simulation,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2024 [Online]. Available at: http://dx.doi.org/10.1109/TCSII.2024.3381372
    @article{Kumar2024,
      author = {Kumar, Ajit},
      doi = {10.1109/tcsii.2024.3381372},
      issn = {1558-3791},
      journal = {IEEE Transactions on Circuits and Systems II: Express Briefs},
      pages = {1–1},
      publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
      title = {Investigation of Second Order Taylor Series in the Coarse Operator of Parareal Algorithm for Power System Simulation},
      url = {http://dx.doi.org/10.1109/TCSII.2024.3381372},
      year = {2024}
    }
    
  8. F. Li and Y. Xu, “A Diagonalization-Based Parallel-in-Time Algorithm for Crank-Nicolson’s Discretization of the Viscoelastic Equation,” East Asian Journal on Applied Mathematics, vol. 14, no. 1, pp. 47–78, Jun. 2024 [Online]. Available at: http://dx.doi.org/10.4208/eajam.2022-304.070323
    @article{LiEtAl2024,
      author = {Li, Fu and Xu, Yingxiang},
      doi = {10.4208/eajam.2022-304.070323},
      issn = {2079-7370},
      journal = {East Asian Journal on Applied Mathematics},
      month = jun,
      number = {1},
      pages = {47–78},
      publisher = {Global Science Press},
      title = {A Diagonalization-Based Parallel-in-Time Algorithm for Crank-Nicolson’s Discretization of the Viscoelastic Equation},
      url = {http://dx.doi.org/10.4208/eajam.2022-304.070323},
      volume = {14},
      year = {2024}
    }
    
  9. Z. Miao, B. W. null, and Y. Jiang, “Energy-Preserving Parareal-RKN Algorithms for Hamiltonian Systems,” Numerical Mathematics: Theory, Methods and Applications, vol. 17, no. 1, pp. 121–144, Jun. 2024 [Online]. Available at: http://dx.doi.org/10.4208/nmtma.oa-2023-0081
    @article{MiaoEtAl2024,
      author = {Miao, Zhen and null, Bin Wang and Jiang, Yaolin},
      doi = {10.4208/nmtma.oa-2023-0081},
      issn = {2079-7338},
      journal = {Numerical Mathematics: Theory, Methods and Applications},
      month = jun,
      number = {1},
      pages = {121–144},
      publisher = {Global Science Press},
      title = {Energy-Preserving Parareal-RKN Algorithms for Hamiltonian Systems},
      url = {http://dx.doi.org/10.4208/nmtma.oa-2023-0081},
      volume = {17},
      year = {2024}
    }
    
  10. Z. Miao, R.-H. Zhang, W.-W. Han, and Y.-L. Jiang, “Analysis of a fractional-step parareal algorithm for the incompressible Navier-Stokes equations,” Computers & Mathematics with Applications, vol. 161, pp. 78–89, May 2024 [Online]. Available at: http://dx.doi.org/10.1016/j.camwa.2024.02.035
    @article{MiaoEtAl2024b,
      author = {Miao, Zhen and Zhang, Ren-Hao and Han, Wei-Wei and Jiang, Yao-Lin},
      doi = {10.1016/j.camwa.2024.02.035},
      issn = {0898-1221},
      journal = {Computers & Mathematics with Applications},
      month = may,
      pages = {78–89},
      publisher = {Elsevier BV},
      title = {Analysis of a fractional-step parareal algorithm for the incompressible Navier-Stokes equations},
      url = {http://dx.doi.org/10.1016/j.camwa.2024.02.035},
      volume = {161},
      year = {2024}
    }
    
  11. S. J. P. Pamela, N. Carey, J. Brandstetter, R. Akers, L. Zanisi, J. Buchanan, V. Gopakumar, M. Hoelzl, G. Huijsmans, K. Pentland, T. James, G. Antonucci, and the JOREK Team, “Neural-Parareal: Dynamically Training Neural Operators as Coarse Solvers for Time-Parallelisation of Fusion MHD Simulations,” arXiv:2405.01355v1 [physics.plasm-ph], 2024 [Online]. Available at: http://arxiv.org/abs/2405.01355v1
    @unpublished{PamelaEtAl2024,
      author = {Pamela, S. J. P. and Carey, N. and Brandstetter, J. and Akers, R. and Zanisi, L. and Buchanan, J. and Gopakumar, V. and Hoelzl, M. and Huijsmans, G. and Pentland, K. and James, T. and Antonucci, G. and the JOREK Team},
      howpublished = {arXiv:2405.01355v1 [physics.plasm-ph]},
      title = {Neural-Parareal: Dynamically Training Neural Operators as Coarse Solvers for Time-Parallelisation of Fusion MHD Simulations},
      url = {http://arxiv.org/abs/2405.01355v1},
      year = {2024}
    }
    
  12. B. Park, “Stochastic Power System Dynamic Simulation Using Parallel-in-Time Algorithm,” IEEE Access, vol. 12, pp. 28500–28510, 2024 [Online]. Available at: http://dx.doi.org/10.1109/ACCESS.2024.3367358
    @article{Park2024,
      author = {Park, Byungkwon},
      doi = {10.1109/access.2024.3367358},
      issn = {2169-3536},
      journal = {IEEE Access},
      pages = {28500–28510},
      publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
      title = {Stochastic Power System Dynamic Simulation Using Parallel-in-Time Algorithm},
      url = {http://dx.doi.org/10.1109/ACCESS.2024.3367358},
      volume = {12},
      year = {2024}
    }
    
  13. E. Scheiber, “A Convergence Theorem for the Parareal Algorithm Revisited,” arXiv:2405.06954v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2405.06954v1
    @unpublished{Scheiber2024,
      author = {Scheiber, Ernest},
      howpublished = {arXiv:2405.06954v1 [math.NA]},
      title = {A Convergence Theorem for the Parareal Algorithm Revisited},
      url = {http://arxiv.org/abs/2405.06954v1},
      year = {2024}
    }
    
  14. E. Schnaubelt, M. Wozniak, J. Dular, I. C. Garcia, A. Verweij, and S. Schöps, “Parallel-in-Time Integration of Transient Phenomena in No-Insulation Superconducting Coils Using Parareal,” arXiv:2404.13333v1 [cs.CE], 2024 [Online]. Available at: http://arxiv.org/abs/2404.13333v1
    @unpublished{SchnaubeltEtAl2024,
      author = {Schnaubelt, Erik and Wozniak, Mariusz and Dular, Julien and Garcia, Idoia Cortes and Verweij, Arjan and Schöps, Sebastian},
      howpublished = {arXiv:2404.13333v1 [cs.CE]},
      title = {Parallel-in-Time Integration of Transient Phenomena in No-Insulation Superconducting Coils Using Parareal},
      url = {http://arxiv.org/abs/2404.13333v1},
      year = {2024}
    }
    
  15. H. D. Sterck, R. D. Falgout, O. A. Krzysik, and J. B. Schroder, “Parallel-in-time solution of scalar nonlinear conservation laws,” arXiv:2401.04936v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2401.04936v1
    @unpublished{SterckEtAl2024,
      author = {Sterck, H. De and Falgout, R. D. and Krzysik, O. A. and Schroder, J. B.},
      howpublished = {arXiv:2401.04936v1 [math.NA]},
      title = {Parallel-in-time solution of scalar nonlinear conservation laws},
      url = {http://arxiv.org/abs/2401.04936v1},
      year = {2024}
    }
    
  16. R. Yoda, M. Bolten, K. Nakajima, and A. Fujii, “Coarse-grid operator optimization in multigrid reduction in time for time-dependent Stokes and Oseen problems,” Japan Journal of Industrial and Applied Mathematics, Apr. 2024 [Online]. Available at: http://dx.doi.org/10.1007/s13160-024-00652-8
    @article{YodaEtAl2024,
      author = {Yoda, Ryo and Bolten, Matthias and Nakajima, Kengo and Fujii, Akihiro},
      doi = {10.1007/s13160-024-00652-8},
      issn = {1868-937X},
      journal = {Japan Journal of Industrial and Applied Mathematics},
      month = apr,
      publisher = {Springer Science and Business Media LLC},
      title = {Coarse-grid operator optimization in multigrid reduction in time for time-dependent Stokes and Oseen problems},
      url = {http://dx.doi.org/10.1007/s13160-024-00652-8},
      year = {2024}
    }
    
  17. Y.-L. Zhao, X.-M. Gu, and C. W. Oosterlee, “A parallel preconditioner for the all-at-once linear system from evolutionary PDEs with Crank-Nicolson discretization,” arXiv:2401.16113v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2401.16113v1
    @unpublished{ZhaoEtAl2024,
      author = {Zhao, Yong-Liang and Gu, Xian-Ming and Oosterlee, Cornelis W.},
      howpublished = {arXiv:2401.16113v1 [math.NA]},
      title = {A parallel preconditioner for the all-at-once linear system from evolutionary PDEs with Crank-Nicolson discretization},
      url = {http://arxiv.org/abs/2401.16113v1},
      year = {2024}
    }
    
  18. M. Zhen, X. Liu, X. Ding, and J. Cai, “High-order space–time parallel computing of the Navier–Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 423, p. 116880, Apr. 2024 [Online]. Available at: http://dx.doi.org/10.1016/j.cma.2024.116880
    @article{ZhenEtAl2024,
      author = {Zhen, Meiyuan and Liu, Xuan and Ding, Xuejun and Cai, Jinsheng},
      doi = {10.1016/j.cma.2024.116880},
      issn = {0045-7825},
      journal = {Computer Methods in Applied Mechanics and Engineering},
      month = apr,
      pages = {116880},
      publisher = {Elsevier BV},
      title = {High-order space–time parallel computing of the Navier–Stokes equations},
      url = {http://dx.doi.org/10.1016/j.cma.2024.116880},
      volume = {423},
      year = {2024}
    }
    
top

2023

  1. A. Barman and A. Sharma, “A Space-Time framework for compressible flow simulations using Finite Volume Method,” in AIAA AVIATION 2023 Forum, 2023 [Online]. Available at: https://doi.org/10.2514/6.2023-3431
    @inproceedings{BarmanEtAl2023,
      author = {Barman, Abhishek and Sharma, Anupam},
      booktitle = {{AIAA} {AVIATION} 2023 Forum},
      doi = {10.2514/6.2023-3431},
      month = jun,
      publisher = {American Institute of Aeronautics and Astronautics},
      title = {A Space-Time framework for compressible flow simulations using Finite Volume Method},
      url = {https://doi.org/10.2514/6.2023-3431},
      year = {2023}
    }
    
  2. M. Bolten, S. Friedhoff, and J. Hahne, “Task graph-based performance analysis of parallel-in-time methods,” Parallel Computing, vol. 118, p. 103050, Nov. 2023 [Online]. Available at: https://doi.org/10.1016/j.parco.2023.103050
    @article{BoltenEtAl2023,
      author = {Bolten, Matthias and Friedhoff, Stephanie and Hahne, Jens},
      doi = {10.1016/j.parco.2023.103050},
      journal = {Parallel Computing},
      month = nov,
      pages = {103050},
      publisher = {Elsevier {BV}},
      title = {Task graph-based performance analysis of parallel-in-time methods},
      url = {https://doi.org/10.1016/j.parco.2023.103050},
      volume = {118},
      year = {2023}
    }
    
  3. N. Bosch, A. Corenflos, F. Yaghoobi, F. Tronarp, P. Hennig, and S. Särkkä, “Parallel-in-Time Probabilistic Numerical ODE Solvers,” arXiv:2310.01145v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2310.01145v1
    @unpublished{BoschEtAl2023,
      author = {Bosch, Nathanael and Corenflos, Adrien and Yaghoobi, Fatemeh and Tronarp, Filip and Hennig, Philipp and Särkkä, Simo},
      howpublished = {arXiv:2310.01145v1 [math.NA]},
      title = {Parallel-in-Time Probabilistic Numerical ODE Solvers},
      url = {http://arxiv.org/abs/2310.01145v1},
      year = {2023}
    }
    
  4. I. Bossuyt, S. Vandewalle, and G. Samaey, “Monte-Carlo/Moments micro-macro Parareal method for unimodal and bimodal scalar McKean-Vlasov SDEs,” arXiv:2310.11365v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2310.11365v1
    @unpublished{BossuytEtAl2023,
      author = {Bossuyt, Ignace and Vandewalle, Stefan and Samaey, Giovanni},
      howpublished = {arXiv:2310.11365v1 [math.NA]},
      title = {Monte-Carlo/Moments micro-macro Parareal method for unimodal and bimodal scalar McKean-Vlasov SDEs},
      url = {http://arxiv.org/abs/2310.11365v1},
      year = {2023}
    }
    
  5. A. Bouillon, G. Samaey, and K. Meerbergen, “On generalized preconditioners for time-parallel parabolic optimal control,” arXiv:2302.06406v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2302.06406v1
    @unpublished{BouillonEtAl2023,
      author = {Bouillon, Arne and Samaey, Giovanni and Meerbergen, Karl},
      howpublished = {arXiv:2302.06406v1 [math.NA]},
      title = {On generalized preconditioners for time-parallel parabolic optimal control},
      url = {http://arxiv.org/abs/2302.06406v1},
      year = {2023}
    }
    
  6. A. Bouillon, G. Samaey, and K. Meerbergen, “Diagonalization-based preconditioners and generalized convergence bounds for ParaOpt,” arXiv:2304.09235v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2304.09235v1
    @unpublished{BouillonEtAl2023b,
      author = {Bouillon, Arne and Samaey, Giovanni and Meerbergen, Karl},
      howpublished = {arXiv:2304.09235v1 [math.NA]},
      title = {Diagonalization-based preconditioners and generalized convergence bounds for ParaOpt},
      url = {http://arxiv.org/abs/2304.09235v1},
      year = {2023}
    }
    
  7. L. D’Amore and R. Cacciapuoti, “Space-Time Decomposition of Kalman Filter,” Numerical Mathematics: Theory, Methods and Applications, vol. 0, no. 0, pp. 0–0, Sep. 2023 [Online]. Available at: https://doi.org/10.4208/nmtma.oa-2022-0203
    @article{Cacciapuoti2023,
      author = {D{\textquotesingle}Amore, Luisa and Cacciapuoti, Rosalba},
      doi = {10.4208/nmtma.oa-2022-0203},
      journal = {Numerical Mathematics: Theory, Methods and Applications},
      month = sep,
      number = {0},
      pages = {0--0},
      publisher = {Global Science Press},
      title = {Space-Time Decomposition of Kalman Filter},
      url = {https://doi.org/10.4208/nmtma.oa-2022-0203},
      volume = {0},
      year = {2023}
    }
    
  8. R. Cacciapuoti and L. D’Amore, “Scalability analysis of a two level domain decomposition approach in space and time solving data assimilation models,” Concurrency and Computation: Practice and Experience, Nov. 2023 [Online]. Available at: https://doi.org/10.1002/cpe.7937
    @article{CacciapuotiEtAl2023,
      author = {Cacciapuoti, Rosalba and D{\textquotesingle}Amore, Luisa},
      doi = {10.1002/cpe.7937},
      journal = {Concurrency and Computation: Practice and Experience},
      month = nov,
      publisher = {Wiley},
      title = {Scalability analysis of a two level domain decomposition approach in space and time solving data assimilation models},
      url = {https://doi.org/10.1002/cpe.7937},
      year = {2023}
    }
    
  9. J. G. Caldas Steinstraesser, P. da Silva Peixoto, and M. Schreiber, “Parallel-in-time integration of the shallow water equations on the rotating sphere using Parareal and MGRIT,” arXiv:2306.09497v1 [math.NA], 2023 [Online]. Available at: https://arxiv.org/abs/2306.09497v1
    @unpublished{CaldasEtAl2023,
      author = {Caldas Steinstraesser, Jo\~{a}o Guilherme and da Silva Peixoto, Pedro and Schreiber, Martin},
      howpublished = {arXiv:2306.09497v1 [math.NA]},
      title = {Parallel-in-time integration of the shallow water equations on the rotating sphere using Parareal and MGRIT},
      url = {https://arxiv.org/abs/2306.09497v1},
      year = {2023}
    }
    
  10. B. Carrel, M. J. Gander, and B. Vandereycken, “Low-rank Parareal: a low-rank parallel-in-time integrator,” BIT Numerical Mathematics, vol. 63, no. 1, Feb. 2023 [Online]. Available at: https://doi.org/10.1007%2Fs10543-023-00953-3
    @article{CarrelEtAl2023,
      author = {Carrel, Benjamin and Gander, Martin J. and Vandereycken, Bart},
      doi = {10.1007/s10543-023-00953-3},
      journal = {{BIT} Numerical Mathematics},
      month = feb,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Low-rank Parareal: a low-rank parallel-in-time integrator},
      url = {https://doi.org/10.1007%2Fs10543-023-00953-3},
      volume = {63},
      year = {2023}
    }
    
  11. Z. Chen and Y. Liu, “Efficient and Parallel Solution of High-order Continuous Time Galerkin for Dissipative and Wave Propagation Problems,” arXiv:2303.05008v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2303.05008v1
    @unpublished{ChenEtAl2023,
      author = {Chen, Zhiming and Liu, Yong},
      howpublished = {arXiv:2303.05008v1 [math.NA]},
      title = {Efficient and Parallel Solution of High-order Continuous Time Galerkin for Dissipative and Wave Propagation Problems},
      url = {http://arxiv.org/abs/2303.05008v1},
      year = {2023}
    }
    
  12. T. Cheng, H. Yang, J. Huang, and C. Yang, “Nonlinear parallel-in-time simulations of multiphase flow in porous media,” Journal of Computational Physics, p. 112515, Sep. 2023 [Online]. Available at: https://doi.org/10.1016/j.jcp.2023.112515
    @article{ChengEtAl2023,
      author = {Cheng, Tianpei and Yang, Haijian and Huang, Jizu and Yang, Chao},
      doi = {10.1016/j.jcp.2023.112515},
      journal = {Journal of Computational Physics},
      month = sep,
      pages = {112515},
      publisher = {Elsevier {BV}},
      title = {Nonlinear parallel-in-time simulations of multiphase flow in porous media},
      url = {https://doi.org/10.1016/j.jcp.2023.112515},
      year = {2023}
    }
    
  13. E. C. Cyr, “A 2-Level Domain Decomposition Preconditioner for KKT Systems with Heat-Equation Constraints,” arXiv:2305.04421v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2305.04421v1
    @unpublished{Cyr2023,
      author = {Cyr, Eric C.},
      howpublished = {arXiv:2305.04421v1 [math.NA]},
      title = {A 2-Level Domain Decomposition Preconditioner for KKT Systems with Heat-Equation Constraints},
      url = {http://arxiv.org/abs/2305.04421v1},
      year = {2023}
    }
    
  14. C. Dajana, C. Eduardo, and V. Carmine, “Non-stationary wave relaxation methods for general linear systems of Volterra equations: convergence and parallel GPU implementation,” Numerical Algorithms, Jun. 2023 [Online]. Available at: https://doi.org/10.1007/s11075-023-01567-0
    @article{DajanaEtAl2023,
      author = {Dajana, Conte and Eduardo, Cuesta and Carmine, Valentino},
      doi = {10.1007/s11075-023-01567-0},
      journal = {Numerical Algorithms},
      month = jun,
      publisher = {Springer Science and Business Media {LLC}},
      title = {Non-stationary wave relaxation methods for general linear systems of Volterra equations: convergence and parallel {GPU} implementation},
      url = {https://doi.org/10.1007/s11075-023-01567-0},
      year = {2023}
    }
    
  15. F. Danieli, B. S. Southworth, and J. B. Schroder, “Space-Time Block Preconditioning for Incompressible Resistive Magnetohydrodynamics,” arXiv:2309.00768v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2309.00768v1
    @unpublished{DanieliEtAl2023,
      author = {Danieli, Federico and Southworth, Ben S. and Schroder, Jacob B.},
      howpublished = {arXiv:2309.00768v1 [math.NA]},
      title = {Space-Time Block Preconditioning for Incompressible Resistive Magnetohydrodynamics},
      url = {http://arxiv.org/abs/2309.00768v1},
      year = {2023}
    }
    
  16. Y. A. Erlangga, “Parallel-in-time Multilevel Krylov Methods: A Prototype,” arXiv:2401.00228v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2401.00228v1
    @unpublished{Erlangga2023,
      author = {Erlangga, Yogi A.},
      howpublished = {arXiv:2401.00228v1 [math.NA]},
      title = {Parallel-in-time Multilevel Krylov Methods: A Prototype},
      url = {http://arxiv.org/abs/2401.00228v1},
      year = {2023}
    }
    
  17. L. Fang, S. Vandewalle, and J. Meyers, “An SQP-based multiple shooting algorithm for large-scale PDE-constrained optimal control problems,” Journal of Computational Physics, vol. 477, p. 111927, Mar. 2023 [Online]. Available at: https://doi.org/10.1016/j.jcp.2023.111927
    @article{FangEtAl2023,
      author = {Fang, Liang and Vandewalle, Stefan and Meyers, Johan},
      doi = {10.1016/j.jcp.2023.111927},
      journal = {Journal of Computational Physics},
      month = mar,
      pages = {111927},
      publisher = {Elsevier {BV}},
      title = {An {SQP}-based multiple shooting algorithm for large-scale {PDE}-constrained optimal control problems},
      url = {https://doi.org/10.1016/j.jcp.2023.111927},
      volume = {477},
      year = {2023}
    }
    
  18. R. Fang and R. Tsai, “Stabilization of parareal algorithms for long time computation of a class of highly oscillatory Hamiltonian flows using data,” arXiv:2309.01225v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2309.01225v1
    @unpublished{FangEtAl2023b,
      author = {Fang, Rui and Tsai, Richard},
      howpublished = {arXiv:2309.01225v1 [math.NA]},
      title = {Stabilization of parareal algorithms for long time computation of a class of highly oscillatory Hamiltonian flows using data},
      url = {http://arxiv.org/abs/2309.01225v1},
      year = {2023}
    }
    
  19. S. Frei and A. Heinlein, “Towards parallel time-stepping for the numerical simulation of atherosclerotic plaque growth,” Journal of Computational Physics, vol. 491, p. 112347, Oct. 2023 [Online]. Available at: https://doi.org/10.1016%2Fj.jcp.2023.112347
    @article{FreiEtAl2023,
      author = {Frei, Stefan and Heinlein, Alexander},
      doi = {10.1016/j.jcp.2023.112347},
      journal = {Journal of Computational Physics},
      month = oct,
      pages = {112347},
      publisher = {Elsevier {BV}},
      title = {Towards parallel time-stepping for the numerical simulation of atherosclerotic plaque growth},
      url = {https://doi.org/10.1016%2Fj.jcp.2023.112347},
      volume = {491},
      year = {2023}
    }
    
  20. M. J. Gander and D. Palitta, “A new ParaDiag time-parallel time integration method,” arXiv:2304.12597v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2304.12597v1
    @unpublished{GanderEtAl2023,
      author = {Gander, Martin J. and Palitta, Davide},
      howpublished = {arXiv:2304.12597v1 [math.NA]},
      title = {A new ParaDiag time-parallel time integration method},
      url = {http://arxiv.org/abs/2304.12597v1},
      year = {2023}
    }
    
  21. M. J. Gander, T. Lunet, D. Ruprecht, and R. Speck, “A Unified Analysis Framework for Iterative Parallel-in-Time Algorithms,” SIAM Journal on Scientific Computing, vol. 45, no. 5, pp. A2275–A2303, 2023 [Online]. Available at: https://doi.org/10.1137/22M1487163
    @article{GanderEtAl2023b,
      author = {Gander, Martin J. and Lunet, Thibaut and Ruprecht, Daniel and Speck, Robert},
      doi = {10.1137/22M1487163},
      journal = {SIAM Journal on Scientific Computing},
      number = {5},
      pages = {A2275-A2303},
      title = {A Unified Analysis Framework for Iterative Parallel-in-Time Algorithms},
      url = {https://doi.org/10.1137/22M1487163},
      volume = {45},
      year = {2023}
    }
    
  22. P. Gangl, M. Gobrial, and O. Steinbach, “A space-time finite element method for the eddy current approximation of rotating electric machines,” arXiv:2307.00278v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2307.00278v1
    @unpublished{GanglEtAl2023,
      author = {Gangl, Peter and Gobrial, Mario and Steinbach, Olaf},
      howpublished = {arXiv:2307.00278v1 [math.NA]},
      title = {A space-time finite element method for the eddy current approximation of rotating electric machines},
      url = {http://arxiv.org/abs/2307.00278v1},
      year = {2023}
    }
    
  23. G. Garai and B. C. Mandal, “Linear and Nonlinear Parareal Methods for the Cahn-Hilliard Equation,” arXiv:2304.14074v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2304.14074v1
    @unpublished{GaraiEtAl2023b,
      author = {Garai, Gobinda and Mandal, Bankim C.},
      howpublished = {arXiv:2304.14074v1 [math.NA]},
      title = {Linear and Nonlinear Parareal Methods for the Cahn-Hilliard Equation},
      url = {http://arxiv.org/abs/2304.14074v1},
      year = {2023}
    }
    
  24. G. Garai and B. C. Mandal, “Diagonalization based Parallel-in-Time method for a class of fourth order time dependent PDEs,” Mathematics and Computers in Simulation, Aug. 2023 [Online]. Available at: https://doi.org/10.1016%2Fj.matcom.2023.07.028
    @article{GaraiEtAl2023c,
      author = {Garai, Gobinda and Mandal, Bankim C.},
      doi = {10.1016/j.matcom.2023.07.028},
      journal = {Mathematics and Computers in Simulation},
      month = aug,
      publisher = {Elsevier {BV}},
      title = {Diagonalization based Parallel-in-Time method for a class of fourth order time dependent {PDEs}},
      url = {https://doi.org/10.1016%2Fj.matcom.2023.07.028},
      year = {2023}
    }
    
  25. J. Hahne, B. Polenz, I. Kulchytska-Ruchka, S. Friedhoff, S. Ulbrich, and S. Schöps, “Parallel-in-time optimization of induction motors,” Journal of Mathematics in Industry, vol. 13, no. 1, Jun. 2023 [Online]. Available at: https://doi.org/10.1186/s13362-023-00134-5
    @article{HahneEtAl2023,
      author = {Hahne, Jens and Polenz, Björn and Kulchytska-Ruchka, Iryna and Friedhoff, Stephanie and Ulbrich, Stefan and Schöps, Sebastian},
      doi = {10.1186/s13362-023-00134-5},
      journal = {Journal of Mathematics in Industry},
      month = jun,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Parallel-in-time optimization of induction motors},
      url = {https://doi.org/10.1186/s13362-023-00134-5},
      volume = {13},
      year = {2023}
    }
    
  26. S. Hon and S. Serra-Capizzano, “A block Toeplitz preconditioner for all-at-once systems from linear wave equations,” ETNA - Electronic Transactions on Numerical Analysis, vol. 58, pp. 177–195, 2023 [Online]. Available at: https://doi.org/10.1553/etna_vol58s177
    @article{HonEtAl2023,
      author = {Hon, Sean and Serra-Capizzano, Stefano},
      doi = {10.1553/etna_vol58s177},
      journal = {{ETNA} - Electronic Transactions on Numerical Analysis},
      pages = {177--195},
      publisher = {Osterreichische Akademie der Wissenschaften, Verlag},
      title = {A block Toeplitz preconditioner for all-at-once systems from linear wave equations},
      url = {https://doi.org/10.1553/etna_vol58s177},
      volume = {58},
      year = {2023}
    }
    
  27. S. Hon, J. Dong, and S. Serra-Capizzano, “A preconditioned MINRES method for optimal control of wave equations and its asymptotic spectral distribution theory,” arXiv:2307.12850v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2307.12850v1
    @unpublished{HonEtAl2023b,
      author = {Hon, Sean and Dong, Jiamei and Serra-Capizzano, Stefano},
      howpublished = {arXiv:2307.12850v1 [math.NA]},
      title = {A preconditioned MINRES method for optimal control of wave equations and its asymptotic spectral distribution theory},
      url = {http://arxiv.org/abs/2307.12850v1},
      year = {2023}
    }
    
  28. A. Q. Ibrahim, S. Götschel, and D. Ruprecht, “Parareal with a Physics-Informed Neural Network as Coarse Propagator,” in Euro-Par 2023: Parallel Processing, Springer Nature Switzerland, 2023, pp. 649–663 [Online]. Available at: https://doi.org/10.1007/978-3-031-39698-4_44
    @incollection{IbrahimEtAl2023,
      author = {Ibrahim, Abdul Qadir and Götschel, Sebastian and Ruprecht, Daniel},
      booktitle = {Euro-Par 2023: Parallel Processing},
      doi = {10.1007/978-3-031-39698-4_44},
      pages = {649--663},
      publisher = {Springer Nature Switzerland},
      title = {Parareal with~a~Physics-Informed Neural Network as~Coarse Propagator},
      url = {https://doi.org/10.1007/978-3-031-39698-4_44},
      year = {2023}
    }
    
  29. Y. Jiang and J. Liu, “Fast parallel-in-time quasi-boundary value methods for backward heat conduction problems,” Applied Numerical Mathematics, vol. 184, pp. 325–339, Feb. 2023 [Online]. Available at: https://doi.org/10.1016%2Fj.apnum.2022.10.006
    @article{JiangEtAl2023,
      author = {Jiang, Yi and Liu, Jun},
      doi = {10.1016/j.apnum.2022.10.006},
      journal = {Applied Numerical Mathematics},
      month = feb,
      pages = {325--339},
      publisher = {Elsevier {BV}},
      title = {Fast parallel-in-time quasi-boundary value methods for backward heat conduction problems},
      url = {https://doi.org/10.1016%2Fj.apnum.2022.10.006},
      volume = {184},
      year = {2023}
    }
    
  30. Y. Jiang, J. Liu, and X.-S. Wang, “A direct parallel-in-time quasi-boundary value method for inverse space-dependent source problems,” Journal of Computational and Applied Mathematics, vol. 423, p. 114958, May 2023 [Online]. Available at: https://doi.org/10.1016%2Fj.cam.2022.114958
    @article{JiangEtAl2023b,
      author = {Jiang, Yi and Liu, Jun and Wang, Xiang-Sheng},
      doi = {10.1016/j.cam.2022.114958},
      journal = {Journal of Computational and Applied Mathematics},
      month = may,
      pages = {114958},
      publisher = {Elsevier {BV}},
      title = {A direct parallel-in-time quasi-boundary value method for inverse space-dependent source problems},
      url = {https://doi.org/10.1016%2Fj.cam.2022.114958},
      volume = {423},
      year = {2023}
    }
    
  31. B. Jin, Q. Lin, and Z. Zhou, “Learning Coarse Propagators in Parareal Algorithm,” arXiv:2311.15320v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2311.15320v1
    @unpublished{JinEtAl2023,
      author = {Jin, Bangti and Lin, Qingle and Zhou, Zhi},
      howpublished = {arXiv:2311.15320v1 [math.NA]},
      title = {Learning Coarse Propagators in Parareal Algorithm},
      url = {http://arxiv.org/abs/2311.15320v1},
      year = {2023}
    }
    
  32. R. Kraft, S. Koraltan, M. Gattringer, F. Bruckner, D. Suess, and C. Abert, “Parallel-in-Time Integration of the Landau-Lifshitz-Gilbert Equation with the Parallel Full Approximation Scheme in Space and Time,” arXiv:2310.11819v1 [physics.comp-ph], 2023 [Online]. Available at: http://arxiv.org/abs/2310.11819v1
    @unpublished{KraftEtAl2023,
      author = {Kraft, Robert and Koraltan, Sabri and Gattringer, Markus and Bruckner, Florian and Suess, Dieter and Abert, Claas},
      howpublished = {arXiv:2310.11819v1 [physics.comp-ph]},
      title = {Parallel-in-Time Integration of the Landau-Lifshitz-Gilbert Equation with the Parallel Full Approximation Scheme in Space and Time},
      url = {http://arxiv.org/abs/2310.11819v1},
      year = {2023}
    }
    
  33. S. Leveque, L. Bergamaschi, Á. Martínez, and J. W. Pearson, “Fast Iterative Solver for the All-at-Once Runge–Kutta Discretization,” arXiv:2303.02090v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2303.02090v1
    @unpublished{LevequeEtAl2023,
      author = {Leveque, Santolo and Bergamaschi, Luca and Martínez, Ángeles and Pearson, John W.},
      howpublished = {arXiv:2303.02090v1 [math.NA]},
      title = {Fast Iterative Solver for the All-at-Once Runge--Kutta Discretization},
      url = {http://arxiv.org/abs/2303.02090v1},
      year = {2023}
    }
    
  34. G. Li, “Wavelet-based Edge Multiscale Parareal Algorithm for subdiffusion equations with heterogeneous coefficients in a large time domain,” arXiv:2307.06529v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2307.06529v1
    @unpublished{Li2023,
      author = {Li, Guanglian},
      howpublished = {arXiv:2307.06529v1 [math.NA]},
      title = {Wavelet-based Edge Multiscale Parareal Algorithm for subdiffusion equations with heterogeneous coefficients in a large time domain},
      url = {http://arxiv.org/abs/2307.06529v1},
      year = {2023}
    }
    
  35. J. Li and Y. Jiang, “Analysis of a New Accelerated Waveform Relaxation Method Based on the Time-Parallel Algorithm,” Journal of Scientific Computing, vol. 96, no. 3, Jul. 2023 [Online]. Available at: https://doi.org/10.1007/s10915-023-02285-4
    @article{LiEtAl2023,
      author = {Li, Jun and Jiang, Yaolin},
      doi = {10.1007/s10915-023-02285-4},
      journal = {Journal of Scientific Computing},
      month = jul,
      number = {3},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Analysis of a New Accelerated Waveform Relaxation Method Based on the Time-Parallel Algorithm},
      url = {https://doi.org/10.1007/s10915-023-02285-4},
      volume = {96},
      year = {2023}
    }
    
  36. X.-lei Lin and S. Hon, “A block α-circulant based preconditioned MINRES method for wave equations,” arXiv:2306.03574v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2306.03574v1
    @unpublished{LinEtAl2023,
      author = {Lin, Xue-lei and Hon, Sean},
      howpublished = {arXiv:2306.03574v1 [math.NA]},
      title = {A block $α$-circulant based preconditioned MINRES method for wave equations},
      url = {http://arxiv.org/abs/2306.03574v1},
      year = {2023}
    }
    
  37. Z. Miao and Y.-L. Jiang, “A Fast Simulation Approach to Switched Systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2023 [Online]. Available at: http://dx.doi.org/10.1109/TCSII.2023.3332694
    @article{MiaoEtAl2023,
      author = {Miao, Zhen and Jiang, Yao-Lin},
      doi = {10.1109/tcsii.2023.3332694},
      issn = {1558-3791},
      journal = {IEEE Transactions on Circuits and Systems II: Express Briefs},
      pages = {1–1},
      publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
      title = {A Fast Simulation Approach to Switched Systems},
      url = {http://dx.doi.org/10.1109/TCSII.2023.3332694},
      year = {2023}
    }
    
  38. P. Munch, I. Dravins, M. Kronbichler, and M. Neytcheva, “Stage-Parallel Fully Implicit Runge–Kutta Implementations with Optimal Multilevel Preconditioners at the Scaling Limit,” SIAM Journal on Scientific Computing, pp. S71–S96, Jul. 2023 [Online]. Available at: https://doi.org/10.1137%2F22m1503270
    @article{MunchEtAl2023,
      author = {Munch, Peter and Dravins, Ivo and Kronbichler, Martin and Neytcheva, Maya},
      doi = {10.1137/22m1503270},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jul,
      pages = {S71--S96},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Stage-Parallel Fully Implicit Runge{\textendash}Kutta Implementations with Optimal Multilevel Preconditioners at the Scaling Limit},
      url = {https://doi.org/10.1137%2F22m1503270},
      year = {2023}
    }
    
  39. V.-T. Nguyen and L. Grigori, “Interpretation of parareal as a two-level additive Schwarz in time preconditioner and its acceleration with GMRES,” Numerical Algorithms, Mar. 2023 [Online]. Available at: https://doi.org/10.1007/s11075-022-01492-8
    @article{NguyenEtAl2023,
      author = {Nguyen, Van-Thanh and Grigori, Laura},
      doi = {10.1007/s11075-022-01492-8},
      journal = {Numerical Algorithms},
      month = mar,
      publisher = {Springer Science and Business Media {LLC}},
      title = {Interpretation of parareal as a two-level additive Schwarz in time preconditioner and its acceleration with {GMRES}},
      url = {https://doi.org/10.1007/s11075-022-01492-8},
      year = {2023}
    }
    
  40. H. Nguyen and R. Tsai, “Numerical wave propagation aided by deep learning,” Journal of Computational Physics, vol. 475, p. 111828, Feb. 2023 [Online]. Available at: https://doi.org/10.1016%2Fj.jcp.2022.111828
    @article{NguyenEtAl2023b,
      author = {Nguyen, Hieu and Tsai, Richard},
      doi = {10.1016/j.jcp.2022.111828},
      journal = {Journal of Computational Physics},
      month = feb,
      pages = {111828},
      publisher = {Elsevier {BV}},
      title = {Numerical wave propagation aided by deep learning},
      url = {https://doi.org/10.1016%2Fj.jcp.2022.111828},
      volume = {475},
      year = {2023}
    }
    
  41. B. Philippi and T. Slawig, “A Micro-Macro Parareal Implementation for the Ocean-Circulation Model FESOM2,” arXiv:2306.17269v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2306.17269v1
    @unpublished{PhilippiEtAl2023,
      author = {Philippi, B. and Slawig, T.},
      howpublished = {arXiv:2306.17269v1 [math.NA]},
      title = {A Micro-Macro Parareal Implementation for the Ocean-Circulation Model FESOM2},
      url = {http://arxiv.org/abs/2306.17269v1},
      year = {2023}
    }
    
  42. B. Philippi, M. S. Miraz, and T. Slawig, “A Micor-Macro parallel-in-time Implementation for the 2D Navier-Stokes Equations,” arXiv:2309.03037v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2309.03037v1
    @unpublished{PhilippiEtAl2023b,
      author = {Philippi, Benedict and Miraz, Mahfuz Sarker and Slawig, Thomas},
      howpublished = {arXiv:2309.03037v1 [math.NA]},
      title = {A Micor-Macro parallel-in-time Implementation for the 2D Navier-Stokes Equations},
      url = {http://arxiv.org/abs/2309.03037v1},
      year = {2023}
    }
    
  43. J. Sarpe, A. Klaedtke, and H. D. Gersem, “A Parallel-In-Time Adjoint Sensitivity Analysis for a B6 Bridge-Motor Supply Circuit,” arXiv:2307.00802v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2307.00802v1
    @unpublished{SarpeEtAl2023,
      author = {Sarpe, Julian and Klaedtke, Andreas and Gersem, Herbert De},
      howpublished = {arXiv:2307.00802v1 [math.NA]},
      title = {A Parallel-In-Time Adjoint Sensitivity Analysis for a B6 Bridge-Motor Supply Circuit},
      url = {http://arxiv.org/abs/2307.00802v1},
      year = {2023}
    }
    
  44. J. Schleuß, K. Smetana, and L. ter Maat, “Randomized Quasi-Optimal Local Approximation Spaces in Time,” SIAM Journal on Scientific Computing, vol. 45, no. 3, pp. A1066–A1096, May 2023 [Online]. Available at: https://doi.org/10.1137%2F22m1481002
    @article{SchleußEtAl2023,
      author = {Schleu{\ss}, Julia and Smetana, Kathrin and ter Maat, Lukas},
      doi = {10.1137/22m1481002},
      journal = {{SIAM} Journal on Scientific Computing},
      month = may,
      number = {3},
      pages = {A1066--A1096},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Randomized Quasi-Optimal Local Approximation Spaces in Time},
      url = {https://doi.org/10.1137%2F22m1481002},
      volume = {45},
      year = {2023}
    }
    
  45. X. Shan and M. B. van Gijzen, “Parareal Method for Anisotropic Diffusion Denoising,” in Parallel Processing and Applied Mathematics, Springer International Publishing, 2023, pp. 313–322 [Online]. Available at: https://doi.org/10.1007/978-3-031-30445-3_26
    @incollection{ShanEtAl2023,
      author = {Shan, Xiujie and van Gijzen, Martin B.},
      booktitle = {Parallel Processing and Applied Mathematics},
      doi = {10.1007/978-3-031-30445-3_26},
      pages = {313--322},
      publisher = {Springer International Publishing},
      title = {Parareal Method for~Anisotropic Diffusion Denoising},
      url = {https://doi.org/10.1007/978-3-031-30445-3_26},
      year = {2023}
    }
    
  46. B. Song, J.-Y. Wang, and Y.-L. Jiang, “Analysis of a New Krylov subspace enhanced parareal algorithm for time-periodic problems,” Numerical Algorithms, Nov. 2023 [Online]. Available at: http://dx.doi.org/10.1007/s11075-023-01704-9
    @article{SongEtAl2023,
      author = {Song, Bo and Wang, Jing-Yi and Jiang, Yao-Lin},
      doi = {10.1007/s11075-023-01704-9},
      issn = {1572-9265},
      journal = {Numerical Algorithms},
      month = nov,
      publisher = {Springer Science and Business Media LLC},
      title = {Analysis of a New Krylov subspace enhanced parareal algorithm for time-periodic problems},
      url = {http://dx.doi.org/10.1007/s11075-023-01704-9},
      year = {2023}
    }
    
  47. Y. Takahashi, K. Fujiwara, and T. Iwashita, “Parallel-in-Space-and-Time Finite-Element Method for Time-Periodic Magnetic Field Problems with Hysteresis,” IEEE Transactions on Magnetics, pp. 1–1, 2023 [Online]. Available at: https://doi.org/10.1109/tmag.2023.3307498
    @article{TakahashiEtAl2023,
      author = {Takahashi, Yasuhito and Fujiwara, Koji and Iwashita, Takeshi},
      doi = {10.1109/tmag.2023.3307498},
      journal = {{IEEE} Transactions on Magnetics},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Parallel-in-Space-and-Time Finite-Element Method for Time-Periodic Magnetic Field Problems with Hysteresis},
      url = {https://doi.org/10.1109/tmag.2023.3307498},
      year = {2023}
    }
    
  48. K. Trotti, “A domain splitting strategy for solving PDEs,” arXiv:2303.01163v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2303.01163v1
    @unpublished{Trotti2023,
      author = {Trotti, Ken},
      howpublished = {arXiv:2303.01163v1 [math.NA]},
      title = {A domain splitting strategy for solving PDEs},
      url = {http://arxiv.org/abs/2303.01163v1},
      year = {2023}
    }
    
  49. D. A. Vargas, R. D. Falgout, S. Günther, and J. B. Schroder, “Multigrid Reduction in Time for Chaotic Dynamical Systems,” SIAM Journal on Scientific Computing, vol. 45, no. 4, pp. A2019–A2042, Aug. 2023 [Online]. Available at: https://doi.org/10.1137%2F22m1518335
    @article{VargasEtAl2023,
      author = {Vargas, D. A. and Falgout, R. D. and Günther, S. and Schroder, J. B.},
      doi = {10.1137/22m1518335},
      journal = {{SIAM} Journal on Scientific Computing},
      month = aug,
      number = {4},
      pages = {A2019--A2042},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Multigrid Reduction in Time for Chaotic Dynamical Systems},
      url = {https://doi.org/10.1137%2F22m1518335},
      volume = {45},
      year = {2023}
    }
    
  50. Y. Wang, “Parallel Numerical Picard Iteration Methods,” Journal of Scientific Computing, vol. 95, no. 1, Mar. 2023 [Online]. Available at: https://doi.org/10.1007/s10915-023-02156-y
    @article{Wang2023,
      author = {Wang, Yinkun},
      doi = {10.1007/s10915-023-02156-y},
      journal = {Journal of Scientific Computing},
      month = mar,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Parallel Numerical Picard Iteration Methods},
      url = {https://doi.org/10.1007/s10915-023-02156-y},
      volume = {95},
      year = {2023}
    }
    
  51. M. Wang and S. Zhang, “A Preconditioner for Galerkin–Legendre Spectral All-at-Once System from Time-Space Fractional Diffusion Equation,” Symmetry, vol. 15, no. 12, p. 2144, Dec. 2023 [Online]. Available at: http://dx.doi.org/10.3390/sym15122144
    @article{WangEtAl2023,
      author = {Wang, Meijuan and Zhang, Shugong},
      doi = {10.3390/sym15122144},
      issn = {2073-8994},
      journal = {Symmetry},
      month = dec,
      number = {12},
      pages = {2144},
      publisher = {MDPI AG},
      title = {A Preconditioner for Galerkin–Legendre Spectral All-at-Once System from Time-Space Fractional Diffusion Equation},
      url = {http://dx.doi.org/10.3390/sym15122144},
      volume = {15},
      year = {2023}
    }
    
  52. S.-L. Wu, Z. Wang, and T. Zhou, “PinT Preconditioner for Forward-Backward Evolutionary Equations,” SIAM Journal on Matrix Analysis and Applications, vol. 44, no. 4, pp. 1771–1798, Nov. 2023 [Online]. Available at: http://dx.doi.org/10.1137/22M1516476
    @article{WuEtAl2023,
      author = {Wu, Shu-Lin and Wang, Zhiyong and Zhou, Tao},
      doi = {10.1137/22m1516476},
      issn = {1095-7162},
      journal = {SIAM Journal on Matrix Analysis and Applications},
      month = nov,
      number = {4},
      pages = {1771–1798},
      publisher = {Society for Industrial & Applied Mathematics (SIAM)},
      title = {PinT Preconditioner for Forward-Backward Evolutionary Equations},
      url = {http://dx.doi.org/10.1137/22M1516476},
      volume = {44},
      year = {2023}
    }
    
  53. H. Yamazaki, C. J. Cotter, and B. A. Wingate, “Time-parallel integration and phase averaging for the nonlinear shallow-water equations on the sphere,” Quarterly Journal of the Royal Meteorological Society, Jul. 2023 [Online]. Available at: https://doi.org/10.1002%2Fqj.4517
    @article{YamazakiEtAl2023,
      author = {Yamazaki, Hiroe and Cotter, Colin J. and Wingate, Beth A.},
      doi = {10.1002/qj.4517},
      journal = {Quarterly Journal of the Royal Meteorological Society},
      month = jul,
      publisher = {Wiley},
      title = {Time-parallel integration and phase averaging for the nonlinear shallow-water equations on the sphere},
      url = {https://doi.org/10.1002%2Fqj.4517},
      year = {2023}
    }
    
  54. X. Yue, Z. Wang, and S.-L. Wu, “Convergence Analysis of a Mixed Precision Parareal Algorithm,” SIAM Journal on Scientific Computing, vol. 45, no. 5, pp. A2483–A2510, Sep. 2023 [Online]. Available at: https://doi.org/10.1137/22m1510169
    @article{YueEtAl2023,
      author = {Yue, Xiaoqiang and Wang, Zhiyong and Wu, Shu-Lin},
      doi = {10.1137/22m1510169},
      journal = {{SIAM} Journal on Scientific Computing},
      month = sep,
      number = {5},
      pages = {A2483--A2510},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Convergence Analysis of a Mixed Precision Parareal Algorithm},
      url = {https://doi.org/10.1137/22m1510169},
      volume = {45},
      year = {2023}
    }
    
  55. J. Zeifang, A. T. Manikantan, and J. Schütz, “Time parallelism and Newton-adaptivity of the two-derivative deferred correction discontinuous Galerkin method,” Applied Mathematics and Computation, vol. 457, p. 128198, Nov. 2023 [Online]. Available at: https://doi.org/10.1016/j.amc.2023.128198
    @article{ZeifangEtAl2023,
      author = {Zeifang, Jonas and Manikantan, Arjun Thenery and Schütz, Jochen},
      doi = {10.1016/j.amc.2023.128198},
      journal = {Applied Mathematics and Computation},
      month = nov,
      pages = {128198},
      publisher = {Elsevier {BV}},
      title = {Time parallelism and Newton-adaptivity of the two-derivative deferred correction discontinuous Galerkin method},
      url = {https://doi.org/10.1016/j.amc.2023.128198},
      volume = {457},
      year = {2023}
    }
    
  56. Q. Zhou, Y. Liu, and S.-L. Wu, “Parareal algorithm via Chebyshev-Gauss spectral collocation method,” arXiv:2304.10152v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2304.10152v1
    @unpublished{ZhouEtAl2023,
      author = {Zhou, Quan and Liu, Yicheng and Wu, Shu-Lin},
      howpublished = {arXiv:2304.10152v1 [math.NA]},
      title = {Parareal algorithm via Chebyshev-Gauss spectral collocation method},
      url = {http://arxiv.org/abs/2304.10152v1},
      year = {2023}
    }
    
  57. Z. Zhou, H. Gu, G. Ju, and W. Xing, “A Parallel-in-time Method Based on Preconditioner for Biot’s Model,” arXiv:2310.10430v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2310.10430v1
    @unpublished{ZhouEtAl2023b,
      author = {Zhou, Zeyuan and Gu, Huipeng and Ju, Guoliang and Xing, Wei},
      howpublished = {arXiv:2310.10430v1 [math.NA]},
      title = {A Parallel-in-time Method Based on Preconditioner for Biot's Model},
      url = {http://arxiv.org/abs/2310.10430v1},
      year = {2023}
    }
    
top

2022

  1. W. C. Agboh, D. Ruprecht, and M. R. Dogar, “Combining Coarse and Fine Physics for Manipulation using Parallel-in-Time Integration,” in Robotics Research, 2022, pp. 725–740 [Online]. Available at: https://doi.org/10.1007/978-3-030-95459-8_44
    @inproceedings{AgbohEtAl2022,
      author = {Agboh, Wisdom C. and Ruprecht, Daniel and Dogar, Mehmet R.},
      booktitle = {Robotics Research},
      doi = {10.1007/978-3-030-95459-8_44},
      editor = {Asfour, Tamim and Yoshida, Eiichi and Park, Jaeheung and Christensen, Henrik and Khatib, Oussama},
      pages = {725 -- 740},
      publisher = {Springer International Publishing},
      title = {Combining Coarse and Fine Physics for Manipulation using Parallel-in-Time Integration},
      url = {https://doi.org/10.1007/978-3-030-95459-8_44},
      year = {2022}
    }
    
  2. A. Arrarás, F. J. Gaspar, L. Portero, and C. Rodrigo, “Space-Time Parallel Methods for Evolutionary Reaction-Diffusion Problems,” in Domain Decomposition Methods in Science and Engineering XXVI, Springer International Publishing, 2022, pp. 643–651 [Online]. Available at: https://doi.org/10.1007/978-3-030-95025-5_70
    @incollection{ArrarasEtAl2022,
      author = {Arrar{\'{a}}s, Andr{\'{e}}s and Gaspar, Francisco J and Portero, Laura and Rodrigo, Carmen},
      booktitle = {Domain Decomposition Methods in Science and Engineering {XXVI}},
      doi = {10.1007/978-3-030-95025-5_70},
      pages = {643--651},
      publisher = {Springer International Publishing},
      title = {Space-Time Parallel Methods for Evolutionary Reaction-Diffusion Problems},
      url = {https://doi.org/10.1007/978-3-030-95025-5_70},
      year = {2022}
    }
    
  3. D. Q. Bui, C. Japhet, Y. Maday, and P. Omnes, “Coupling Parareal with Optimized Schwarz Waveform Relaxation for Parabolic Problems,” SIAM Journal on Numerical Analysis, vol. 60, no. 3, pp. 913–939, May 2022 [Online]. Available at: https://doi.org/10.1137/21m1419428
    @article{BuiEtAl2022,
      author = {Bui, Duc Quang and Japhet, Caroline and Maday, Yvon and Omnes, Pascal},
      doi = {10.1137/21m1419428},
      journal = {{SIAM} Journal on Numerical Analysis},
      month = may,
      number = {3},
      pages = {913--939},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Coupling Parareal with Optimized Schwarz Waveform Relaxation for Parabolic Problems},
      url = {https://doi.org/10.1137/21m1419428},
      volume = {60},
      year = {2022}
    }
    
  4. T. Cheng, N. Lin, and V. Dinavahi, “Hybrid Parallel-in-Time-and-Space Transient Stability Simulation of Large-Scale AC/DC Grids,” IEEE Transactions on Power Systems, pp. 1–1, 2022 [Online]. Available at: https://doi.org/10.1109/tpwrs.2022.3153450
    @article{ChengEtAl2022,
      author = {Cheng, Tianshi and Lin, Ning and Dinavahi, Venkata},
      doi = {10.1109/tpwrs.2022.3153450},
      journal = {{IEEE} Transactions on Power Systems},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Hybrid Parallel-in-Time-and-Space Transient Stability Simulation of Large-Scale {AC}/{DC} Grids},
      url = {https://doi.org/10.1109/tpwrs.2022.3153450},
      year = {2022}
    }
    
  5. S. Costanzo, T. Sayadi, M. F. de Pando, P. J. Schmid, and P. Frey, “Parallel-in-time adjoint-based optimization – application to unsteady incompressible flows,” Journal of Computational Physics, p. 111664, Oct. 2022 [Online]. Available at: https://doi.org/10.1016/j.jcp.2022.111664
    @article{CostanzoEtAl2022,
      author = {Costanzo, S. and Sayadi, T. and de Pando, M. Fosas and Schmid, P.J. and Frey, P.},
      doi = {10.1016/j.jcp.2022.111664},
      journal = {Journal of Computational Physics},
      month = oct,
      pages = {111664},
      publisher = {Elsevier {BV}},
      title = {Parallel-in-time adjoint-based optimization {\textendash} application to unsteady incompressible flows},
      url = {https://doi.org/10.1016/j.jcp.2022.111664},
      year = {2022}
    }
    
  6. L. D’Amore, E. Constantinescu, and L. Carracciuolo, “A Scalable Space-Time Domain Decomposition Approach for Solving Large Scale Nonlinear Regularized Inverse Ill Posed Problems in 4D Variational Data Assimilation,” Journal of Scientific Computing, vol. 91, no. 2, Apr. 2022 [Online]. Available at: https://doi.org/10.1007/s10915-022-01826-7
    @article{DAmoreEtAl2022,
      author = {D'Amore, Luisa and Constantinescu, Emil and Carracciuolo, Luisa},
      doi = {10.1007/s10915-022-01826-7},
      journal = {Journal of Scientific Computing},
      month = apr,
      number = {2},
      publisher = {Springer Science and Business Media {LLC}},
      title = {A Scalable Space-Time Domain Decomposition Approach for Solving Large Scale Nonlinear Regularized Inverse Ill Posed Problems in 4D Variational Data Assimilation},
      url = {https://doi.org/10.1007/s10915-022-01826-7},
      volume = {91},
      year = {2022}
    }
    
  7. F. Danieli, B. S. Southworth, and A. J. Wathen, “Space-Time Block Preconditioning for Incompressible Flow,” SIAM Journal on Scientific Computing, vol. 44, no. 1, pp. A337–A363, Feb. 2022 [Online]. Available at: https://doi.org/10.1137%2F21m1390773
    @article{DanieliEtAl2022,
      author = {Danieli, Federico and Southworth, Ben S. and Wathen, Andrew J.},
      doi = {10.1137/21m1390773},
      journal = {{SIAM} Journal on Scientific Computing},
      month = feb,
      number = {1},
      pages = {A337--A363},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Space-Time Block Preconditioning for Incompressible Flow},
      url = {https://doi.org/10.1137%2F21m1390773},
      volume = {44},
      year = {2022}
    }
    
  8. F. Danieli and S. MacLachlan, “Multigrid reduction in time for non-linear hyperbolic equations,” ETNA - Electronic Transactions on Numerical Analysis, vol. 58, pp. 43–65, 2022 [Online]. Available at: https://doi.org/10.1553%2Fetna_vol58s43
    @article{DanieliEtAl2022b,
      author = {Danieli, Federico and MacLachlan, Scott},
      doi = {10.1553/etna_vol58s43},
      journal = {{ETNA} - Electronic Transactions on Numerical Analysis},
      pages = {43--65},
      publisher = {Osterreichische Akademie der Wissenschaften, Verlag},
      title = {Multigrid reduction in time for non-linear hyperbolic equations},
      url = {https://doi.org/10.1553%2Fetna_vol58s43},
      volume = {58},
      year = {2022}
    }
    
  9. S. Frei and A. Heinlein, “Efficient coarse correction for parallel time-stepping in plaque growth simulations,” arXiv:2207.02081v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2207.02081v1
    @unpublished{FreiEtAl2022b,
      author = {Frei, Stefan and Heinlein, Alexander},
      howpublished = {arXiv:2207.02081v1 [math.NA]},
      title = {Efficient coarse correction for parallel time-stepping in plaque growth simulations},
      url = {http://arxiv.org/abs/2207.02081v1},
      year = {2022}
    }
    
  10. I. C. Garcia, I. Kulchytska-Ruchka, and S. Schöps, “Parareal for index two differential algebraic equations,” Numerical Algorithms, Mar. 2022 [Online]. Available at: https://doi.org/10.1007%2Fs11075-022-01267-1
    @article{GarciaEtAl2022,
      author = {Garcia, Idoia Cortes and Kulchytska-Ruchka, Iryna and Schöps, Sebastian},
      doi = {10.1007/s11075-022-01267-1},
      journal = {Numerical Algorithms},
      month = mar,
      publisher = {Springer Science and Business Media {LLC}},
      title = {Parareal for index two differential algebraic equations},
      url = {https://doi.org/10.1007%2Fs11075-022-01267-1},
      year = {2022}
    }
    
  11. O. Gorynina, F. Legoll, T. Lelievre, and D. Perez, “Combining machine-learned and empirical force fields with the parareal algorithm: application to the diffusion of atomistic defects,” arXiv:2212.10508v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2212.10508v1
    @unpublished{GoryninaEtAl2022,
      author = {Gorynina, Olga and Legoll, Frederic and Lelievre, Tony and Perez, Danny},
      howpublished = {arXiv:2212.10508v1 [math.NA]},
      title = {Combining machine-learned and empirical force fields with the parareal algorithm: application to the diffusion of atomistic defects},
      url = {http://arxiv.org/abs/2212.10508v1},
      year = {2022}
    }
    
  12. J. Hahne, B. S. Southworth, and S. Friedhoff, “Asynchronous Truncated Multigrid-Reduction-in-Time,” SIAM Journal on Scientific Computing, pp. S281–S306, Nov. 2022 [Online]. Available at: https://doi.org/10.1137/21m1433149
    @article{HahneEtAl2022,
      author = {Hahne, Jens and Southworth, Ben S. and Friedhoff, Stephanie},
      doi = {10.1137/21m1433149},
      journal = {{SIAM} Journal on Scientific Computing},
      month = nov,
      pages = {S281--S306},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Asynchronous Truncated Multigrid-Reduction-in-Time},
      url = {https://doi.org/10.1137/21m1433149},
      year = {2022}
    }
    
  13. G. He, “Time Parallel Denoising Algorithm Based on P-M Equation for Real Image,” Wireless Communications and Mobile Computing, vol. 2022, pp. 1–9, Aug. 2022 [Online]. Available at: https://doi.org/10.1155/2022/8008912
    @article{He2022,
      author = {He, Guoliang},
      doi = {10.1155/2022/8008912},
      editor = {Wu, Chia-Huei},
      journal = {Wireless Communications and Mobile Computing},
      month = aug,
      pages = {1--9},
      publisher = {Hindawi Limited},
      title = {Time Parallel Denoising Algorithm Based on P-M Equation for Real Image},
      url = {https://doi.org/10.1155/2022/8008912},
      volume = {2022},
      year = {2022}
    }
    
  14. Y. He and J. Liu, “A Vanka-type multigrid solver for complex-shifted Laplacian systems from diagonalization-based parallel-in-time algorithms,” Applied Mathematics Letters, vol. 132, p. 108125, Oct. 2022 [Online]. Available at: https://doi.org/10.1016/j.aml.2022.108125
    @article{HeEtAl2022,
      author = {He, Yunhui and Liu, Jun},
      doi = {10.1016/j.aml.2022.108125},
      journal = {Applied Mathematics Letters},
      month = oct,
      pages = {108125},
      publisher = {Elsevier {BV}},
      title = {A Vanka-type multigrid solver for complex-shifted Laplacian systems from diagonalization-based parallel-in-time algorithms},
      url = {https://doi.org/10.1016/j.aml.2022.108125},
      volume = {132},
      year = {2022}
    }
    
  15. K. Herb and P. Welter, “Parallel time integration using Batched BLAS (Basic Linear Algebra Subprograms) routines,” Computer Physics Communications, vol. 270, p. 108181, Jan. 2022 [Online]. Available at: https://doi.org/10.1016/j.cpc.2021.108181
    @article{HerbEtAl2022,
      author = {Herb, Konstantin and Welter, Pol},
      doi = {10.1016/j.cpc.2021.108181},
      journal = {Computer Physics Communications},
      month = jan,
      pages = {108181},
      publisher = {Elsevier {BV}},
      title = {Parallel time integration using Batched {BLAS} (Basic Linear Algebra Subprograms) routines},
      url = {https://doi.org/10.1016/j.cpc.2021.108181},
      volume = {270},
      year = {2022}
    }
    
  16. Y. Jiang and J. Liu, “Fast Parallel-in-Time Quasi-Boundary Value Methods for Backward Heat Conduction Problems,” Applied Numerical Mathematics, Oct. 2022 [Online]. Available at: https://doi.org/10.1016/j.apnum.2022.10.006
    @article{JiangEtAl2022b,
      author = {Jiang, Yi and Liu, Jun},
      doi = {10.1016/j.apnum.2022.10.006},
      journal = {Applied Numerical Mathematics},
      month = oct,
      publisher = {Elsevier {BV}},
      title = {Fast Parallel-in-Time Quasi-Boundary Value Methods for Backward Heat Conduction Problems},
      url = {https://doi.org/10.1016/j.apnum.2022.10.006},
      year = {2022}
    }
    
  17. E. Kazakov, D. Efremenko, V. Zemlyakov, and J. Gao, “A Time-Parallel Ordinary Differential Equation Solver with an Adaptive Step Size: Performance Assessment,” in Lecture Notes in Computer Science, Springer International Publishing, 2022, pp. 3–17 [Online]. Available at: https://doi.org/10.1007/978-3-031-22941-1_1
    @incollection{KazakovEtAl2022,
      author = {Kazakov, Evgeniy and Efremenko, Dmitry and Zemlyakov, Viacheslav and Gao, Jiexing},
      booktitle = {Lecture Notes in Computer Science},
      doi = {10.1007/978-3-031-22941-1_1},
      pages = {3--17},
      publisher = {Springer International Publishing},
      title = {A Time-Parallel Ordinary Differential Equation Solver with an Adaptive Step Size: Performance Assessment},
      url = {https://doi.org/10.1007/978-3-031-22941-1_1},
      year = {2022}
    }
    
  18. D. Kressner, S. Massei, and J. Zhu, “Improved parallel-in-time integration via low-rank updates and interpolation,” arXiv:2204.03073v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2204.03073v1
    @unpublished{KressnerEtAl2022,
      author = {Kressner, Daniel and Massei, Stefano and Zhu, Junli},
      howpublished = {arXiv:2204.03073v1 [math.NA]},
      title = {Improved parallel-in-time integration via low-rank updates and interpolation},
      url = {http://arxiv.org/abs/2204.03073v1},
      year = {2022}
    }
    
  19. Y. Lee, J. Park, and C.-O. Lee, “Parareal Neural Networks Emulating a Parallel-in-Time Algorithm,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–12, 2022 [Online]. Available at: https://doi.org/10.1109/tnnls.2022.3206797
    @article{LeeEtAl2022,
      author = {Lee, Youngkyu and Park, Jongho and Lee, Chang-Ock},
      doi = {10.1109/tnnls.2022.3206797},
      journal = {{IEEE} Transactions on Neural Networks and Learning Systems},
      pages = {1--12},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Parareal Neural Networks Emulating a Parallel-in-Time Algorithm},
      url = {https://doi.org/10.1109/tnnls.2022.3206797},
      year = {2022}
    }
    
  20. F. Legoll, T. Lelièvre, and U. Sharma, “An Adaptive Parareal Algorithm: Application to the Simulation of Molecular Dynamics Trajectories,” SIAM Journal on Scientific Computing, vol. 44, no. 1, pp. B146–B176, Jan. 2022 [Online]. Available at: https://doi.org/10.1137/21m1412979
    @article{LegollEtAl2022,
      author = {Legoll, Fr{\'{e}}d{\'{e}}ric and Leli{\`{e}}vre, Tony and Sharma, Upanshu},
      doi = {10.1137/21m1412979},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {1},
      pages = {B146--B176},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {An Adaptive Parareal Algorithm: Application to the Simulation of Molecular Dynamics Trajectories},
      url = {https://doi.org/10.1137/21m1412979},
      volume = {44},
      year = {2022}
    }
    
  21. S. Li, L. Xie, and L. Zhou, “Convergence analysis of space-time domain decomposition method for parabolic equations,” Computers &\mathsemicolon Mathematics with Applications, Aug. 2022 [Online]. Available at: https://doi.org/10.1016/j.camwa.2022.08.012
    @article{LiEtAl2022,
      author = {Li, Shishun and Xie, Lin and Zhou, Lingling},
      doi = {10.1016/j.camwa.2022.08.012},
      journal = {Computers {\&}amp$\mathsemicolon$ Mathematics with Applications},
      month = aug,
      publisher = {Elsevier {BV}},
      title = {Convergence analysis of space-time domain decomposition method for parabolic equations},
      url = {https://doi.org/10.1016/j.camwa.2022.08.012},
      year = {2022}
    }
    
  22. J. Liu and Z. Wang, “A ROM-accelerated parallel-in-time preconditioner for solving all-at-once systems in unsteady convection-diffusion PDEs,” vol. 416, p. 126750, Mar. 2022 [Online]. Available at: https://doi.org/10.1016/j.amc.2021.126750
    @article{LiuEtAl2022,
      author = {Liu, Jun and Wang, Zhu},
      doi = {10.1016/j.amc.2021.126750},
      month = mar,
      pages = {126750},
      publisher = {Elsevier {BV}},
      title = {A {ROM}-accelerated parallel-in-time preconditioner for solving all-at-once systems in unsteady convection-diffusion {PDEs}},
      url = {https://doi.org/10.1016/j.amc.2021.126750},
      volume = {416},
      year = {2022}
    }
    
  23. J. Liu, X.-S. Wang, S.-L. Wu, and T. Zhou, “A well-conditioned direct PinT algorithm for first- and second-order evolutionary equations,” Advances in Computational Mathematics, vol. 48, no. 3, Apr. 2022 [Online]. Available at: https://doi.org/10.1007%2Fs10444-022-09928-4
    @article{LiuEtAl2022b,
      author = {Liu, Jun and Wang, Xiang-Sheng and Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1007/s10444-022-09928-4},
      journal = {Advances in Computational Mathematics},
      month = apr,
      number = {3},
      publisher = {Springer Science and Business Media {LLC}},
      title = {A well-conditioned direct {PinT} algorithm for first- and second-order evolutionary equations},
      url = {https://doi.org/10.1007%2Fs10444-022-09928-4},
      volume = {48},
      year = {2022}
    }
    
  24. C. Lohmann, J. Dünnebacke, and S. Turek, “Fourier analysis of a time-simultaneous two-grid algorithm using a damped Jacobi waveform relaxation smoother for the one-dimensional heat equation,” Journal of Numerical Mathematics, vol. 0, no. 0, Jun. 2022 [Online]. Available at: https://doi.org/10.1515/jnma-2021-0045
    @article{LohmannEtAl2022,
      author = {Lohmann, Christoph and Dünnebacke, Jonas and Turek, Stefan},
      doi = {10.1515/jnma-2021-0045},
      journal = {Journal of Numerical Mathematics},
      month = jun,
      number = {0},
      publisher = {Walter de Gruyter {GmbH}},
      title = {Fourier analysis of a time-simultaneous two-grid algorithm using a damped Jacobi waveform relaxation smoother for the one-dimensional heat equation},
      url = {https://doi.org/10.1515/jnma-2021-0045},
      volume = {0},
      year = {2022}
    }
    
  25. G. E. Moon and E. C. Cyr, “Parallel Training of GRU Networks with a Multi-Grid Solver for Long Sequences,” arXiv:2203.04738v1 [cs.CV], 2022 [Online]. Available at: http://arxiv.org/abs/2203.04738v1
    @unpublished{MoonEtAl2022,
      author = {Moon, Gordon Euhyun and Cyr, Eric C.},
      howpublished = {arXiv:2203.04738v1 [cs.CV]},
      title = {Parallel Training of GRU Networks with a Multi-Grid Solver for Long Sequences},
      url = {http://arxiv.org/abs/2203.04738v1},
      year = {2022}
    }
    
  26. K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel, “Stochastic Parareal: An Application of Probabilistic Methods to Time-Parallelization,” SIAM Journal on Scientific Computing, pp. S82–S102, Jul. 2022 [Online]. Available at: https://doi.org/10.1137%2F21m1414231
    @article{PentlandEtAl2022b,
      author = {Pentland, Kamran and Tamborrino, Massimiliano and Samaddar, Debasmita and Appel, Lynton C.},
      doi = {10.1137/21m1414231},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jul,
      pages = {S82--S102},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Stochastic Parareal: An Application of Probabilistic Methods to Time-Parallelization},
      url = {https://doi.org/10.1137%2F21m1414231},
      year = {2022}
    }
    
  27. K. Pentland, M. Tamborrino, and T. J. Sullivan, “Error bound analysis of the stochastic parareal algorithm,” arXiv:2211.05496v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2211.05496v1
    @unpublished{PentlandEtAl2022c,
      author = {Pentland, Kamran and Tamborrino, Massimiliano and Sullivan, T. J.},
      howpublished = {arXiv:2211.05496v1 [math.NA]},
      title = {Error bound analysis of the stochastic parareal algorithm},
      url = {http://arxiv.org/abs/2211.05496v1},
      year = {2022}
    }
    
  28. K. Pentland, M. Tamborrino, T. J. Sullivan, J. Buchanan, and L. C. Appel, “GParareal: a time-parallel ODE solver using Gaussian process emulation,” Statistics and Computing, vol. 33, no. 1, Dec. 2022 [Online]. Available at: https://doi.org/10.1007%2Fs11222-022-10195-y
    @article{PentlandEtAl2022d,
      author = {Pentland, Kamran and Tamborrino, Massimiliano and Sullivan, T. J. and Buchanan, James and Appel, L. C.},
      doi = {10.1007/s11222-022-10195-y},
      journal = {Statistics and Computing},
      month = dec,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {{GParareal}: a time-parallel {ODE} solver using Gaussian process emulation},
      url = {https://doi.org/10.1007%2Fs11222-022-10195-y},
      volume = {33},
      year = {2022}
    }
    
  29. B. Philippi and T. Slawig, “The Parareal Algorithm Applied to the FESOM 2 Ocean Circulation Model,” arXiv:2208.07598v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2208.07598v1
    @unpublished{PhilippiEtAl2022,
      author = {Philippi, Benedict and Slawig, Thomas},
      howpublished = {arXiv:2208.07598v1 [math.NA]},
      title = {The Parareal Algorithm Applied to the FESOM 2 Ocean Circulation Model},
      url = {http://arxiv.org/abs/2208.07598v1},
      year = {2022}
    }
    
  30. M. K. Riahi, “PiTSBiCG: Parallel in time Stable Bi-Conjugate gradient algorithm,” Applied Numerical Mathematics, vol. 181, pp. 225–233, Nov. 2022 [Online]. Available at: https://doi.org/10.1016%2Fj.apnum.2022.06.004
    @article{Riahi2022b,
      author = {Riahi, Mohamed Kamel},
      doi = {10.1016/j.apnum.2022.06.004},
      journal = {Applied Numerical Mathematics},
      month = nov,
      pages = {225--233},
      publisher = {Elsevier {BV}},
      title = {{PiTSBiCG}: Parallel in time Stable Bi-Conjugate gradient algorithm},
      url = {https://doi.org/10.1016%2Fj.apnum.2022.06.004},
      volume = {181},
      year = {2022}
    }
    
  31. S. Riffo, F. Kwok, and J. Salomon, “Time-parallelization of sequential data assimilation problems,” arXiv:2212.02377v1 [math.OC], 2022 [Online]. Available at: http://arxiv.org/abs/2212.02377v1
    @unpublished{RiffoEtAl2022,
      author = {Riffo, Sebastián and Kwok, Félix and Salomon, Julien},
      howpublished = {arXiv:2212.02377v1 [math.OC]},
      title = {Time-parallelization of sequential data assimilation problems},
      url = {http://arxiv.org/abs/2212.02377v1},
      year = {2022}
    }
    
  32. J. Rosemeier, T. Haut, and B. Wingate, “Multi-level Parareal algorithm with Averaging,” arXiv:2211.17239v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2211.17239v1
    @unpublished{RosemeierEtAl2022,
      author = {Rosemeier, Juliane and Haut, Terry and Wingate, Beth},
      howpublished = {arXiv:2211.17239v1 [math.NA]},
      title = {Multi-level Parareal algorithm with Averaging},
      url = {http://arxiv.org/abs/2211.17239v1},
      year = {2022}
    }
    
  33. S. Särkkä and Á. F. García-Fernández, “Temporal Parallelisation of the HJB Equation and Continuous-Time Linear Quadratic Control,” arXiv:2212.11744v1 [math.OC], 2022 [Online]. Available at: http://arxiv.org/abs/2212.11744v1
    @unpublished{SaerkkaeEtAl2022,
      author = {Särkkä, Simo and García-Fernández, Ángel F.},
      howpublished = {arXiv:2212.11744v1 [math.OC]},
      title = {Temporal Parallelisation of the HJB Equation and Continuous-Time Linear Quadratic Control},
      url = {http://arxiv.org/abs/2212.11744v1},
      year = {2022}
    }
    
  34. H. D. Sterck, R. D. Falgout, and O. A. Krzysik, “Fast multigrid reduction-in-time for advection via modified semi-Lagrangian coarse-grid operators,” arXiv:2203.13382v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2203.13382v1
    @unpublished{SterckEtAl2022,
      author = {Sterck, H. De and Falgout, R. D. and Krzysik, O. A.},
      howpublished = {arXiv:2203.13382v1 [math.NA]},
      title = {Fast multigrid reduction-in-time for advection via modified semi-Lagrangian coarse-grid operators},
      url = {http://arxiv.org/abs/2203.13382v1},
      year = {2022}
    }
    
  35. H. D. Sterck, S. Friedhoff, O. A. Krzysik, and S. P. MacLachlan, “Multigrid reduction-in-time convergence for advection problems: A Fourier analysis perspective,” arXiv:2208.01526v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2208.01526v1
    @unpublished{SterckEtAl2022b,
      author = {Sterck, H. De and Friedhoff, S. and Krzysik, O. A. and MacLachlan, Scott P.},
      howpublished = {arXiv:2208.01526v1 [math.NA]},
      title = {Multigrid reduction-in-time convergence for advection problems: A Fourier analysis perspective},
      url = {http://arxiv.org/abs/2208.01526v1},
      year = {2022}
    }
    
  36. H. D. Sterck, R. D. Falgout, O. A. Krzysik, and J. B. Schroder, “Efficient multigrid reduction-in-time for method-of-lines discretizations of linear advection,” arXiv:2209.06916v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2209.06916v1
    @unpublished{SterckEtAl2022c,
      author = {Sterck, H. De and Falgout, R. D. and Krzysik, O. A. and Schroder, J. B.},
      howpublished = {arXiv:2209.06916v1 [math.NA]},
      title = {Efficient multigrid reduction-in-time for method-of-lines discretizations of linear advection},
      url = {http://arxiv.org/abs/2209.06916v1},
      year = {2022}
    }
    
  37. J. Strake, D. Döhring, and A. Benigni, “MGRIT-Based Multi-Level Parallel-in-Time Electromagnetic Transient Simulation,” Energies, vol. 15, no. 21, p. 7874, Oct. 2022 [Online]. Available at: https://doi.org/10.3390/en15217874
    @article{StrakeEtAl2022,
      author = {Strake, Julius and Döhring, Daniel and Benigni, Andrea},
      doi = {10.3390/en15217874},
      journal = {Energies},
      month = oct,
      number = {21},
      pages = {7874},
      publisher = {{MDPI} {AG}},
      title = {{MGRIT}-Based Multi-Level Parallel-in-Time Electromagnetic Transient Simulation},
      url = {https://doi.org/10.3390/en15217874},
      volume = {15},
      year = {2022}
    }
    
  38. M. Sugiyama, J. B. Schroder, B. S. Southworth, and S. Friedhoff, “Weighted relaxation for multigrid reduction in time,” Numerical Linear Algebra with Applications, Sep. 2022 [Online]. Available at: https://doi.org/10.1002%2Fnla.2465
    @article{SugiyamaEtAl2022,
      author = {Sugiyama, Masumi and Schroder, Jacob B. and Southworth, Ben S. and Friedhoff, Stephanie},
      doi = {10.1002/nla.2465},
      journal = {Numerical Linear Algebra with Applications},
      month = sep,
      publisher = {Wiley},
      title = {Weighted relaxation for multigrid reduction in time},
      url = {https://doi.org/10.1002%2Fnla.2465},
      year = {2022}
    }
    
  39. M. A. Sultanov, V. E. Misilov, and Y. Nurlanuly, “Efficient Parareal algorithm for solving time-fractional diffusion equation,” Dal nevostochnyi Matematicheskii Zhurnal, vol. 22, no. 2, pp. 245–251, 2022 [Online]. Available at: https://doi.org/10.47910/femj202233
    @article{SultanovEtAl2022,
      author = {Sultanov, M. A. and Misilov, V. E. and Nurlanuly, Y.},
      doi = {10.47910/femj202233},
      journal = {Dal nevostochnyi Matematicheskii Zhurnal},
      number = {2},
      pages = {245--251},
      publisher = {Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences},
      title = {Efficient Parareal algorithm for solving time-fractional diffusion equation},
      url = {https://doi.org/10.47910/femj202233},
      volume = {22},
      year = {2022}
    }
    
  40. Y. Takahashi, K. Fujiwara, and T. Iwashita, “Parallel-in-space-and-time finite-element analysis of electric machines using time step overlapping in a massively parallel computing environment,” COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Jul. 2022 [Online]. Available at: https://doi.org/10.1108/compel-04-2022-0161
    @article{TakahashiEtAl2022,
      author = {Takahashi, Yasuhito and Fujiwara, Koji and Iwashita, Takeshi},
      doi = {10.1108/compel-04-2022-0161},
      journal = {{COMPEL} - The international journal for computation and mathematics in electrical and electronic engineering},
      month = jul,
      publisher = {Emerald},
      title = {Parallel-in-space-and-time finite-element analysis of electric machines using time step overlapping in a massively parallel computing environment},
      url = {https://doi.org/10.1108/compel-04-2022-0161},
      year = {2022}
    }
    
  41. R. Tielen, M. Möller, and C. Vuik, “Combining p-multigrid and Multigrid Reduction in Time methods to obtain a scalable solver for Isogeometric Analysis,” SN Applied Sciences, vol. 4, no. 6, May 2022 [Online]. Available at: https://doi.org/10.1007%2Fs42452-022-05043-7
    @article{TielenEtAl2022,
      author = {Tielen, Roel and Möller, Matthias and Vuik, Cornelis},
      doi = {10.1007/s42452-022-05043-7},
      journal = {{SN} Applied Sciences},
      month = may,
      number = {6},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Combining p-multigrid and Multigrid Reduction in Time methods to obtain a scalable solver for Isogeometric Analysis},
      url = {https://doi.org/10.1007%2Fs42452-022-05043-7},
      volume = {4},
      year = {2022}
    }
    
  42. Utkarsh, C. Elrod, Y. Ma, K. Althaus, and C. Rackauckas, “Parallelizing Explicit and Implicit Extrapolation Methods for Ordinary Differential Equations,” in 2022 IEEE High Performance Extreme Computing Conference (HPEC), 2022 [Online]. Available at: https://doi.org/10.1109%2Fhpec55821.2022.9926357
    @inproceedings{UtkarshEtAl2022b,
      author = {Utkarsh and Elrod, Chris and Ma, Yingbo and Althaus, Konstantin and Rackauckas, Christopher},
      booktitle = {2022 {IEEE} High Performance Extreme Computing Conference ({HPEC})},
      doi = {10.1109/hpec55821.2022.9926357},
      month = sep,
      publisher = {{IEEE}},
      title = {Parallelizing Explicit and Implicit Extrapolation Methods for Ordinary Differential Equations},
      url = {https://doi.org/10.1109%2Fhpec55821.2022.9926357},
      year = {2022}
    }
    
  43. C.-Y. Wang, Y.-L. Jiang, and Z. Miao, “Time domain decomposition of parabolic control problems based on discontinuous Galerkin semi-discretization,” Applied Numerical Mathematics, Feb. 2022 [Online]. Available at: https://doi.org/10.1016/j.apnum.2022.02.016
    @article{WangEtAl2022,
      author = {Wang, Chen-Ye and Jiang, Yao-Lin and Miao, Zhen},
      doi = {10.1016/j.apnum.2022.02.016},
      journal = {Applied Numerical Mathematics},
      month = feb,
      publisher = {Elsevier {BV}},
      title = {Time domain decomposition of parabolic control problems based on discontinuous Galerkin semi-discretization},
      url = {https://doi.org/10.1016/j.apnum.2022.02.016},
      year = {2022}
    }
    
  44. R. Watschinger, M. Merta, G. Of, and J. Zapletal, “A Parallel Fast Multipole Method for a Space-Time Boundary Element Method for the Heat Equation,” SIAM Journal on Scientific Computing, vol. 44, no. 4, pp. C320–C345, Aug. 2022 [Online]. Available at: https://doi.org/10.1137%2F21m1430157
    @article{WatschingerEtAl2022,
      author = {Watschinger, Raphael and Merta, Michal and Of, Günther and Zapletal, Jan},
      doi = {10.1137/21m1430157},
      journal = {{SIAM} Journal on Scientific Computing},
      month = aug,
      number = {4},
      pages = {C320--C345},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {A Parallel Fast Multipole Method for a Space-Time Boundary Element Method for the Heat Equation},
      url = {https://doi.org/10.1137%2F21m1430157},
      volume = {44},
      year = {2022}
    }
    
  45. J. Yang, Z. Yuan, and Z. Zhou, “Robust Convergence of Parareal Algorithms with Arbitrarily High-Order Fine Propagators,” SSRN Electronic Journal, 2022 [Online]. Available at: https://doi.org/10.2139%2Fssrn.4097528
    @article{YangEtAl2022,
      author = {Yang, Jiang and Yuan, Zhaoming and Zhou, Zhi},
      doi = {10.2139/ssrn.4097528},
      journal = {{SSRN} Electronic Journal},
      publisher = {Elsevier {BV}},
      title = {Robust Convergence of Parareal Algorithms with Arbitrarily High-Order Fine Propagators},
      url = {https://doi.org/10.2139%2Fssrn.4097528},
      year = {2022}
    }
    
  46. L. Yang and H. Li, “A hybrid algorithm based on parareal and Schwarz waveform relaxation,” Electronic Research Archive, vol. 30, no. 11, pp. 4086–4107, 2022 [Online]. Available at: https://doi.org/10.3934/era.2022207
    @article{YangEtAl2022b,
      author = {Yang, Liping and Li, Hu},
      doi = {10.3934/era.2022207},
      journal = {Electronic Research Archive},
      number = {11},
      pages = {4086--4107},
      publisher = {American Institute of Mathematical Sciences ({AIMS})},
      title = {A hybrid algorithm based on parareal and Schwarz waveform relaxation},
      url = {https://doi.org/10.3934/era.2022207},
      volume = {30},
      year = {2022}
    }
    
  47. R. Yoda, M. Bolten, K. Nakajima, and A. Fujii, “Assignment of idle processors to spatial redistributed domains on coarse levels in multigrid reduction in time,” in International Conference on High Performance Computing in Asia-Pacific Region, 2022 [Online]. Available at: https://doi.org/10.1145/3492805.3492810
    @inproceedings{YodaEtAl2022,
      author = {Yoda, Ryo and Bolten, Matthias and Nakajima, Kengo and Fujii, Akihiro},
      booktitle = {International Conference on High Performance Computing in Asia-Pacific Region},
      doi = {10.1145/3492805.3492810},
      month = jan,
      publisher = {{ACM}},
      title = {Assignment of idle processors to spatial redistributed domains on coarse levels in multigrid reduction in time},
      url = {https://doi.org/10.1145/3492805.3492810},
      year = {2022}
    }
    
  48. R. Yoda, M. Bolten, K. Nakajima, and A. Fujii, “Acceleration of Optimized Coarse-Grid Operators by Spatial Redistribution for Multigrid Reduction in Time,” in Computational Science – ICCS 2022, Springer International Publishing, 2022, pp. 214–221 [Online]. Available at: https://doi.org/10.1007/978-3-031-08754-7_29
    @incollection{YodaEtAl2022b,
      author = {Yoda, Ryo and Bolten, Matthias and Nakajima, Kengo and Fujii, Akihiro},
      booktitle = {Computational Science {\textendash} {ICCS} 2022},
      doi = {10.1007/978-3-031-08754-7_29},
      pages = {214--221},
      publisher = {Springer International Publishing},
      title = {Acceleration of~Optimized Coarse-Grid Operators by~Spatial Redistribution for~Multigrid Reduction in~Time},
      url = {https://doi.org/10.1007/978-3-031-08754-7_29},
      year = {2022}
    }
    
  49. R.-H. Zhang, Y.-L. Jiang, J. Li, and B. Song, “Analysis of the parareal algorithm for linear parametric differential equations,” International Journal of Computer Mathematics, pp. 1–0, Nov. 2022 [Online]. Available at: https://doi.org/10.1080/00207160.2022.2153225
    @article{ZhangEtAl2022,
      author = {Zhang, Ren-Hao and Jiang, Yao-Lin and Li, Jun and Song, Bo},
      doi = {10.1080/00207160.2022.2153225},
      journal = {International Journal of Computer Mathematics},
      month = nov,
      pages = {1--0},
      publisher = {Informa {UK} Limited},
      title = {Analysis of the parareal algorithm for linear parametric differential equations},
      url = {https://doi.org/10.1080/00207160.2022.2153225},
      year = {2022}
    }
    
top

2021

  1. J. Angel, S. Götschel, and D. Ruprecht, “Impact of spatial coarsening on Parareal convergence,” arXiv:2111.10228v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2111.10228v1
    @unpublished{AngelEtAl2021,
      author = {Angel, Judith and Götschel, Sebastian and Ruprecht, Daniel},
      howpublished = {arXiv:2111.10228v1 [math.NA]},
      title = {Impact of spatial coarsening on Parareal convergence},
      url = {http://arxiv.org/abs/2111.10228v1},
      year = {2021}
    }
    
  2. P. Benedusi, M. L. Minion, and R. Krause, “An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem,” Computers & Mathematics with Applications, vol. 99, pp. 162–170, Oct. 2021 [Online]. Available at: https://doi.org/10.1016%2Fj.camwa.2021.07.008
    @article{BenedusiEtAl2021,
      author = {Benedusi, Pietro and Minion, Michael L. and Krause, Rolf},
      doi = {10.1016/j.camwa.2021.07.008},
      journal = {Computers {\&} Mathematics with Applications},
      month = oct,
      pages = {162--170},
      publisher = {Elsevier {BV}},
      title = {An experimental comparison of a space-time multigrid method with {PFASST} for a reaction-diffusion problem},
      url = {https://doi.org/10.1016%2Fj.camwa.2021.07.008},
      volume = {99},
      year = {2021}
    }
    
  3. S. Blanes, “Novel parallel in time integrators for ODEs,” Applied Mathematics Letters, p. 107542, Jul. 2021 [Online]. Available at: https://doi.org/10.1016/j.aml.2021.107542
    @article{Blanes2021,
      author = {Blanes, Sergio},
      doi = {10.1016/j.aml.2021.107542},
      journal = {Applied Mathematics Letters},
      month = jul,
      pages = {107542},
      publisher = {Elsevier {BV}},
      title = {Novel parallel in time integrators for {ODEs}},
      url = {https://doi.org/10.1016/j.aml.2021.107542},
      year = {2021}
    }
    
  4. A. L. Blumers, M. Yin, H. Nakajima, Y. Hasegawa, Z. Li, and G. E. Karniadakis, “Multiscale parareal algorithm for long-time mesoscopic simulations of microvascular blood flow in zebrafish,” Computational Mechanics, Aug. 2021 [Online]. Available at: https://doi.org/10.1007%2Fs00466-021-02062-w
    @article{BlumersEtAl2021b,
      author = {Blumers, Ansel L. and Yin, Minglang and Nakajima, Hiroyuki and Hasegawa, Yosuke and Li, Zhen and Karniadakis, George Em},
      doi = {10.1007/s00466-021-02062-w},
      journal = {Computational Mechanics},
      month = aug,
      publisher = {Springer Science and Business Media {LLC}},
      title = {Multiscale parareal algorithm for long-time mesoscopic simulations of microvascular blood flow in zebrafish},
      url = {https://doi.org/10.1007%2Fs00466-021-02062-w},
      year = {2021}
    }
    
  5. T. Buvoli and M. Minion, “IMEX Runge-Kutta Parareal for Non-diffusive Equations,” in Springer Proceedings in Mathematics &\mathsemicolon Statistics, Springer International Publishing, 2021, pp. 95–127 [Online]. Available at: https://doi.org/10.1007%2F978-3-030-75933-9_5
    @incollection{BuvoliEtAl2021,
      author = {Buvoli, Tommaso and Minion, Michael},
      booktitle = {Springer Proceedings in Mathematics {\&}amp$\mathsemicolon$ Statistics},
      doi = {10.1007/978-3-030-75933-9_5},
      pages = {95--127},
      publisher = {Springer International Publishing},
      title = {{IMEX} Runge-Kutta Parareal for Non-diffusive Equations},
      url = {https://doi.org/10.1007%2F978-3-030-75933-9_5},
      year = {2021}
    }
    
  6. M. Cai, J. Mahseredjian, I. Kocar, X. Fu, and A. Haddadi, “A parallelization-in-time approach for accelerating EMT simulations,” Electric Power Systems Research, vol. 197, p. 107346, Aug. 2021 [Online]. Available at: https://doi.org/10.1016/j.epsr.2021.107346
    @article{CaiEtAl2021,
      author = {Cai, Ming and Mahseredjian, Jean and Kocar, Ilhan and Fu, Xiaopeng and Haddadi, Aboutaleb},
      doi = {10.1016/j.epsr.2021.107346},
      journal = {Electric Power Systems Research},
      month = aug,
      pages = {107346},
      publisher = {Elsevier {BV}},
      title = {A parallelization-in-time approach for accelerating {EMT} simulations},
      url = {https://doi.org/10.1016/j.epsr.2021.107346},
      volume = {197},
      year = {2021}
    }
    
  7. J. G. Caldas Steinstraesser, “Coupling large and small scale shallow water models with porosity in the presence of anisotropy,” PhD thesis, Université de Montpellier, 2021 [Online]. Available at: https://www.theses.fr/2021MONTS040
    @phdthesis{CaldasEtAl2021,
      author = {Caldas Steinstraesser, Jo\~{a}o Guilherme},
      school = {Universit\'{e} de Montpellier},
      title = {Coupling large and small scale shallow water models with porosity in the presence of anisotropy},
      url = {https://www.theses.fr/2021MONTS040},
      year = {2021}
    }
    
  8. J. G. Caldas Steinstraesser, V. Guinot, and A. Rousseau, “Modified parareal method for solving the two-dimensional nonlinear shallow water equations using finite volumes,” The SMAI journal of computational mathematics, vol. 7, pp. 159–184, 2021 [Online]. Available at: https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.75/
    @article{CaldasEtAl2021b,
      author = {Caldas Steinstraesser, Jo\~{a}o Guilherme and Guinot, Vincent and Rousseau, Antoine},
      doi = {10.5802/smai-jcm.75},
      journal = {The SMAI journal of computational mathematics},
      language = {en},
      pages = {159--184},
      publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
      title = {Modified parareal method for solving the two-dimensional nonlinear shallow water equations using finite volumes},
      url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.75/},
      volume = {7},
      year = {2021}
    }
    
  9. M. Caliari, L. Einkemmer, A. Moriggl, and A. Ostermann, “An accurate and time-parallel rational exponential integrator for hyperbolic and oscillatory PDEs,” Journal of Computational Physics, vol. 437, p. 110289, Jul. 2021 [Online]. Available at: https://doi.org/10.1016%2Fj.jcp.2021.110289
    @article{CaliariEtAl2021,
      author = {Caliari, Marco and Einkemmer, Lukas and Moriggl, Alexander and Ostermann, Alexander},
      doi = {10.1016/j.jcp.2021.110289},
      journal = {Journal of Computational Physics},
      month = jul,
      pages = {110289},
      publisher = {Elsevier {BV}},
      title = {An accurate and time-parallel rational exponential integrator for hyperbolic and oscillatory {PDEs}},
      url = {https://doi.org/10.1016%2Fj.jcp.2021.110289},
      volume = {437},
      year = {2021}
    }
    
  10. J. Chaudhry, D. Estep, and S. Tavener, “A posteriori error analysis for a space-time parallel discretization of parabolic partial differential equations,” arXiv:2111.00606v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2111.00606v1
    @unpublished{ChaudhryEtAl2021,
      author = {Chaudhry, Jehanzeb and Estep, Donald and Tavener, Simon},
      howpublished = {arXiv:2111.00606v1 [math.NA]},
      title = {A posteriori error analysis for a space-time parallel discretization of parabolic partial differential equations},
      url = {http://arxiv.org/abs/2111.00606v1},
      year = {2021}
    }
    
  11. Y.-C. Chen and K. Nakajima, “Optimized Cascadic Multigrid Parareal Method for Explicit Time-Marching Schemes,” in 2021 12th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), 2021 [Online]. Available at: https://doi.org/10.1109/scala54577.2021.00007
    @inproceedings{ChenEtAl2021,
      author = {Chen, Yen-Chen and Nakajima, Kengo},
      booktitle = {2021 12th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems ({ScalA})},
      doi = {10.1109/scala54577.2021.00007},
      month = nov,
      publisher = {{IEEE}},
      title = {Optimized Cascadic Multigrid Parareal Method for Explicit Time-Marching Schemes},
      url = {https://doi.org/10.1109/scala54577.2021.00007},
      year = {2021}
    }
    
  12. T. Cheng, N. Lin, T. Liang, and V. Dinavahi, “Parallel-in-time-and-space electromagnetic transient simulation of multi-terminal DC grids with device-level switch modelling,” IET Generation, Transmission & Distribution, Sep. 2021 [Online]. Available at: https://doi.org/10.1049/gtd2.12285
    @article{ChengEtAl2021,
      author = {Cheng, Tianshi and Lin, Ning and Liang, Tian and Dinavahi, Venkata},
      doi = {10.1049/gtd2.12285},
      journal = {{IET} Generation, Transmission {\&} Distribution},
      month = sep,
      publisher = {Institution of Engineering and Technology ({IET})},
      title = {Parallel-in-time-and-space electromagnetic transient simulation of multi-terminal {DC} grids with device-level switch modelling},
      url = {https://doi.org/10.1049/gtd2.12285},
      year = {2021}
    }
    
  13. F. Danieli and A. J. Wathen, “All-at-once solution of linear wave equations,” Numerical Linear Algebra with Applications, May 2021 [Online]. Available at: https://doi.org/10.1002/nla.2386
    @article{DanieliEtAl2021c,
      author = {Danieli, Federico and Wathen, Andrew J.},
      doi = {10.1002/nla.2386},
      journal = {Numerical Linear Algebra with Applications},
      month = may,
      publisher = {Wiley},
      title = {All-at-once solution of linear wave equations},
      url = {https://doi.org/10.1002/nla.2386},
      year = {2021}
    }
    
  14. V. Dinavahi and N. Lin, “Parallel-in-Time EMT and Transient Stability Simulation of AC-DC Grids,” in Parallel Dynamic and Transient Simulation of Large-Scale Power Systems, Springer International Publishing, 2021, pp. 313–357 [Online]. Available at: https://doi.org/10.1007/978-3-030-86782-9_7
    @incollection{DinavahiEtAl2021,
      author = {Dinavahi, Venkata and Lin, Ning},
      booktitle = {Parallel Dynamic and Transient Simulation of Large-Scale Power Systems},
      doi = {10.1007/978-3-030-86782-9_7},
      month = sep,
      pages = {313--357},
      publisher = {Springer International Publishing},
      title = {Parallel-in-Time {EMT} and Transient Stability Simulation of {AC}-{DC} Grids},
      url = {https://doi.org/10.1007/978-3-030-86782-9_7},
      year = {2021}
    }
    
  15. M. Donatelli, R. Krause, M. Mazza, and K. Trotti, “All-at-once multigrid approaches for one-dimensional space-fractional diffusion equations,” vol. 58, no. 4, Oct. 2021 [Online]. Available at: https://doi.org/10.1007/s10092-021-00436-3
    @article{DonatelliEtAl2021,
      author = {Donatelli, Marco and Krause, Rolf and Mazza, Mariarosa and Trotti, Ken},
      doi = {10.1007/s10092-021-00436-3},
      month = oct,
      number = {4},
      publisher = {Springer Science and Business Media {LLC}},
      title = {All-at-once multigrid approaches for one-dimensional space-fractional diffusion equations},
      url = {https://doi.org/10.1007/s10092-021-00436-3},
      volume = {58},
      year = {2021}
    }
    
  16. A. C. Ellison and B. Fornberg, “A parallel-in-time approach for wave-type PDEs,” Numerische Mathematik, Apr. 2021 [Online]. Available at: https://doi.org/10.1007/s00211-021-01197-5
    @article{EllisonEtAl2021,
      author = {Ellison, Abe C. and Fornberg, Bengt},
      doi = {10.1007/s00211-021-01197-5},
      journal = {Numerische Mathematik},
      month = apr,
      publisher = {Springer Science and Business Media {LLC}},
      title = {A parallel-in-time approach for wave-type {PDEs}},
      url = {https://doi.org/10.1007/s00211-021-01197-5},
      year = {2021}
    }
    
  17. R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder, “Multigrid reduction in time with Richardson extrapolation,” ETNA - Electronic Transactions on Numerical Analysis, vol. 54, pp. 210–233, 2021 [Online]. Available at: https://doi.org/10.1553%2Fetna_vol54s210
    @article{FalgoutEtAl2021,
      author = {Falgout, R. D. and Manteuffel, T. A. and O{\textquotesingle}Neill, B. and Schroder, J. B.},
      doi = {10.1553/etna_vol54s210},
      journal = {{ETNA} - Electronic Transactions on Numerical Analysis},
      pages = {210--233},
      publisher = {Osterreichische Akademie der Wissenschaften},
      title = {Multigrid reduction in time with Richardson extrapolation},
      url = {https://doi.org/10.1553%2Fetna_vol54s210},
      volume = {54},
      year = {2021}
    }
    
  18. L. Fang, S. Vandewalle, and J. Meyers, “A parallel-in-time multiple shooting algorithm for large-scale PDE-constrained optimal control problems,” Journal of Computational Physics, p. 110926, Dec. 2021 [Online]. Available at: https://doi.org/10.1016/j.jcp.2021.110926
    @article{FangEtAl2021,
      author = {Fang, Liang and Vandewalle, Stefan and Meyers, Johan},
      doi = {10.1016/j.jcp.2021.110926},
      journal = {Journal of Computational Physics},
      month = dec,
      pages = {110926},
      publisher = {Elsevier {BV}},
      title = {A parallel-in-time multiple shooting algorithm for large-scale {PDE}-constrained optimal control problems},
      url = {https://doi.org/10.1016/j.jcp.2021.110926},
      year = {2021}
    }
    
  19. M. J. Gander, J. Liu, S.-L. Wu, X. Yue, and T. Zhou, “ParaDiag: parallel-in-time algorithms based on the diagonalization technique,” arXiv preprint arXiv:2005.09158, 2021 [Online]. Available at: http://arxiv.org/abs/2005.09158
    @unpublished{GanderEtAl2021,
      author = {Gander, Martin J and Liu, Jun and Wu, Shu-Lin and Yue, Xiaoqiang and Zhou, Tao},
      howpublished = {arXiv preprint arXiv:2005.09158},
      title = {ParaDiag: parallel-in-time algorithms based on the diagonalization technique},
      url = {http://arxiv.org/abs/2005.09158},
      year = {2021}
    }
    
  20. S. Götschel, M. Minion, D. Ruprecht, and R. Speck, “Twelve Ways to Fool the Masses When Giving Parallel-in-Time Results,” in Springer Proceedings in Mathematics & Statistics, Springer International Publishing, 2021, pp. 81–94 [Online]. Available at: https://doi.org/10.1007/978-3-030-75933-9_4
    @incollection{GoetschelEtAl2021,
      author = {Götschel, Sebastian and Minion, Michael and Ruprecht, Daniel and Speck, Robert},
      booktitle = {Springer Proceedings in Mathematics {\&} Statistics},
      doi = {10.1007/978-3-030-75933-9_4},
      pages = {81--94},
      publisher = {Springer International Publishing},
      title = {Twelve Ways to Fool the Masses When Giving Parallel-in-Time Results},
      url = {https://doi.org/10.1007/978-3-030-75933-9_4},
      year = {2021}
    }
    
  21. L. Grigori, S. A. Hirstoaga, V.-T. Nguyen, and J. Salomon, “Reduced model-based parareal simulations of oscillatory singularly perturbed ordinary differential equations,” Journal of Computational Physics, vol. 436, p. 110282, Jul. 2021 [Online]. Available at: https://doi.org/10.1016/j.jcp.2021.110282
    @article{GrigoriEtAl2021,
      author = {Grigori, Laura and Hirstoaga, Sever A. and Nguyen, Van-Thanh and Salomon, Julien},
      doi = {10.1016/j.jcp.2021.110282},
      journal = {Journal of Computational Physics},
      month = jul,
      pages = {110282},
      publisher = {Elsevier {BV}},
      title = {Reduced model-based parareal simulations of oscillatory singularly perturbed ordinary differential equations},
      url = {https://doi.org/10.1016/j.jcp.2021.110282},
      volume = {436},
      year = {2021}
    }
    
  22. R. Kumari, S. Prasad, A. Kumari, and A. Kumar, “Parallel in Time Simulation of Automatic Generation Control System for Near Real-Time Transient Stability Analysis,” in 2021 International Conference on Control, Automation, Power and Signal Processing (CAPS), 2021 [Online]. Available at: https://doi.org/10.1109/caps52117.2021.9730716
    @inproceedings{KumariEtAl2021,
      author = {Kumari, Rajni and Prasad, Sweta and Kumari, Amrita and Kumar, Ajit},
      booktitle = {2021 International Conference on Control, Automation, Power and Signal Processing ({CAPS})},
      doi = {10.1109/caps52117.2021.9730716},
      month = dec,
      publisher = {{IEEE}},
      title = {Parallel in Time Simulation of Automatic Generation Control System for Near Real-Time Transient Stability Analysis},
      url = {https://doi.org/10.1109/caps52117.2021.9730716},
      year = {2021}
    }
    
  23. S. Lakshmiranganatha and S. S. Muknahallipatna, “Performance Analysis of Accelerator Architectures and Programming Models for Parareal Algorithm Solutions of Ordinary Differential Equations,” Journal of Computer and Communications, vol. 09, no. 02, pp. 29–56, 2021 [Online]. Available at: https://doi.org/10.4236/jcc.2021.92003
    @article{LakshmiranganathaEtAl2021,
      author = {Lakshmiranganatha, Sumathi and Muknahallipatna, Suresh S.},
      doi = {10.4236/jcc.2021.92003},
      journal = {Journal of Computer and Communications},
      number = {02},
      pages = {29--56},
      publisher = {Scientific Research Publishing, Inc.},
      title = {Performance Analysis of Accelerator Architectures and Programming Models for Parareal Algorithm Solutions of Ordinary Differential Equations},
      url = {https://doi.org/10.4236/jcc.2021.92003},
      volume = {09},
      year = {2021}
    }
    
  24. U. Langer and M. Zank, “Efficient Direct Space-Time Finite Element Solvers for Parabolic Initial-Boundary Value Problems in Anisotropic Sobolev Spaces,” SIAM Journal on Scientific Computing, vol. 43, no. 4, pp. A2714–A2736, Jan. 2021 [Online]. Available at: https://doi.org/10.1137%2F20m1358128
    @article{LangerEtAl2021,
      author = {Langer, Ulrich and Zank, Marco},
      doi = {10.1137/20m1358128},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {4},
      pages = {A2714--A2736},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Efficient Direct Space-Time Finite Element Solvers for Parabolic Initial-Boundary Value Problems in Anisotropic Sobolev Spaces},
      url = {https://doi.org/10.1137%2F20m1358128},
      volume = {43},
      year = {2021}
    }
    
  25. S. Li, X. Shao, and R. Chen, “Multilevel space-time multiplicative Schwarz preconditioner for parabolic equations,” Numerical Linear Algebra with Applications, May 2021 [Online]. Available at: https://doi.org/10.1002/nla.2390
    @article{LiEtAl2021,
      author = {Li, Shishun and Shao, Xinping and Chen, Rongliang},
      doi = {10.1002/nla.2390},
      journal = {Numerical Linear Algebra with Applications},
      month = may,
      publisher = {Wiley},
      title = {Multilevel space-time multiplicative Schwarz preconditioner for parabolic equations},
      url = {https://doi.org/10.1002/nla.2390},
      year = {2021}
    }
    
  26. X. Li and Y. Su, “A parallel in time/spectral collocation combined with finite difference method for the time fractional differential equations,” Journal of Algorithms & Computational Technology, vol. 15, p. 174830262110084, Jan. 2021 [Online]. Available at: https://doi.org/10.1177/17483026211008409
    @article{LiEtAl2021b,
      author = {Li, Xianjuan and Su, Yanhui},
      doi = {10.1177/17483026211008409},
      journal = {Journal of Algorithms {\&} Computational Technology},
      month = jan,
      pages = {174830262110084},
      publisher = {{SAGE} Publications},
      title = {A parallel in time/spectral collocation combined with finite difference method for the time fractional differential equations},
      url = {https://doi.org/10.1177/17483026211008409},
      volume = {15},
      year = {2021}
    }
    
  27. J. Li, P. Liu, and V. Dinavahi, “Space-Time-Parallel 3-D Finite Element Transformer Model with Adaptive TLM and Parareal Techniques for Electromagnetic Transient Analysis,” IEEE Open Journal of Industry Applications, pp. 1–1, 2021 [Online]. Available at: https://doi.org/10.1109/ojia.2021.3091557
    @article{LiEtAl2021c,
      author = {Li, Jiacong and Liu, Peng and Dinavahi, Venkata},
      doi = {10.1109/ojia.2021.3091557},
      journal = {{IEEE} Open Journal of Industry Applications},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Space-Time-Parallel 3-D Finite Element Transformer Model with Adaptive {TLM} and Parareal Techniques for Electromagnetic Transient Analysis},
      url = {https://doi.org/10.1109/ojia.2021.3091557},
      year = {2021}
    }
    
  28. J. Li, Y.-L. Jiang, and Z. Miao, “Analysis of the parareal approach based on discontinuous Galerkin method for time-dependent Stokes equations,” Numerical Methods for Partial Differential Equations, Jul. 2021 [Online]. Available at: https://doi.org/10.1002/num.22782
    @article{LiEtAl2021d,
      author = {Li, Jun and Jiang, Yao-Lin and Miao, Zhen},
      doi = {10.1002/num.22782},
      journal = {Numerical Methods for Partial Differential Equations},
      month = jul,
      publisher = {Wiley},
      title = {Analysis of the parareal approach based on discontinuous Galerkin method for time-dependent Stokes equations},
      url = {https://doi.org/10.1002/num.22782},
      year = {2021}
    }
    
  29. G. Li and J. Hu, “Wavelet-based Edge Multiscale Parareal Algorithm for Parabolic Equations with Heterogeneous Coefficients and Rough Initial Data,” Journal of Computational Physics, p. 110572, Jul. 2021 [Online]. Available at: https://doi.org/10.1016/j.jcp.2021.110572
    @article{LiEtAl2021e,
      author = {Li, Guanglian and Hu, Jiuhua},
      doi = {10.1016/j.jcp.2021.110572},
      journal = {Journal of Computational Physics},
      month = jul,
      pages = {110572},
      publisher = {Elsevier {BV}},
      title = {Wavelet-based Edge Multiscale Parareal Algorithm for Parabolic Equations with Heterogeneous Coefficients and Rough Initial Data},
      url = {https://doi.org/10.1016/j.jcp.2021.110572},
      year = {2021}
    }
    
  30. J. Li and Y.-L. Jiang, “The study of parareal algorithm for the linear switched systems,” p. 107763, Oct. 2021 [Online]. Available at: https://doi.org/10.1016/j.aml.2021.107763
    @article{LiEtAl2021f,
      author = {Li, Jun and Jiang, Yao-Lin},
      doi = {10.1016/j.aml.2021.107763},
      month = oct,
      pages = {107763},
      publisher = {Elsevier {BV}},
      title = {The study of parareal algorithm for the linear switched systems},
      url = {https://doi.org/10.1016/j.aml.2021.107763},
      year = {2021}
    }
    
  31. X.-lei Lin, M. K. Ng, and Y. Zhi, “A parallel-in-time two-sided preconditioning for all-at-once system from a non-local evolutionary equation with weakly singular kernel,” Journal of Computational Physics, vol. 434, p. 110221, Jun. 2021 [Online]. Available at: https://doi.org/10.1016%2Fj.jcp.2021.110221
    @article{LinEtAl2021,
      author = {Lin, Xue-lei and Ng, Michael K. and Zhi, Yajing},
      doi = {10.1016/j.jcp.2021.110221},
      journal = {Journal of Computational Physics},
      month = jun,
      pages = {110221},
      publisher = {Elsevier {BV}},
      title = {A parallel-in-time two-sided preconditioning for all-at-once system from a non-local evolutionary equation with weakly singular kernel},
      url = {https://doi.org/10.1016%2Fj.jcp.2021.110221},
      volume = {434},
      year = {2021}
    }
    
  32. X.-L. Lin and Z. Zhang, “A Parallel-in-Time Preconditioner for the Schur Complement of Parabolic Optimal Control Problems,” arXiv:2109.12524v2 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2109.12524v2
    @unpublished{LinEtAl2021b,
      author = {Lin, Xue-Lei and Zhang, Zhimin},
      howpublished = {arXiv:2109.12524v2 [math.NA]},
      title = {A Parallel-in-Time Preconditioner for the Schur Complement of Parabolic Optimal Control Problems},
      url = {http://arxiv.org/abs/2109.12524v2},
      year = {2021}
    }
    
  33. J. Liu and S.-L. Wu, “Parallel-in-time preconditioners for the Sinc-Nyström method,” arXiv:2108.01700v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2108.01700v1
    @unpublished{LiuEtAl2021,
      author = {Liu, Jun and Wu, Shu-Lin},
      howpublished = {arXiv:2108.01700v1 [math.NA]},
      title = {Parallel-in-time preconditioners for the Sinc-Nyström method},
      url = {http://arxiv.org/abs/2108.01700v1},
      year = {2021}
    }
    
  34. C. Lyu, N. Lin, and V. Dinavahi, “Device-Level Parallel-in-time Simulation of MMC-Based Energy System for Electric Vehicles,” IEEE Transactions on Vehicular Technology, pp. 1–1, 2021 [Online]. Available at: https://doi.org/10.1109/tvt.2021.3081534
    @article{LyuEtAl2021,
      author = {Lyu, Chengzhang and Lin, Ning and Dinavahi, Venkata},
      doi = {10.1109/tvt.2021.3081534},
      journal = {{IEEE} Transactions on Vehicular Technology},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Device-Level Parallel-in-time Simulation of {MMC}-Based Energy System for Electric Vehicles},
      url = {https://doi.org/10.1109/tvt.2021.3081534},
      year = {2021}
    }
    
  35. N. Margenberg and T. Richter, “Parallel time-stepping for fluid–structure interactions,” Mathematical Modelling of Natural Phenomena, vol. 16, p. 20, 2021 [Online]. Available at: https://doi.org/10.1051/mmnp/2021005
    @article{MargenbergEtAl2021,
      author = {Margenberg, Nils and Richter, Thomas},
      doi = {10.1051/mmnp/2021005},
      editor = {Grandmont, C. and Hillairet, M. and Matin, S. and Muha, B. and Vergarra, Ch.},
      journal = {Mathematical Modelling of Natural Phenomena},
      pages = {20},
      publisher = {{EDP} Sciences},
      title = {Parallel time-stepping for fluid{\textendash}structure interactions},
      url = {https://doi.org/10.1051/mmnp/2021005},
      volume = {16},
      year = {2021}
    }
    
  36. B. Park, K. Sun, A. Dimitrovski, Y. Liu, and S. Simunovic, “Examination of Semi-Analytical Solution Methods in the Coarse Operator of Parareal Algorithm for Power System Simulation,” IEEE Transactions on Power Systems, pp. 1–1, 2021 [Online]. Available at: https://doi.org/10.1109/tpwrs.2021.3069136
    @article{ParkEtAl2021,
      author = {Park, Byungkwon and Sun, Kai and Dimitrovski, Aleksandar and Liu, Yang and Simunovic, Srdjan},
      doi = {10.1109/tpwrs.2021.3069136},
      journal = {{IEEE} Transactions on Power Systems},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Examination of Semi-Analytical Solution Methods in the Coarse Operator of Parareal Algorithm for Power System Simulation},
      url = {https://doi.org/10.1109/tpwrs.2021.3069136},
      year = {2021}
    }
    
  37. M. Patil and A. Datta, “Time-Parallel Scalable Solution of Periodic Rotor Dynamics for Large-Scale 3D Structures,” in AIAA Scitech 2021 Forum, 2021 [Online]. Available at: https://doi.org/10.2514/6.2021-1079
    @inproceedings{PatilEtAl2021,
      author = {Patil, Mrinalgouda and Datta, Anubhav},
      booktitle = {{AIAA} Scitech 2021 Forum},
      doi = {10.2514/6.2021-1079},
      month = jan,
      publisher = {American Institute of Aeronautics and Astronautics},
      title = {Time-Parallel Scalable Solution of Periodic Rotor Dynamics for Large-Scale 3D Structures},
      url = {https://doi.org/10.2514/6.2021-1079},
      year = {2021}
    }
    
  38. A. Pels, I. Kulchytska-Ruchka, and S. Schöps, “Parallel-in-Time Simulation of Power Converters Using Multirate PDEs,” in Scientific Computing in Electrical Engineering, Springer International Publishing, 2021, pp. 33–41 [Online]. Available at: https://doi.org/10.1007%2F978-3-030-84238-3_4
    @incollection{PelsEtAl2021,
      author = {Pels, Andreas and Kulchytska-Ruchka, Iryna and Schöps, Sebastian},
      booktitle = {Scientific Computing in Electrical Engineering},
      doi = {10.1007/978-3-030-84238-3_4},
      pages = {33--41},
      publisher = {Springer International Publishing},
      title = {Parallel-in-Time Simulation of Power Converters Using Multirate {PDEs}},
      url = {https://doi.org/10.1007%2F978-3-030-84238-3_4},
      year = {2021}
    }
    
  39. J. Schütz, D. C. Seal, and J. Zeifang, “Parallel-in-Time High-Order Multiderivative IMEX Solvers,” Journal of Scientific Computing, vol. 90, no. 1, Dec. 2021 [Online]. Available at: https://doi.org/10.1007%2Fs10915-021-01733-3
    @article{SchützEtAl2021b,
      author = {Schütz, Jochen and Seal, David C. and Zeifang, Jonas},
      doi = {10.1007/s10915-021-01733-3},
      journal = {Journal of Scientific Computing},
      month = dec,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Parallel-in-Time High-Order Multiderivative {IMEX} Solvers},
      url = {https://doi.org/10.1007%2Fs10915-021-01733-3},
      volume = {90},
      year = {2021}
    }
    
  40. A. A. Sivas, B. S. Southworth, and S. Rhebergen, “AIR Algebraic Multigrid for a Space-Time Hybridizable Discontinuous Galerkin Discretization of Advection(-Diffusion),” vol. 43, no. 5, pp. A3393–A3416, Jan. 2021 [Online]. Available at: https://doi.org/10.1137%2F20m1375103
    @article{SivasEtAl2021,
      author = {Sivas, A. A. and Southworth, B. S. and Rhebergen, S.},
      doi = {10.1137/20m1375103},
      month = jan,
      number = {5},
      pages = {A3393--A3416},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {{AIR} Algebraic Multigrid for a Space-Time Hybridizable Discontinuous Galerkin Discretization of Advection(-Diffusion)},
      url = {https://doi.org/10.1137%2F20m1375103},
      volume = {43},
      year = {2021}
    }
    
  41. C. S. Skene, M. F. Eggl, and P. J. Schmid, “A parallel-in-time approach for accelerating direct-adjoint studies,” Journal of Computational Physics, vol. 429, p. 110033, Mar. 2021 [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.110033
    @article{SkeneEtAl2021,
      author = {Skene, C.S. and Eggl, M.F. and Schmid, P.J.},
      doi = {10.1016/j.jcp.2020.110033},
      journal = {Journal of Computational Physics},
      month = mar,
      pages = {110033},
      publisher = {Elsevier {BV}},
      title = {A parallel-in-time approach for accelerating direct-adjoint studies},
      url = {https://doi.org/10.1016/j.jcp.2020.110033},
      volume = {429},
      year = {2021}
    }
    
  42. Y. Sun, S.-L. Wu, and Y. Xu, “A Parallel-in-Time Implementation of the Numerov Method For Wave Equations,” Journal of Scientific Computing, vol. 90, no. 1, Nov. 2021 [Online]. Available at: https://doi.org/10.1007/s10915-021-01701-x
    @article{SunEtAl2021,
      author = {Sun, Yafei and Wu, Shu-Lin and Xu, Yingxiang},
      doi = {10.1007/s10915-021-01701-x},
      journal = {Journal of Scientific Computing},
      month = nov,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {A Parallel-in-Time Implementation of the Numerov Method For Wave Equations},
      url = {https://doi.org/10.1007/s10915-021-01701-x},
      volume = {90},
      year = {2021}
    }
    
  43. Y. Takahashi, K. Fujiwara, T. Iwashita, and H. Nakashima, “Comparison of Parallel-in-Space-and-Time Finite-Element Methods for Magnetic Field Analysis of Electric Machines,” IEEE Transactions on Magnetics, pp. 1–1, 2021 [Online]. Available at: https://doi.org/10.1109/tmag.2021.3064320
    @article{TakahashiEtAl2021,
      author = {Takahashi, Yasuhito and Fujiwara, Koji and Iwashita, Takeshi and Nakashima, Hiroshi},
      doi = {10.1109/tmag.2021.3064320},
      journal = {{IEEE} Transactions on Magnetics},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Comparison of Parallel-in-Space-and-Time Finite-Element Methods for Magnetic Field Analysis of Electric Machines},
      url = {https://doi.org/10.1109/tmag.2021.3064320},
      year = {2021}
    }
    
  44. R. van Venetië and J. Westerdiep, “A Parallel Algorithm for Solving Linear Parabolic Evolution Equations,” Springer International Publishing, 2021, pp. 33–50 [Online]. Available at: https://doi.org/10.1007/978-3-030-75933-9_2
    @incollection{van_VenetiëEtAl2021,
      author = {van Venetië, Raymond and Westerdiep, Jan},
      doi = {10.1007/978-3-030-75933-9_2},
      pages = {33--50},
      publisher = {Springer International Publishing},
      title = {A Parallel Algorithm for Solving Linear Parabolic Evolution Equations},
      url = {https://doi.org/10.1007/978-3-030-75933-9_2},
      year = {2021}
    }
    
  45. A. S. Walker and K. E. Niemeyer, “Applying the Swept Rule for Solving Two-Dimensional Partial Differential Equations on Heterogeneous Architectures,” Mathematical and Computational Applications, vol. 26, no. 3, p. 52, Jul. 2021 [Online]. Available at: https://doi.org/10.3390/mca26030052
    @article{WalkerEtAl2021,
      author = {Walker, Anthony S. and Niemeyer, Kyle E.},
      doi = {10.3390/mca26030052},
      journal = {Mathematical and Computational Applications},
      month = jul,
      number = {3},
      pages = {52},
      publisher = {{MDPI} {AG}},
      title = {Applying the Swept Rule for Solving Two-Dimensional Partial Differential Equations on Heterogeneous Architectures},
      url = {https://doi.org/10.3390/mca26030052},
      volume = {26},
      year = {2021}
    }
    
  46. S.-L. Wu and T. Zhou, “Parallel implementation for the two-stage SDIRK methods via diagonalization,” Journal of Computational Physics, vol. 428, p. 110076, Mar. 2021 [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.110076
    @article{WuEtAl2021,
      author = {Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1016/j.jcp.2020.110076},
      journal = {Journal of Computational Physics},
      month = mar,
      pages = {110076},
      publisher = {Elsevier {BV}},
      title = {Parallel implementation for the two-stage {SDIRK} methods via diagonalization},
      url = {https://doi.org/10.1016/j.jcp.2020.110076},
      volume = {428},
      year = {2021}
    }
    
  47. S. Wu, T. Zhou, and Z. Zhou, “Stability implies robust convergence of a class of preconditioned parallel-in-time iterative algorithms,” arXiv:2102.04646v2 [math.NA], 2021 [Online]. Available at: https://arxiv.org/abs/2102.04646v2
    @unpublished{WuEtAl2021b,
      author = {Wu, Shulin and Zhou, Tao and Zhou, Zhi},
      howpublished = {arXiv:2102.04646v2 [math.NA]},
      title = {Stability implies robust convergence of a class of preconditioned parallel-in-time iterative algorithms},
      url = {https://arxiv.org/abs/2102.04646v2},
      year = {2021}
    }
    
  48. S. Wu and Z. Zhou, “A Parallel-in-Time Algorithm for High-Order BDF Methods for Diffusion and Subdiffusion Equations,” vol. 43, no. 6, pp. A3627–A3656, Jan. 2021 [Online]. Available at: https://doi.org/10.1137/20m1355690
    @article{WuEtAl2021c,
      author = {Wu, Shuonan and Zhou, Zhi},
      doi = {10.1137/20m1355690},
      month = jan,
      number = {6},
      pages = {A3627--A3656},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {A Parallel-in-Time Algorithm for High-Order {BDF} Methods for Diffusion and Subdiffusion Equations},
      url = {https://doi.org/10.1137/20m1355690},
      volume = {43},
      year = {2021}
    }
    
  49. D. Xue, Y. Hou, and Y. Li, “Analysis of the local and parallel space-time algorithm for the heat equation,” Computers & Mathematics with Applications, vol. 100, pp. 167–181, Oct. 2021 [Online]. Available at: https://doi.org/10.1016/j.camwa.2021.09.008
    @article{XueEtAl2021,
      author = {Xue, Dandan and Hou, Yanren and Li, Yi},
      doi = {10.1016/j.camwa.2021.09.008},
      journal = {Computers {\&} Mathematics with Applications},
      month = oct,
      pages = {167--181},
      publisher = {Elsevier {BV}},
      title = {Analysis of the local and parallel space-time algorithm for the heat equation},
      url = {https://doi.org/10.1016/j.camwa.2021.09.008},
      volume = {100},
      year = {2021}
    }
    
  50. X. Yue, K. Pan, J. Zhou, Z. Weng, S. Shu, and J. Tang, “A multigrid-reduction-in-time solver with a new two-level convergence for unsteady fractional Laplacian problems,” Computers & Mathematics with Applications, vol. 89, pp. 57–67, May 2021 [Online]. Available at: https://doi.org/10.1016/j.camwa.2021.02.020
    @article{YueEtAl2021,
      author = {Yue, Xiaoqiang and Pan, Kejia and Zhou, Jie and Weng, Zhifeng and Shu, Shi and Tang, Juan},
      doi = {10.1016/j.camwa.2021.02.020},
      journal = {Computers {\&} Mathematics with Applications},
      month = may,
      pages = {57--67},
      publisher = {Elsevier {BV}},
      title = {A multigrid-reduction-in-time solver with a new two-level convergence for unsteady fractional Laplacian problems},
      url = {https://doi.org/10.1016/j.camwa.2021.02.020},
      volume = {89},
      year = {2021}
    }
    
  51. Y. Zeng, Y. Duan, and B.-S. Liu, “Solving 2D parabolic equations by using time parareal coupling with meshless collocation RBFs methods,” Engineering Analysis with Boundary Elements, vol. 127, pp. 102–112, Jun. 2021 [Online]. Available at: https://doi.org/10.1016/j.enganabound.2021.03.008
    @article{ZengEtAl2021,
      author = {Zeng, Yan and Duan, Yong and Liu, Bi-Sen},
      doi = {10.1016/j.enganabound.2021.03.008},
      journal = {Engineering Analysis with Boundary Elements},
      month = jun,
      pages = {102--112},
      publisher = {Elsevier {BV}},
      title = {Solving 2D parabolic equations by using time parareal coupling with meshless collocation {RBFs} methods},
      url = {https://doi.org/10.1016/j.enganabound.2021.03.008},
      volume = {127},
      year = {2021}
    }
    
  52. Y.-L. Zhao, X.-M. Gu, and A. Ostermann, “A Preconditioning Technique for an All-at-once System from Volterra Subdiffusion Equations with Graded Time Steps,” Journal of Scientific Computing, vol. 88, no. 1, May 2021 [Online]. Available at: https://doi.org/10.1007/s10915-021-01527-7
    @article{ZhaoEtAl2021,
      author = {Zhao, Yong-Liang and Gu, Xian-Ming and Ostermann, Alexander},
      doi = {10.1007/s10915-021-01527-7},
      journal = {Journal of Scientific Computing},
      month = may,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {A Preconditioning Technique for an All-at-once System from Volterra Subdiffusion Equations with Graded Time Steps},
      url = {https://doi.org/10.1007/s10915-021-01527-7},
      volume = {88},
      year = {2021}
    }
    
  53. Y.-L. Zhao, J. Wu, and X.-M. Gu, “On the bilateral preconditioning for a L2-type all-at-once system arising from time-space fractional Bloch-Torrey equations,” arXiv:2109.06510v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2109.06510v1
    @unpublished{ZhaoEtAl2021b,
      author = {Zhao, Yong-Liang and Wu, Jing and Gu, Xian-Ming},
      howpublished = {arXiv:2109.06510v1 [math.NA]},
      title = {On the bilateral preconditioning for a L2-type all-at-once system arising from time-space fractional Bloch-Torrey equations},
      url = {http://arxiv.org/abs/2109.06510v1},
      year = {2021}
    }
    
top

2020

  1. W. Agboh, O. Grainger, D. Ruprecht, and M. Dogar, “Parareal with a Learned Coarse Model for Robotic Manipulation,” Computing and Visualization in Science, vol. 23, no. 8, 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00327-0
    @article{AgbohEtAl2020,
      author = {Agboh, Wisdom and Grainger, Oliver and Ruprecht, Daniel and Dogar, Mehmet},
      journal = {Computing and Visualization in Science},
      number = {8},
      title = {Parareal with a Learned Coarse Model for Robotic Manipulation},
      url = {https://doi.org/10.1007/s00791-020-00327-0},
      volume = {23},
      year = {2020}
    }
    
  2. D. Bast, I. Kulchytska-Ruchka, S. Schoeps, and O. Rain, “Accelerated Steady-State Torque Computation for Induction Machines Using Parallel-In-Time Algorithms,” IEEE Transactions on Magnetics, pp. 1–1, 2020 [Online]. Available at: https://doi.org/10.1109/tmag.2019.2945510
    @article{BastEtAl2020,
      author = {Bast, Denys and Kulchytska-Ruchka, Iryna and Schoeps, Sebastian and Rain, Oliver},
      doi = {10.1109/tmag.2019.2945510},
      journal = {{IEEE} Transactions on Magnetics},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Accelerated Steady-State Torque Computation for Induction Machines Using Parallel-In-Time Algorithms},
      url = {https://doi.org/10.1109/tmag.2019.2945510},
      year = {2020}
    }
    
  3. C.-E. Brehier and X. Wang, “On Parareal Algorithms for Semilinear Parabolic Stochastic PDEs,” SIAM Journal on Numerical Analysis, vol. 58, no. 1, pp. 254–278, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1251011
    @article{BrehierEtAl2020,
      author = {Brehier, Charles-Edouard and Wang, Xu},
      doi = {10.1137/19m1251011},
      journal = {{SIAM} Journal on Numerical Analysis},
      month = jan,
      number = {1},
      pages = {254--278},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {On Parareal Algorithms for Semilinear Parabolic Stochastic {PDEs}},
      url = {https://doi.org/10.1137/19m1251011},
      volume = {58},
      year = {2020}
    }
    
  4. T. Buvoli, “Exponential Polynomial Time Integrators,” arXiv:2011.00670v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2011.00670v1
    @unpublished{Buvoli2020,
      author = {Buvoli, Tommaso},
      howpublished = {arXiv:2011.00670v1 [math.NA]},
      title = {Exponential Polynomial Time Integrators},
      url = {http://arxiv.org/abs/2011.00670v1},
      year = {2020}
    }
    
  5. T. Buvoli and M. L. Minion, “IMEX Parareal Integrators,” arXiv:2011.01604v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2011.01604v1
    @unpublished{BuvoliEtAl2020,
      author = {Buvoli, Tommaso and Minion, Michael L.},
      howpublished = {arXiv:2011.01604v1 [math.NA]},
      title = {IMEX Parareal Integrators},
      url = {http://arxiv.org/abs/2011.01604v1},
      year = {2020}
    }
    
  6. T. Cheng, T. Duan, and V. Dinavahi, “Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Power Systems,” IEEE Open Access Journal of Power and Energy, pp. 1–1, 2020 [Online]. Available at: https://doi.org/10.1109/oajpe.2020.3012636
    @article{ChengEtAl2020,
      author = {Cheng, Tianshi and Duan, Tong and Dinavahi, Venkata},
      doi = {10.1109/oajpe.2020.3012636},
      journal = {{IEEE} Open Access Journal of Power and Energy},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Power Systems},
      url = {https://doi.org/10.1109/oajpe.2020.3012636},
      year = {2020}
    }
    
  7. C.-K. Cheng, C.-T. Ho, C. Jia, X. Wang, Z. Zen, and X. Zha, “A Parallel-in-Time Circuit Simulator for Power Delivery Networks with Nonlinear Load Models,” in 2020 IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2020 [Online]. Available at: https://doi.org/10.1109/epeps48591.2020.9231406
    @inproceedings{ChengEtAl2020b,
      author = {Cheng, Chung-Kuan and Ho, Chia-Tung and Jia, Chao and Wang, Xinyuan and Zen, Zhiyu and Zha, Xin},
      booktitle = {2020 {IEEE} 29th Conference on Electrical Performance of Electronic Packaging and Systems ({EPEPS})},
      doi = {10.1109/epeps48591.2020.9231406},
      month = oct,
      publisher = {{IEEE}},
      title = {A Parallel-in-Time Circuit Simulator for Power Delivery Networks with Nonlinear Load Models},
      url = {https://doi.org/10.1109/epeps48591.2020.9231406},
      year = {2020}
    }
    
  8. J. Christopher, R. D. Falgout, J. B. Schroder, S. M. Guzik, and X. Gao, “A space-time parallel algorithm with adaptive mesh refinement for computational fluid dynamics,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00334-1
    @article{ChristopherEtAl2020,
      author = {Christopher, Joshua and Falgout, Robert D. and Schroder, Jacob B. and Guzik, Stephen M. and Gao, Xinfeng},
      doi = {10.1007/s00791-020-00334-1},
      journal = {Computing and Visualization in Science},
      month = sep,
      number = {1-4},
      publisher = {Springer Science and Business Media {LLC}},
      title = {A space-time parallel algorithm with adaptive mesh refinement for computational fluid dynamics},
      url = {https://doi.org/10.1007/s00791-020-00334-1},
      volume = {23},
      year = {2020}
    }
    
  9. A. T. Clarke, C. J. Davies, D. Ruprecht, and S. M. Tobias, “Parallel-in-time integration of Kinematic Dynamos,” Journal of Computational Physics: X, vol. 7, p. 100057, 2020 [Online]. Available at: https://doi.org/10.1016/j.jcpx.2020.100057
    @article{ClarkeEtAl2020a,
      author = {Clarke, Andrew T. and Davies, Christopher J. and Ruprecht, Daniel and Tobias, Steven M.},
      doi = {10.1016/j.jcpx.2020.100057},
      journal = {Journal of Computational Physics: X},
      pages = {100057},
      title = {Parallel-in-time integration of Kinematic Dynamos},
      url = {https://doi.org/10.1016/j.jcpx.2020.100057},
      volume = {7},
      year = {2020}
    }
    
  10. A. Clarke, C. Davies, D. Ruprecht, S. Tobias, and J. S. Oishi, “Performance of parallel-in-time integration for Rayleigh Bénard Convection,” Computing and Visualization in Science, vol. 23, no. 10, 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00332-3
    @article{ClarkeEtAl2020b,
      author = {Clarke, Andrew and Davies, Chris and Ruprecht, Daniel and Tobias, Steven and Oishi, Jeffrey S.},
      journal = {Computing and Visualization in Science},
      number = {10},
      title = {Performance of parallel-in-time integration for {R}ayleigh {B}énard Convection},
      url = {https://doi.org/10.1007/s00791-020-00332-3},
      volume = {23},
      year = {2020}
    }
    
  11. L. D’Amore and R. Cacciapuoti, “Model Reduction in Space and Time for the ab initio decomposition of 4D Variational Data Assimilation Problems,” Applied Numerical Mathematics, Oct. 2020 [Online]. Available at: https://doi.org/10.1016/j.apnum.2020.10.003
    @article{DAmoreEtAl2020,
      author = {D{\textquotesingle}Amore, L. and Cacciapuoti, R.},
      doi = {10.1016/j.apnum.2020.10.003},
      journal = {Applied Numerical Mathematics},
      month = oct,
      publisher = {Elsevier {BV}},
      title = {Model Reduction in Space and Time for the ab initio decomposition of 4D Variational Data Assimilation Problems},
      url = {https://doi.org/10.1016/j.apnum.2020.10.003},
      year = {2020}
    }
    
  12. C. Flamant, P. Protopapas, and D. Sondak, “Solving Differential Equations Using Neural Network Solution Bundles,” arXiv:2006.14372v1 [cs.LG], 2020 [Online]. Available at: http://arxiv.org/abs/2006.14372v1
    @unpublished{FlamantEtAl2020,
      author = {Flamant, Cedric and Protopapas, Pavlos and Sondak, David},
      howpublished = {arXiv:2006.14372v1 [cs.LG]},
      title = {Solving Differential Equations Using Neural Network Solution Bundles},
      url = {http://arxiv.org/abs/2006.14372v1},
      year = {2020}
    }
    
  13. M. J. Gander and T. Lunet, “ParaStieltjes: Parallel computation of Gauss quadrature rules using a Parareal-like approach for the Stieltjes procedure,” Numerical Linear Algebra with Applications, Jun. 2020 [Online]. Available at: https://doi.org/10.1002/nla.2314
    @article{GanderEtAl2020b,
      author = {Gander, Martin J. and Lunet, Thibaut},
      doi = {10.1002/nla.2314},
      journal = {Numerical Linear Algebra with Applications},
      month = jun,
      publisher = {Wiley},
      title = {{ParaStieltjes}: Parallel computation of Gauss quadrature rules using a Parareal-like approach for the Stieltjes procedure},
      url = {https://doi.org/10.1002/nla.2314},
      year = {2020}
    }
    
  14. M. J. Gander, F. Kwok, and J. Salomon, “PARAOPT: A Parareal Algorithm for Optimality Systems,” SIAM Journal on Scientific Computing, vol. 42, no. 5, pp. A2773–A2802, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1292291
    @article{GanderEtAl2020c,
      author = {Gander, Martin J. and Kwok, Felix and Salomon, Julien},
      doi = {10.1137/19m1292291},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {5},
      pages = {A2773--A2802},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {{PARAOPT}: A Parareal Algorithm for Optimality Systems},
      url = {https://doi.org/10.1137/19m1292291},
      volume = {42},
      year = {2020}
    }
    
  15. M. J. Gander and S.-L. Wu, “A Diagonalization-Based Parareal Algorithm for Dissipative and Wave Propagation Problems,” SIAM Journal on Numerical Analysis, vol. 58, no. 5, pp. 2981–3009, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1271683
    @article{GanderEtAl2020d,
      author = {Gander, Martin J. and Wu, Shu-Lin},
      doi = {10.1137/19m1271683},
      journal = {{SIAM} Journal on Numerical Analysis},
      month = jan,
      number = {5},
      pages = {2981--3009},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {A Diagonalization-Based Parareal Algorithm for Dissipative and Wave Propagation Problems},
      url = {https://doi.org/10.1137/19m1271683},
      volume = {58},
      year = {2020}
    }
    
  16. M. J. Gander, I. Kulchytska-Ruchka, and S. Schöps, “A New Parareal Algorithm for Time-Periodic Problems with Discontinuous Inputs,” in Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2020, pp. 243–250 [Online]. Available at: https://doi.org/10.1007/978-3-030-56750-7_27
    @incollection{GanderEtAl2020e,
      author = {Gander, Martin J. and Kulchytska-Ruchka, Iryna and Schöps, Sebastian},
      booktitle = {Lecture Notes in Computational Science and Engineering},
      doi = {10.1007/978-3-030-56750-7_27},
      pages = {243--250},
      publisher = {Springer International Publishing},
      title = {A New Parareal Algorithm for Time-Periodic Problems with Discontinuous Inputs},
      url = {https://doi.org/10.1007/978-3-030-56750-7_27},
      year = {2020}
    }
    
  17. I. C. Garcia, I. Kulchytska-Ruchka, M. Clemens, and S. Schops, “Parallel-in-Time Solution of Eddy Current Problems Using Implicit and Explicit Time-stepping Methods,” in 2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC), 2020 [Online]. Available at: https://doi.org/10.1109%2Fcefc46938.2020.9451465
    @inproceedings{GarciaEtAl2020,
      author = {Garcia, I. Cortes and Kulchytska-Ruchka, I. and Clemens, M. and Schops, S.},
      booktitle = {2020 {IEEE} 19th Biennial Conference on Electromagnetic Field Computation ({CEFC})},
      doi = {10.1109/cefc46938.2020.9451465},
      month = nov,
      publisher = {{IEEE}},
      title = {Parallel-in-Time Solution of Eddy Current Problems Using Implicit and Explicit Time-stepping Methods},
      url = {https://doi.org/10.1109%2Fcefc46938.2020.9451465},
      year = {2020}
    }
    
  18. A. Garmon and D. Perez, “Exploiting Model Uncertainty to Improve the Scalability of Long-Time Simulations using Parallel Trajectory Splicing,” Modelling and Simulation in Materials Science and Engineering, Jul. 2020 [Online]. Available at: https://doi.org/10.1088/1361-651x/aba511
    @article{GarmonEtAl2020,
      author = {Garmon, Andrew and Perez, Danny},
      doi = {10.1088/1361-651x/aba511},
      journal = {Modelling and Simulation in Materials Science and Engineering},
      month = jul,
      publisher = {{IOP} Publishing},
      title = {Exploiting Model Uncertainty to Improve the Scalability of Long-Time Simulations using Parallel Trajectory Splicing},
      url = {https://doi.org/10.1088/1361-651x/aba511},
      year = {2020}
    }
    
  19. X.-M. Gu and S.-L. Wu, “A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel,” Journal of Computational Physics, vol. 417, p. 109576, Sep. 2020 [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.109576
    @article{GuEtAl2020,
      author = {Gu, Xian-Ming and Wu, Shu-Lin},
      doi = {10.1016/j.jcp.2020.109576},
      journal = {Journal of Computational Physics},
      month = sep,
      pages = {109576},
      publisher = {Elsevier {BV}},
      title = {A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel},
      url = {https://doi.org/10.1016/j.jcp.2020.109576},
      volume = {417},
      year = {2020}
    }
    
  20. S. Günther, L. Ruthotto, J. B. Schroder, E. C. Cyr, and N. R. Gauger, “Layer-Parallel Training of Deep Residual Neural Networks,” SIAM Journal on Mathematics of Data Science, vol. 2, no. 1, pp. 1–23, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1247620
    @article{GüntherEtAl2020,
      author = {Günther, Stefanie and Ruthotto, Lars and Schroder, Jacob B. and Cyr, Eric C. and Gauger, Nicolas R.},
      doi = {10.1137/19m1247620},
      journal = {{SIAM} Journal on Mathematics of Data Science},
      month = jan,
      number = {1},
      pages = {1--23},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Layer-Parallel Training of Deep Residual Neural Networks},
      url = {https://doi.org/10.1137/19m1247620},
      volume = {2},
      year = {2020}
    }
    
  21. J. Hahne, S. Friedhoff, and M. Bolten, “PyMGRIT: A Python Package for the parallel-in-time method MGRIT,” arXiv:2008.05172v1 [cs.MS], 2020 [Online]. Available at: http://arxiv.org/abs/2008.05172v1
    @unpublished{HahneEtAl2020,
      author = {Hahne, Jens and Friedhoff, Stephanie and Bolten, Matthias},
      howpublished = {arXiv:2008.05172v1 [cs.MS]},
      title = {PyMGRIT: A Python Package for the parallel-in-time method MGRIT},
      url = {http://arxiv.org/abs/2008.05172v1},
      year = {2020}
    }
    
  22. F. P. Hamon, M. Schreiber, and M. L. Minion, “Parallel-in-time multi-level integration of the shallow-water equations on the rotating sphere,” Journal of Computational Physics, vol. 407, p. 109210, Apr. 2020 [Online]. Available at: https://doi.org/10.1016/j.jcp.2019.109210
    @article{HamonEtAl2020,
      author = {Hamon, Fran{\c{c}}ois P. and Schreiber, Martin and Minion, Michael L.},
      doi = {10.1016/j.jcp.2019.109210},
      journal = {Journal of Computational Physics},
      month = apr,
      pages = {109210},
      publisher = {Elsevier {BV}},
      title = {Parallel-in-time multi-level integration of the shallow-water equations on the rotating sphere},
      url = {https://doi.org/10.1016/j.jcp.2019.109210},
      volume = {407},
      year = {2020}
    }
    
  23. A. Hessenthaler, B. S. Southworth, D. Nordsletten, O. Röhrle, R. D. Falgout, and J. B. Schroder, “Multilevel Convergence Analysis of Multigrid-Reduction-in-Time,” SIAM Journal on Scientific Computing, vol. 42, no. 2, pp. A771–A796, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1238812
    @article{HessenthalerEtAl2020,
      author = {Hessenthaler, Andreas and Southworth, Ben S. and Nordsletten, David and Röhrle, Oliver and Falgout, Robert D. and Schroder, Jacob B.},
      doi = {10.1137/19m1238812},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {2},
      pages = {A771--A796},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Multilevel Convergence Analysis of Multigrid-Reduction-in-Time},
      url = {https://doi.org/10.1137/19m1238812},
      volume = {42},
      year = {2020}
    }
    
  24. N. E. Hodge, “Towards Improved Speed and Accuracy of Laser Powder Bed FusionSimulations via Representation of Multiple Time Scales,” Additive Manufacturing, p. 101600, Oct. 2020 [Online]. Available at: https://doi.org/10.1016/j.addma.2020.101600
    @article{Hodge2020,
      author = {Hodge, N.E.},
      doi = {10.1016/j.addma.2020.101600},
      journal = {Additive Manufacturing},
      month = oct,
      pages = {101600},
      publisher = {Elsevier {BV}},
      title = {Towards Improved Speed and Accuracy of Laser Powder Bed {FusionSimulations} via Representation of Multiple Time Scales},
      url = {https://doi.org/10.1016/j.addma.2020.101600},
      year = {2020}
    }
    
  25. X. Hu, C. Rodrigo, and F. J. Gaspar, “Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation,” Journal of Computational Physics, p. 109540, May 2020 [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.109540
    @article{HuEtAl2020,
      author = {Hu, Xiaozhe and Rodrigo, Carmen and Gaspar, Francisco J.},
      doi = {10.1016/j.jcp.2020.109540},
      journal = {Journal of Computational Physics},
      month = may,
      pages = {109540},
      publisher = {Elsevier {BV}},
      title = {Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation},
      url = {https://doi.org/10.1016/j.jcp.2020.109540},
      year = {2020}
    }
    
  26. K. Jałowiecki, A. Więckowski, P. Gawron, and B. Gardas, “Parallel in time dynamics with quantum annealers,” Scientific Reports, vol. 10, no. 1, Aug. 2020 [Online]. Available at: https://doi.org/10.1038/s41598-020-70017-x
    @article{JałowieckiEtAl2020,
      author = {Ja{\l}owiecki, Konrad and Wi{\k{e}}ckowski, Andrzej and Gawron, Piotr and Gardas, Bart{\l}omiej},
      doi = {10.1038/s41598-020-70017-x},
      journal = {Scientific Reports},
      month = aug,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Parallel in time dynamics with quantum annealers},
      url = {https://doi.org/10.1038/s41598-020-70017-x},
      volume = {10},
      year = {2020}
    }
    
  27. A. Kirby, S. Samsi, M. Jones, A. Reuther, J. Kepner, and V. Gadepally, “Layer-Parallel Training with GPU Concurrency of Deep Residual Neural Networks via Nonlinear Multigrid,” in 2020 IEEE High Performance Extreme Computing Conference (HPEC), 2020 [Online]. Available at: https://doi.org/10.1109/hpec43674.2020.9286180
    @inproceedings{KirbyEtAl2020,
      author = {Kirby, Andrew and Samsi, Siddharth and Jones, Michael and Reuther, Albert and Kepner, Jeremy and Gadepally, Vijay},
      booktitle = {2020 {IEEE} High Performance Extreme Computing Conference ({HPEC})},
      doi = {10.1109/hpec43674.2020.9286180},
      month = sep,
      publisher = {{IEEE}},
      title = {Layer-Parallel Training with {GPU} Concurrency of Deep Residual Neural Networks via Nonlinear Multigrid},
      url = {https://doi.org/10.1109/hpec43674.2020.9286180},
      year = {2020}
    }
    
  28. S. Lakshmiranganatha and S. S. Muknahallipatna, “Graphical Processing Unit Based Time-Parallel Numerical Method for Ordinary Differential Equations,” Journal of Computer and Communications, vol. 08, no. 02, pp. 39–63, 2020 [Online]. Available at: https://doi.org/10.4236/jcc.2020.82004
    @article{LakshmiranganathaEtAl2020,
      author = {Lakshmiranganatha, Sumathi and Muknahallipatna, Suresh S.},
      doi = {10.4236/jcc.2020.82004},
      journal = {Journal of Computer and Communications},
      number = {02},
      pages = {39--63},
      publisher = {Scientific Research Publishing, Inc.},
      title = {Graphical Processing Unit Based Time-Parallel Numerical Method for Ordinary Differential Equations},
      url = {https://doi.org/10.4236/jcc.2020.82004},
      volume = {08},
      year = {2020}
    }
    
  29. F. Legoll, T. Lelièvre, K. Myerscough, and G. Samaey, “Parareal computation of stochastic differential equations with time-scale separation: a numerical convergence study,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00329-y
    @article{LegollEtAl2020,
      author = {Legoll, Fr{\'{e}}d{\'{e}}ric and Leli{\`{e}}vre, Tony and Myerscough, Keith and Samaey, Giovanni},
      doi = {10.1007/s00791-020-00329-y},
      journal = {Computing and Visualization in Science},
      month = sep,
      number = {1-4},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Parareal computation of stochastic differential equations with time-scale separation: a numerical convergence study},
      url = {https://doi.org/10.1007/s00791-020-00329-y},
      volume = {23},
      year = {2020}
    }
    
  30. H. Liu, A. Cheng, and H. Wang, “A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations,” Journal of Scientific Computing, vol. 85, no. 1, Oct. 2020 [Online]. Available at: https://doi.org/10.1007/s10915-020-01321-x
    @article{LiuEtAl2020,
      author = {Liu, Huan and Cheng, Aijie and Wang, Hong},
      doi = {10.1007/s10915-020-01321-x},
      journal = {Journal of Scientific Computing},
      month = oct,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations},
      url = {https://doi.org/10.1007/s10915-020-01321-x},
      volume = {85},
      year = {2020}
    }
    
  31. J. Liu and Z. Wang, “A ROM-accelerated parallel-in-time preconditioner for solving all-at-once systems from evolutionary PDEs,” arXiv:2012.09148v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2012.09148v1
    @unpublished{LiuEtAl2020b,
      author = {Liu, Jun and Wang, Zhu},
      howpublished = {arXiv:2012.09148v1 [math.NA]},
      title = {A ROM-accelerated parallel-in-time preconditioner for solving all-at-once systems from evolutionary PDEs},
      url = {http://arxiv.org/abs/2012.09148v1},
      year = {2020}
    }
    
  32. J. Liu and S.-L. Wu, “A Fast Block \textdollar}alpha\textdollar-Circulant Preconditoner for All-at-Once Systems From Wave Equations,” SIAM Journal on Matrix Analysis and Applications, vol. 41, no. 4, pp. 1912–1943, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1309869
    @article{LiuEtAl2020c,
      author = {Liu, Jun and Wu, Shu-Lin},
      doi = {10.1137/19m1309869},
      journal = {{SIAM} Journal on Matrix Analysis and Applications},
      month = jan,
      number = {4},
      pages = {1912--1943},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {A Fast Block {\textdollar}{\textbackslash}alpha{\textdollar}-Circulant Preconditoner for All-at-Once Systems From Wave Equations},
      url = {https://doi.org/10.1137/19m1309869},
      volume = {41},
      year = {2020}
    }
    
  33. E. Lorin, “Derivation and analysis of parallel-in-time neural ordinary differential equations,” Annals of Mathematics and Artificial Intelligence, Jul. 2020 [Online]. Available at: https://doi.org/10.1007/s10472-020-09702-6
    @article{Lorin2020,
      author = {Lorin, E.},
      doi = {10.1007/s10472-020-09702-6},
      journal = {Annals of Mathematics and Artificial Intelligence},
      month = jul,
      publisher = {Springer Science and Business Media {LLC}},
      title = {Derivation and analysis of parallel-in-time neural ordinary differential equations},
      url = {https://doi.org/10.1007/s10472-020-09702-6},
      year = {2020}
    }
    
  34. Y. Maday and O. Mula, “An adaptive parareal algorithm,” Journal of Computational and Applied Mathematics, vol. 377, p. 112915, Oct. 2020 [Online]. Available at: https://doi.org/10.1016/j.cam.2020.112915
    @article{MadayEtAl2020,
      author = {Maday, Y. and Mula, O.},
      doi = {10.1016/j.cam.2020.112915},
      journal = {Journal of Computational and Applied Mathematics},
      month = oct,
      pages = {112915},
      publisher = {Elsevier {BV}},
      title = {An adaptive parareal algorithm},
      url = {https://doi.org/10.1016/j.cam.2020.112915},
      volume = {377},
      year = {2020}
    }
    
  35. X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis, “PPINN: Parareal physics-informed neural network for time-dependent PDEs,” Computer Methods in Applied Mechanics and Engineering, vol. 370, p. 113250, Oct. 2020 [Online]. Available at: https://doi.org/10.1016/j.cma.2020.113250
    @article{MengEtAl2020,
      author = {Meng, Xuhui and Li, Zhen and Zhang, Dongkun and Karniadakis, George Em},
      doi = {10.1016/j.cma.2020.113250},
      journal = {Computer Methods in Applied Mechanics and Engineering},
      month = oct,
      pages = {113250},
      publisher = {Elsevier {BV}},
      title = {{PPINN}: Parareal physics-informed neural network for time-dependent {PDEs}},
      url = {https://doi.org/10.1016/j.cma.2020.113250},
      volume = {370},
      year = {2020}
    }
    
  36. H. Nguyen and R. Tsai, “A stable parareal-like method for the second order wave equation,” Journal of Computational Physics, vol. 405, p. 109156, 2020 [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0021999119308617
    @article{NguyenTsai2020,
      author = {Nguyen, Hieu and Tsai, Richard},
      doi = {https://doi.org/10.1016/j.jcp.2019.109156},
      issn = {0021-9991},
      journal = {Journal of Computational Physics},
      keywords = {Parallel-in-time, Wave equation, Procrustes problem},
      pages = {109156},
      title = {A stable parareal-like method for the second order wave equation},
      url = {http://www.sciencedirect.com/science/article/pii/S0021999119308617},
      volume = {405},
      year = {2020}
    }
    
  37. B. W. Ong and J. B. Schroder, “Applications of time parallelization,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00331-4
    @article{OngEtAl2020,
      author = {Ong, Benjamin W. and Schroder, Jacob B.},
      doi = {10.1007/s00791-020-00331-4},
      journal = {Computing and Visualization in Science},
      month = sep,
      number = {1-4},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Applications of time parallelization},
      url = {https://doi.org/10.1007/s00791-020-00331-4},
      volume = {23},
      year = {2020}
    }
    
  38. B. Park, K. Sun, A. Dimitrovski, Y. Liu, M. A. Arif, S. Allu, and S. Simunovic, “Performance and Feature Improvements in Parareal-based Power System Dynamic Simulation,” in 2020 IEEE International Conference on Power Systems Technology (POWERCON), 2020 [Online]. Available at: https://doi.org/10.1109/powercon48463.2020.9230544
    @inproceedings{ParkEtAl2020,
      author = {Park, Byungkwon and Sun, Kai and Dimitrovski, Aleksandar and Liu, Yang and Arif, Md Arifin and Allu, Srikanth and Simunovic, Srdjan},
      booktitle = {2020 {IEEE} International Conference on Power Systems Technology ({POWERCON})},
      doi = {10.1109/powercon48463.2020.9230544},
      month = sep,
      publisher = {{IEEE}},
      title = {Performance and Feature Improvements in Parareal-based Power System Dynamic Simulation},
      url = {https://doi.org/10.1109/powercon48463.2020.9230544},
      year = {2020}
    }
    
  39. H. Rittich and R. Speck, “Time-parallel simulation of the Schrödinger Equation,” Computer Physics Communications, vol. 255, p. 107363, Oct. 2020 [Online]. Available at: https://doi.org/10.1016/j.cpc.2020.107363
    @article{RittichEtAl2020,
      author = {Rittich, Hannah and Speck, Robert},
      doi = {10.1016/j.cpc.2020.107363},
      journal = {Computer Physics Communications},
      month = oct,
      pages = {107363},
      publisher = {Elsevier {BV}},
      title = {Time-parallel simulation of the Schrödinger Equation},
      url = {https://doi.org/10.1016/j.cpc.2020.107363},
      volume = {255},
      year = {2020}
    }
    
  40. R. Schöbel and R. Speck, “PFASST-ER: combining the parallel full approximation scheme in space and time with parallelization across the method,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00330-5
    @article{SchoebelEtAl2020,
      author = {Schöbel, Ruth and Speck, Robert},
      doi = {10.1007/s00791-020-00330-5},
      journal = {Computing and Visualization in Science},
      month = sep,
      number = {1-4},
      publisher = {Springer Science and Business Media {LLC}},
      title = {{PFASST}-{ER}: combining the parallel full approximation scheme in space and time with parallelization across the method},
      url = {https://doi.org/10.1007/s00791-020-00330-5},
      volume = {23},
      year = {2020}
    }
    
  41. L. Z. sci, “Convergence Analysis of Parareal Algorithm Based on Milstein Scheme for Stochastic Differential Equations,” Journal of Computational Mathematics, vol. 38, no. 3, pp. 487–501, Jun. 2020 [Online]. Available at: https://doi.org/10.4208/jcm.1901-m2018-0085
    @article{sci2020,
      author = {sci, Liying Zhang},
      doi = {10.4208/jcm.1901-m2018-0085},
      journal = {Journal of Computational Mathematics},
      month = jun,
      number = {3},
      pages = {487--501},
      publisher = {Global Science Press},
      title = {Convergence Analysis of Parareal Algorithm Based on Milstein Scheme for Stochastic Differential Equations},
      url = {https://doi.org/10.4208/jcm.1901-m2018-0085},
      volume = {38},
      year = {2020}
    }
    
  42. B. Song, Y.-L. Jiang, and X. Wang, “Analysis of two new parareal algorithms based on the Dirichlet-Neumann/Neumann-Neumann waveform relaxation method for the heat equation,” Numerical Algorithms, Jun. 2020 [Online]. Available at: https://doi.org/10.1007/s11075-020-00949-y
    @article{SongEtAl2020,
      author = {Song, Bo and Jiang, Yao-Lin and Wang, Xiaolong},
      doi = {10.1007/s11075-020-00949-y},
      journal = {Numerical Algorithms},
      month = jun,
      publisher = {Springer Science and Business Media {LLC}},
      title = {Analysis of two new parareal algorithms based on the Dirichlet-Neumann/Neumann-Neumann waveform relaxation method for the heat equation},
      url = {https://doi.org/10.1007/s11075-020-00949-y},
      year = {2020}
    }
    
  43. B. Stump and A. Plotkowski, “Spatiotemporal parallelization of an analytical heat conduction model for additive manufacturing via a hybrid OpenMP \mathplus MPI approach,” Computational Materials Science, vol. 184, p. 109861, Nov. 2020 [Online]. Available at: https://doi.org/10.1016/j.commatsci.2020.109861
    @article{StumpEtAl2020,
      author = {Stump, B. and Plotkowski, A.},
      doi = {10.1016/j.commatsci.2020.109861},
      journal = {Computational Materials Science},
      month = nov,
      pages = {109861},
      publisher = {Elsevier {BV}},
      title = {Spatiotemporal parallelization of an analytical heat conduction model for additive manufacturing via a hybrid {OpenMP}~$\mathplus$~{MPI} approach},
      url = {https://doi.org/10.1016/j.commatsci.2020.109861},
      volume = {184},
      year = {2020}
    }
    
  44. S.-L. Wu and J. Liu, “A Parallel-In-Time Block-Circulant Preconditioner for Optimal Control of Wave Equations,” SIAM Journal on Scientific Computing, vol. 42, no. 3, pp. A1510–A1540, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1289613
    @article{WuEtAl2020,
      author = {Wu, Shu-Lin and Liu, Jun},
      doi = {10.1137/19m1289613},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {3},
      pages = {A1510--A1540},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {A Parallel-In-Time Block-Circulant Preconditioner for Optimal Control of Wave Equations},
      url = {https://doi.org/10.1137/19m1289613},
      volume = {42},
      year = {2020}
    }
    
  45. S. Wu and Z. Zhou, “Parallel-in-time high-order BDF schemes for diffusion and subdiffusion equations,” arXiv:2007.13125v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2007.13125v1
    @unpublished{WuEtAl2020b,
      author = {Wu, Shuonan and Zhou, Zhi},
      howpublished = {arXiv:2007.13125v1 [math.NA]},
      title = {Parallel-in-time high-order BDF schemes for diffusion and subdiffusion equations},
      url = {http://arxiv.org/abs/2007.13125v1},
      year = {2020}
    }
    
  46. S.-L. Wu and T. Zhou, “Diagonalization-based parallel-in-time algorithms for parabolic PDE-constrained optimization problems,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 26, p. 88, 2020 [Online]. Available at: https://doi.org/10.1051/cocv/2020012
    @article{WuEtAl2020c,
      author = {Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1051/cocv/2020012},
      journal = {{ESAIM}: Control, Optimisation and Calculus of Variations},
      pages = {88},
      publisher = {{EDP} Sciences},
      title = {Diagonalization-based parallel-in-time algorithms for parabolic {PDE}-constrained optimization problems},
      url = {https://doi.org/10.1051/cocv/2020012},
      volume = {26},
      year = {2020}
    }
    
  47. Y.-L. Zhao, X.-M. Gu, M. Li, and H.-Y. Jian, “Preconditioners for all-at-once system from the fractional mobile/immobile advection–diffusion model,” Journal of Applied Mathematics and Computing, Jul. 2020 [Online]. Available at: https://doi.org/10.1007/s12190-020-01410-y
    @article{ZhaoEtAl2020,
      author = {Zhao, Yong-Liang and Gu, Xian-Ming and Li, Meng and Jian, Huan-Yan},
      doi = {10.1007/s12190-020-01410-y},
      journal = {Journal of Applied Mathematics and Computing},
      month = jul,
      publisher = {Springer Science and Business Media {LLC}},
      title = {Preconditioners for all-at-once system from the fractional mobile/immobile advection{\textendash}diffusion model},
      url = {https://doi.org/10.1007/s12190-020-01410-y},
      year = {2020}
    }
    
  48. Y.-L. Zhao, X.-M. Gu, and A. Ostermann, “A parallel preconditioning technique for an all-at-once system from subdiffusion equations with variable time steps,” arXiv:2007.14636v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2007.14636v1
    @unpublished{ZhaoEtAl2020b,
      author = {Zhao, Yong-Liang and Gu, Xian-Ming and Ostermann, Alexander},
      howpublished = {arXiv:2007.14636v1 [math.NA]},
      title = {A parallel preconditioning technique for an all-at-once system from subdiffusion equations with variable time steps},
      url = {http://arxiv.org/abs/2007.14636v1},
      year = {2020}
    }
    
top

2019

  1. A. L. Blumers, Z. Li, and G. E. Karniadakis, “Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics,” Journal of Computational Physics, vol. 393, pp. 214–228, 2019 [Online]. Available at: https://doi.org/10.1016/j.jcp.2019.05.016
    @article{BlumersEtAl2019,
      author = {Blumers, Ansel L. and Li, Zhen and Karniadakis, George Em},
      doi = {10.1016/j.jcp.2019.05.016},
      journal = {Journal of Computational Physics},
      pages = {214 - 228},
      title = {Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics},
      url = {https://doi.org/10.1016/j.jcp.2019.05.016},
      volume = {393},
      year = {2019}
    }
    
  2. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-Driven Time Parallelism via Forecasting,” SIAM Journal on Scientific Computing, vol. 41, no. 3, pp. B466–B496, Jan. 2019 [Online]. Available at: https://doi.org/10.1137/18m1174362
    @article{CarlbergEtAl2019,
      author = {Carlberg, Kevin and Brencher, Lukas and Haasdonk, Bernard and Barth, Andrea},
      doi = {10.1137/18m1174362},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {3},
      pages = {B466--B496},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Data-Driven Time Parallelism via Forecasting},
      url = {https://doi.org/10.1137/18m1174362},
      volume = {41},
      year = {2019}
    }
    
  3. S. Dohr, J. Zapletal, G. Of, M. Merta, and M. Kravčenko, “A parallel space–time boundary element method for the heat equation,” Computers & Mathematics with Applications, 2019 [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0898122118307296
    @article{DohrEtAl2019,
      author = {Dohr, Stefan and Zapletal, Jan and Of, Günther and Merta, Michal and Kravčenko, Michal},
      doi = {https://doi.org/10.1016/j.camwa.2018.12.031},
      journal = {Computers \& Mathematics with Applications},
      title = {A parallel space–time boundary element method for the heat equation},
      url = {http://www.sciencedirect.com/science/article/pii/S0898122118307296},
      year = {2019}
    }
    
  4. S. Friedhoff, J. Hahne, I. Kulchytska-Ruchka, and S. Schöps, “Exploring Parallel-in-Time Approaches for Eddy Current Problems,” in Progress in Industrial Mathematics at ECMI 2018, Springer International Publishing, 2019, pp. 373–379 [Online]. Available at: https://doi.org/10.1007/978-3-030-27550-1_47
    @incollection{FriedhoffEtAl2019,
      author = {Friedhoff, Stephanie and Hahne, Jens and Kulchytska-Ruchka, Iryna and Schöps, Sebastian},
      booktitle = {Progress in Industrial Mathematics at {ECMI} 2018},
      doi = {10.1007/978-3-030-27550-1_47},
      pages = {373--379},
      publisher = {Springer International Publishing},
      title = {Exploring Parallel-in-Time Approaches for Eddy Current Problems},
      url = {https://doi.org/10.1007/978-3-030-27550-1_47},
      year = {2019}
    }
    
  5. S. Friedhoff, J. Hahne, and S. Schöps, “Multigrid-reduction-in-time for Eddy Current problems,” PAMM, vol. 19, no. 1, Nov. 2019 [Online]. Available at: https://doi.org/10.1002/pamm.201900262
    @article{FriedhoffEtAl2019b,
      author = {Friedhoff, Stephanie and Hahne, Jens and Schöps, Sebastian},
      doi = {10.1002/pamm.201900262},
      journal = {{PAMM}},
      month = nov,
      number = {1},
      publisher = {Wiley},
      title = {Multigrid-reduction-in-time for Eddy Current problems},
      url = {https://doi.org/10.1002/pamm.201900262},
      volume = {19},
      year = {2019}
    }
    
  6. S. Friedhoff and B. S. Southworth, “On ‘Optimal’ h-Independent Convergence of Parareal and MGRIT Using Runge-Kutta Time Integration,” arXiv:1906.06672 [math.NA], 2019 [Online]. Available at: https://arxiv.org/abs/1906.06672
    @unpublished{FriedhoffSouthworth2019,
      author = {Friedhoff, Stephanie and Southworth, Ben S.},
      howpublished = {arXiv:1906.06672 [math.NA]},
      title = {On ``{O}ptimal'' h-{I}ndependent {C}onvergence of {P}arareal and {MGRIT} {U}sing {R}unge-{K}utta {T}ime {I}ntegration},
      url = {https://arxiv.org/abs/1906.06672},
      year = {2019}
    }
    
  7. M. Gander, L. Halpern, J. Rannou, and J. Ryan, “A Direct Time Parallel Solver by Diagonalization for the Wave Equation,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A220–A245, 2019 [Online]. Available at: https://doi.org/10.1137/17M1148347
    @article{GanderEtAl2019,
      author = {Gander, M. and Halpern, L. and Rannou, J. and Ryan, J.},
      doi = {10.1137/17M1148347},
      journal = {SIAM Journal on Scientific Computing},
      number = {1},
      pages = {A220--A245},
      title = {A Direct Time Parallel Solver by Diagonalization for the Wave Equation},
      url = {https://doi.org/10.1137/17M1148347},
      volume = {41},
      year = {2019}
    }
    
  8. M. Gander, Y. Jiang, and B. Song, “A Superlinear Convergence Estimate for the Parareal Schwarz Waveform Relaxation Algorithm,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. A1148–A1169, 2019 [Online]. Available at: https://doi.org/10.1137/18M1177226
    @article{GanderEtAl2019b,
      author = {Gander, M. and Jiang, Y. and Song, B.},
      doi = {10.1137/18M1177226},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {A1148--A1169},
      title = {A Superlinear Convergence Estimate for the Parareal Schwarz Waveform Relaxation Algorithm},
      url = {https://doi.org/10.1137/18M1177226},
      volume = {41},
      year = {2019}
    }
    
  9. M. J. Gander, I. Kulchytska-Ruchka, I. Niyonzima, and S. Schöps, “A New Parareal Algorithm for Problems with Discontinuous Sources,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. B375–B395, 2019 [Online]. Available at: https://doi.org/10.1137/18M1175653
    @article{GanderEtAl2019c,
      author = {Gander, Martin J. and Kulchytska-Ruchka, Iryna and Niyonzima, Innocent and Schöps, Sebastian},
      doi = {10.1137/18M1175653},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {B375--B395},
      title = {A New Parareal Algorithm for Problems with Discontinuous Sources},
      url = {https://doi.org/10.1137/18M1175653},
      volume = {41},
      year = {2019}
    }
    
  10. M. J. Gander and S.-L. Wu, “Convergence analysis of a periodic-like waveform relaxation method for initial-value problems via the diagonalization technique,” Numerische Mathematik, vol. 143, no. 2, pp. 489–527, Jun. 2019 [Online]. Available at: https://doi.org/10.1007/s00211-019-01060-8
    @article{GanderEtAl2019d,
      author = {Gander, Martin J. and Wu, Shu-Lin},
      doi = {10.1007/s00211-019-01060-8},
      journal = {Numerische Mathematik},
      month = jun,
      number = {2},
      pages = {489--527},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Convergence analysis of a periodic-like waveform relaxation method for initial-value problems via the diagonalization technique},
      url = {https://doi.org/10.1007/s00211-019-01060-8},
      volume = {143},
      year = {2019}
    }
    
  11. S. Götschel and M. L. Minion, “An Efficient Parallel-in-Time Method for Optimization with Parabolic PDEs,” SIAM Journal on Scientific Computing, vol. 41, no. 6, pp. C603–C626, Jan. 2019 [Online]. Available at: https://doi.org/10.1137/19m1239313
    @article{GötschelEtAl2019,
      author = {Götschel, Sebastian and Minion, Michael L.},
      doi = {10.1137/19m1239313},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {6},
      pages = {C603--C626},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {An Efficient Parallel-in-Time Method for Optimization with Parabolic {PDEs}},
      url = {https://doi.org/10.1137/19m1239313},
      volume = {41},
      year = {2019}
    }
    
  12. F. Hédin and T. Lelièvre, “gen.parRep: A first implementation of the Generalized Parallel Replica dynamics for the long time simulation of metastable biochemical systems,” Computer Physics Communications, 2019 [Online]. Available at: https://doi.org/10.1016/j.cpc.2019.01.005
    @article{HedinLelievre2019,
      author = {Hédin, Florent and Lelièvre, Tony},
      doi = {10.1016/j.cpc.2019.01.005},
      journal = {Computer Physics Communications},
      title = {gen.parRep: A first implementation of the Generalized Parallel Replica dynamics for the long time simulation of metastable biochemical systems},
      url = {https://doi.org/10.1016/j.cpc.2019.01.005},
      year = {2019}
    }
    
  13. J. Hong, X. Wang, and L. Zhang, “Parareal Exponential \textdollar}theta\textdollar-Scheme for Longtime Simulation of Stochastic Schrödinger Equations with Weak Damping,” SIAM Journal on Scientific Computing, vol. 41, no. 6, pp. B1155–B1177, Jan. 2019 [Online]. Available at: https://doi.org/10.1137/18m1176749
    @article{HongEtAl2019,
      author = {Hong, Jialin and Wang, Xu and Zhang, Liying},
      doi = {10.1137/18m1176749},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {6},
      pages = {B1155--B1177},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Parareal Exponential {\textdollar}{\textbackslash}theta{\textdollar}-Scheme for Longtime Simulation of Stochastic Schrödinger Equations with Weak Damping},
      url = {https://doi.org/10.1137/18m1176749},
      volume = {41},
      year = {2019}
    }
    
  14. A. Howse, H. Sterck, R. Falgout, S. MacLachlan, and J. Schroder, “Parallel-In-Time Multigrid with Adaptive Spatial Coarsening for The Linear Advection and Inviscid Burgers Equations,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A538–A565, 2019 [Online]. Available at: https://dx.doi.org/10.1137/17M1144982
    @article{HowseEtAl2019,
      author = {Howse, A. and Sterck, H. and Falgout, R. and MacLachlan, S. and Schroder, J.},
      doi = {10.1137/17M1144982},
      journal = {SIAM Journal on Scientific Computing},
      number = {1},
      pages = {A538--A565},
      title = {Parallel-In-Time Multigrid with Adaptive Spatial Coarsening for The Linear Advection and Inviscid Burgers Equations},
      url = {https://dx.doi.org/10.1137/17M1144982},
      volume = {41},
      year = {2019}
    }
    
  15. O. A. Krzysik, H. D. Sterck, S. P. MacLachlan, and S. Friedhoff, “On selecting coarse-grid operators for Parareal and MGRIT applied to linear advection,” arXiv:1902.07757 [math.NA], 2019 [Online]. Available at: https://arxiv.org/abs/1902.07757
    @unpublished{KrzysikEtAl2019,
      author = {Krzysik, Oliver A. and Sterck, Hans De and MacLachlan, Scott P. and Friedhoff, Stephanie},
      howpublished = {arXiv:1902.07757 [math.NA]},
      title = {On selecting coarse-grid operators for Parareal and MGRIT applied to linear advection},
      url = {https://arxiv.org/abs/1902.07757},
      year = {2019}
    }
    
  16. F. Kwok and B. Ong, “Schwarz Waveform Relaxation with Adaptive Pipelining,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A339–A364, 2019 [Online]. Available at: https://doi.org/10.1137/17M115311X
    @article{KwokOng2019,
      author = {Kwok, F. and Ong, B.},
      doi = {10.1137/17M115311X},
      journal = {SIAM Journal on Scientific Computing},
      number = {1},
      pages = {A339--A364},
      title = {Schwarz Waveform Relaxation with Adaptive Pipelining},
      url = {https://doi.org/10.1137/17M115311X},
      volume = {41},
      year = {2019}
    }
    
  17. S. Li, R. Chen, and X. Shao, “Parallel two-level space–time hybrid Schwarz method for solving linear parabolic equations,” Applied Numerical Mathematics, vol. 139, pp. 120–135, 2019 [Online]. Available at: https://doi.org/10.1016/j.apnum.2019.01.016
    @article{LiEtAl2019,
      author = {Li, Shishun and Chen, Rongliang and Shao, Xinping},
      doi = {10.1016/j.apnum.2019.01.016},
      journal = {Applied Numerical Mathematics},
      pages = {120--135},
      title = {Parallel two-level space–time hybrid Schwarz method for solving linear parabolic equations},
      url = {https://doi.org/10.1016/j.apnum.2019.01.016},
      volume = {139},
      year = {2019}
    }
    
  18. S. Li, X. Shao, and X.-C. Cai, “Highly parallel space-time domain decomposition methods for parabolic problems,” CCF Transactions on High Performance Computing, 2019 [Online]. Available at: https://doi.org/10.1007/s42514-019-00003-x
    @article{LiEtAl2019b,
      author = {Li, Shishun and Shao, Xinping and Cai, Xiao-Chuan},
      doi = {10.1007/s42514-019-00003-x},
      journal = {CCF Transactions on High Performance Computing},
      title = {Highly parallel space-time domain decomposition methods for parabolic problems},
      url = {https://doi.org/10.1007/s42514-019-00003-x},
      year = {2019}
    }
    
  19. V. Mele, D. Romano, E. M. Constantinescu, L. Carracciuolo, and L. D’Amore, “Performance Evaluation for a PETSc Parallel-in-Time Solver Based on the MGRIT Algorithm,” in Euro-Par 2018: Parallel Processing Workshops, 2019, pp. 716–728 [Online]. Available at: https://doi.org/10.1002/cpe.4928
    @inproceedings{MeleEtAl2019,
      author = {Mele, Valeria and Romano, Diego and Constantinescu, Emil M. and Carracciuolo, Luisa and D'Amore, Luisa},
      booktitle = {Euro-Par 2018: Parallel Processing Workshops},
      doi = {10.1002/cpe.4928},
      editor = {Mencagli, Gabriele and B. Heras, Dora and Cardellini, Valeria and Casalicchio, Emiliano and Jeannot, Emmanuel and Wolf, Felix and Salis, Antonio and Schifanella, Claudio and Manumachu, Ravi Reddy and Ricci, Laura and Beccuti, Marco and Antonelli, Laura and Garcia Sanchez, Jos{\'e} Daniel and Scott, Stephen L.},
      pages = {716--728},
      publisher = {Springer International Publishing},
      title = {Performance Evaluation for a PETSc Parallel-in-Time Solver Based on the MGRIT Algorithm},
      url = {https://doi.org/10.1002/cpe.4928},
      year = {2019}
    }
    
  20. M. Neumüller and I. Smears, “Time-Parallel Iterative Solvers for Parabolic Evolution Equations,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. C28–C51, 2019 [Online]. Available at: https://doi.org/10.1137/18M1172466
    @article{NeumuellerSmears2019,
      author = {Neum{\"u}ller, M. and Smears, I.},
      doi = {10.1137/18M1172466},
      journal = {SIAM Journal on Scientific Computing},
      number = {1},
      pages = {C28--C51},
      title = {Time-Parallel Iterative Solvers for Parabolic Evolution Equations},
      url = {https://doi.org/10.1137/18M1172466},
      volume = {41},
      year = {2019}
    }
    
  21. A. G. Peddle, T. Haut, and B. Wingate, “Parareal Convergence for Oscillatory PDEłowercases with Finite Time-Scale Separation,” SIAM Journal on Scientific Computing, vol. 41, no. 6, pp. A3476–A3497, Jan. 2019 [Online]. Available at: https://doi.org/10.1137/17m1131611
    @article{PeddleEtAl2019,
      author = {Peddle, Adam G. and Haut, Terry and Wingate, Beth},
      doi = {10.1137/17m1131611},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {6},
      pages = {A3476--A3497},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Parareal Convergence for Oscillatory {PDE}{\l}owercases with Finite Time-Scale Separation},
      url = {https://doi.org/10.1137/17m1131611},
      volume = {41},
      year = {2019}
    }
    
  22. Rosa-Raı́ces Jorge L., B. Zhang, and T. F. Miller, “Path-accelerated stochastic molecular dynamics: Parallel-in-time integration using path integrals,” The Journal of Chemical Physics, vol. 151, no. 16, p. 164120, Oct. 2019 [Online]. Available at: https://doi.org/10.1063/1.5125455
    @article{Rosa-RaícesEtAl2019,
      author = {Rosa-Ra{\'{\i}}ces, Jorge L. and Zhang, Bin and Miller, Thomas F.},
      doi = {10.1063/1.5125455},
      journal = {The Journal of Chemical Physics},
      month = oct,
      number = {16},
      pages = {164120},
      publisher = {{AIP} Publishing},
      title = {Path-accelerated stochastic molecular dynamics: Parallel-in-time integration using path integrals},
      url = {https://doi.org/10.1063/1.5125455},
      volume = {151},
      year = {2019}
    }
    
  23. D. Samaddar, D. P. Coster, X. Bonnin, L. A. Berry, W. R. Elwasif, and D. B. Batchelor, “Application of the parareal algorithm to simulations of ELMs in ITER plasma,” Computer Physics Communications, vol. 235, pp. 246–257, 2019 [Online]. Available at: https://doi.org/10.1016/j.cpc.2018.08.007
    @article{SamaddarEtAl2019,
      author = {Samaddar, D. and Coster, D.P. and Bonnin, X. and Berry, L.A. and Elwasif, W.R. and Batchelor, D.B.},
      doi = {10.1016/j.cpc.2018.08.007},
      journal = {Computer Physics Communications},
      pages = {246--257},
      title = {Application of the parareal algorithm to simulations of {ELM}s in {ITER} plasma},
      url = {https://doi.org/10.1016/j.cpc.2018.08.007},
      volume = {235},
      year = {2019}
    }
    
  24. M. Schreiber, N. Schaeffer, and R. Loft, “Exponential Integrators with Parallel-in-Time Rational Approximations for Shallow-Water Equations on the Rotating Sphere,” Parallel Computing, 2019 [Online]. Available at: https://dx.doi.org/10.1016/j.parco.2019.01.005
    @article{SchreiberLoft2019,
      author = {Schreiber, M. and Schaeffer, N. and Loft, R.},
      doi = {10.1016/j.parco.2019.01.005},
      journal = {Parallel Computing},
      title = {Exponential Integrators with Parallel-in-Time Rational Approximations for Shallow-Water Equations on the Rotating Sphere},
      url = {https://dx.doi.org/10.1016/j.parco.2019.01.005},
      year = {2019}
    }
    
  25. M. Schreiber and R. Loft, “A parallel time integrator for solving the linearized shallow water equations on the rotating sphere,” Numerical Linear Algebra with Applications, vol. 26, no. 2, p. e2220, 2019 [Online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2220
    @article{SchreiberLoft2019b,
      author = {Schreiber, Martin and Loft, Richard},
      doi = {10.1002/nla.2220},
      journal = {Numerical Linear Algebra with Applications},
      number = {2},
      pages = {e2220},
      title = {A parallel time integrator for solving the linearized shallow water equations on the rotating sphere},
      url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2220},
      volume = {26},
      year = {2019}
    }
    
  26. B. S. Southworth, “Necessary Conditions and Tight Two-level Convergence Bounds for Parareal and Multigrid Reduction in Time,” SIAM J. Matrix Anal. Appl., vol. 40, no. 2, pp. 564–608, 2019.
    @article{Southworth2019,
      author = {Southworth, Ben S.},
      doi = {https://doi.org/10.1137/18M1226208},
      journal = {SIAM J. Matrix Anal. Appl.},
      number = {2},
      pages = {564--608},
      title = {Necessary {C}onditions and {T}ight {T}wo-level {C}onvergence {B}ounds for {P}arareal and {M}ultigrid {R}eduction in {T}ime},
      volume = {40},
      year = {2019}
    }
    
  27. R. Speck, “Algorithm 997: pySDC - Prototyping Spectral Deferred Corrections,” ACM Transactions on Mathematical Software, vol. 45, no. 3, pp. 1–23, Aug. 2019 [Online]. Available at: https://doi.org/10.1145/3310410
    @article{Speck2019,
      author = {Speck, Robert},
      doi = {10.1145/3310410},
      journal = {{ACM} Transactions on Mathematical Software},
      month = aug,
      number = {3},
      pages = {1--23},
      publisher = {Association for Computing Machinery ({ACM})},
      title = {Algorithm 997: pySDC - Prototyping Spectral Deferred Corrections},
      url = {https://doi.org/10.1145/3310410},
      volume = {45},
      year = {2019}
    }
    
  28. R. Speck, M. Knobloch, A. Gocht, and S. Lührs, “Using performance analysis tools for parallel-in-time integrators – Does my time-parallel code do what I think it does?,” arXiv:1911.13027v1 [cs.PF], 2019 [Online]. Available at: http://arxiv.org/abs/1911.13027v1
    @unpublished{SpeckEtAl2019,
      author = {Speck, Robert and Knobloch, Michael and Gocht, Andreas and Lührs, Sebastian},
      howpublished = {arXiv:1911.13027v1 [cs.PF]},
      title = {Using performance analysis tools for parallel-in-time integrators -- Does my time-parallel code do what I think it does?},
      url = {http://arxiv.org/abs/1911.13027v1},
      year = {2019}
    }
    
  29. S. Wang, Y. Shao, and Z. Peng, “A Parallel-in-Space-and-Time Method for Transient Electromagnetic Problems,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 6, pp. 3961–3973, 2019 [Online]. Available at: https://doi.org/10.1109/TAP.2019.2909937
    @article{WangEtSl2019,
      author = {Wang, S. and Shao, Y. and Peng, Z.},
      doi = {10.1109/TAP.2019.2909937},
      journal = {IEEE Transactions on Antennas and Propagation},
      number = {6},
      pages = {3961-3973},
      title = {A Parallel-in-Space-and-Time Method for Transient Electromagnetic Problems},
      url = {https://doi.org/10.1109/TAP.2019.2909937},
      volume = {67},
      year = {2019}
    }
    
  30. S.-L. Wu and T. Zhou, “Acceleration of the Two-Level MGRIT Algorithm via the Diagonalization Technique,” SIAM Journal on Scientific Computing, vol. 41, no. 5, pp. A3421–A3448, Jan. 2019 [Online]. Available at: https://doi.org/10.1137/18m1207697
    @article{WuEtAl2019,
      author = {Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1137/18m1207697},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {5},
      pages = {A3421--A3448},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Acceleration of the Two-Level {MGRIT} Algorithm via the Diagonalization Technique},
      url = {https://doi.org/10.1137/18m1207697},
      volume = {41},
      year = {2019}
    }
    
  31. L. Zhang, W. Zhou, and L. Ji, “Parareal algorithms applied to stochastic differential equations with conserved quantities,” Journal of Computational Mathematics, vol. 37, no. 1, pp. 48–60, 2019 [Online]. Available at: https://doi.org/10.4208/jcm.1708-m2017-0089
    @article{ZhangEtAl2019,
      author = {Zhang, Liying and Zhou, Weien and Ji, Lihai},
      doi = {10.4208/jcm.1708-m2017-0089},
      journal = {Journal of Computational Mathematics},
      number = {1},
      pages = {48--60},
      title = {Parareal algorithms applied to stochastic differential equations with conserved quantities},
      url = {https://doi.org/10.4208/jcm.1708-m2017-0089},
      volume = {37},
      year = {2019}
    }
    
top

2018

  1. S. Badia and M. Olm, “Nonlinear parallel-in-time Schur complement solvers for ordinary differential equations,” Journal of Computational and Applied Mathematics, vol. 344, pp. 794–806, 2018 [Online]. Available at: https://doi.org/10.1016/j.cam.2017.09.033
    @article{BadiaEtAl2018,
      author = {Badia, Santiago and Olm, Marc},
      doi = {10.1016/j.cam.2017.09.033},
      journal = {Journal of Computational and Applied Mathematics},
      pages = {794--806},
      title = {Nonlinear parallel-in-time Schur complement solvers for ordinary differential equations},
      url = {https://doi.org/10.1016/j.cam.2017.09.033},
      volume = {344},
      year = {2018}
    }
    
  2. P. Benedusi, C. Garoni, R. Krause, X. Li, and S. Serra-Capizzano, “Space-Time FE-DG Discretization of the Anisotropic Diffusion Equation in Any Dimension: The Spectral Symbol,” SIAM Journal on Matrix Analysis and Applications, vol. 39, no. 3, pp. 1383–1420, 2018 [Online]. Available at: https://doi.org/10.1137/17M113527X
    @article{BenedusiEtAl2018,
      author = {Benedusi, Pietro and Garoni, Carlo and Krause, Rolf and Li, Xiaozhou and Serra-Capizzano, Stefano},
      doi = {10.1137/17M113527X},
      journal = {SIAM Journal on Matrix Analysis and Applications},
      number = {3},
      pages = {1383-1420},
      title = {Space-Time FE-DG Discretization of the Anisotropic Diffusion Equation in Any Dimension: The Spectral Symbol},
      url = {https://doi.org/10.1137/17M113527X},
      volume = {39},
      year = {2018}
    }
    
  3. M. Bolten, D. Moser, and R. Speck, “Asymptotic convergence of the parallel full approximation scheme in space and time for linear problems,” Numerical Linear Algebra with Applications, vol. 25, no. 6, p. e2208, 2018 [Online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2208
    @article{BoltenEtAl2018,
      author = {Bolten, Matthias and Moser, Dieter and Speck, Robert},
      doi = {10.1002/nla.2208},
      journal = {Numerical Linear Algebra with Applications},
      number = {6},
      pages = {e2208},
      title = {Asymptotic convergence of the parallel full approximation scheme in space and time for linear problems},
      url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2208},
      volume = {25},
      year = {2018}
    }
    
  4. Manuel Borregales and Kundan Kumar and Florin Adrian Radu and Carmen Rodrigo and Francisco José Gaspar, “A partially parallel-in-time fixed-stress splitting method for Biot’s consolidation model,” Computers & Mathematics with Applications, 2018 [Online]. Available at: https://doi.org/10.1016/j.camwa.2018.09.005
    @article{BorregalesEtAl2018,
      author = {{Manuel Borregales and Kundan Kumar and Florin Adrian Radu and Carmen Rodrigo and Francisco Jos{\'e} Gaspar}},
      doi = {10.1016/j.camwa.2018.09.005},
      journal = {Computers \& Mathematics with Applications},
      title = {{A partially parallel-in-time fixed-stress splitting method for Biot’s consolidation model}},
      url = {https://doi.org/10.1016/j.camwa.2018.09.005},
      year = {2018}
    }
    
  5. S. Bu, “Time parallelization scheme with an adaptive time step size for solving stiff initial value problems,” Open Mathematics, vol. 16, no. 1, pp. 210–218, 2018 [Online]. Available at: https://doi.org/10.1515/math-2018-0022
    @article{Bu2018,
      author = {Bu, Sunyoung},
      doi = {10.1515/math-2018-0022},
      issue = {1},
      journal = {Open Mathematics},
      pages = {210--218},
      title = {Time parallelization scheme with an adaptive time step size for solving stiff initial value problems},
      url = {https://doi.org/10.1515/math-2018-0022},
      volume = {16},
      year = {2018}
    }
    
  6. L. D’Amore and R. Cacciapuoti, “DD-DA PinT-based model: A Domain Decomposition approach in space and time, based on Parareal, for solving the 4D-Var Data Assimilation model,” arXiv:1807.07107 [math.NA], 2018 [Online]. Available at: https://arxiv.org/abs/1807.07107
    @unpublished{DamoreEtAl2018,
      author = {D'Amore, Luisa and Cacciapuoti, Rosalba},
      howpublished = {arXiv:1807.07107 [math.NA]},
      title = {DD-DA PinT-based model: A Domain Decomposition approach in space and time, based on Parareal, for solving the 4D-Var Data Assimilation model},
      url = {https://arxiv.org/abs/1807.07107},
      year = {2018}
    }
    
  7. N. Duan, S. Simunovic, A. Dimitrovski, and K. Sun, “Improving the Convergence Rate of Parareal-in-time Power System Simulation using the Krylov Subspace,” in 2018 IEEE Power Energy Society General Meeting (PESGM), 2018, pp. 1–5 [Online]. Available at: https://dx.doi.org/10.1109/PESGM.2018.8586354
    @inproceedings{DuanEtAl2018,
      author = {{Duan}, N. and {Simunovic}, S. and {Dimitrovski}, A. and {Sun}, K.},
      booktitle = {2018 IEEE Power Energy Society General Meeting (PESGM)},
      doi = {10.1109/PESGM.2018.8586354},
      pages = {1--5},
      title = {Improving the Convergence Rate of Parareal-in-time Power System Simulation using the {K}rylov Subspace},
      url = {https://dx.doi.org/10.1109/PESGM.2018.8586354},
      year = {2018}
    }
    
  8. R. Dyja, B. Ganapathysubramanian, and K. G. van der Zee, “Parallel-In-Space-Time, Adaptive Finite Element Framework for Nonlinear Parabolic Equations,” SIAM Journal on Scientific Computing, vol. 40, no. 3, pp. C283–C304, 2018 [Online]. Available at: https://doi.org/10.1137/16M108985X
    @article{DyjaEtal2018,
      author = {Dyja, Robert and Ganapathysubramanian, Baskar and van der Zee, Kristoffer G.},
      doi = {10.1137/16M108985X},
      journal = {SIAM Journal on Scientific Computing},
      number = {3},
      pages = {C283--C304},
      title = {Parallel-In-Space-Time, Adaptive Finite Element Framework for Nonlinear Parabolic Equations},
      url = {https://doi.org/10.1137/16M108985X},
      volume = {40},
      year = {2018}
    }
    
  9. L. Fischer, S. Götschel, and M. Weiser, “Lossy data compression reduces communication time in hybrid time-parallel integrators,” Computing and Visualization in Science, vol. 19, no. 1, pp. 19–30, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0293-2
    @article{FischerEtAl2018,
      author = {Fischer, L. and G\"otschel, S. and Weiser, M.},
      doi = {10.1007/s00791-018-0293-2},
      journal = {Computing and Visualization in Science},
      number = {1},
      pages = {19--30},
      title = {Lossy data compression reduces communication time in hybrid time-parallel integrators},
      url = {https://doi.org/10.1007/s00791-018-0293-2},
      volume = {19},
      year = {2018}
    }
    
  10. S. R. Franco, F. J. Gaspar, M. A. V. Pinto, and C. Rodrigo, “Multigrid method based on a space-time approach with standard coarsening for parabolic problems,” Applied Mathematics and Computation, vol. 317, no. Supplement C, pp. 25–34, 2018 [Online]. Available at: https://doi.org/10.1016/j.amc.2017.08.043
    @article{FrancoEtAl2018,
      author = {Franco, Sebasti\~{a}o Romero and Gaspar, Francisco Jos\'{e} and Pinto, Marcio Augusto Villela and Rodrigo, Carmen},
      doi = {10.1016/j.amc.2017.08.043},
      journal = {Applied Mathematics and Computation},
      number = {Supplement C},
      pages = {25--34},
      title = {Multigrid method based on a space-time approach with standard coarsening for parabolic problems},
      url = {https://doi.org/10.1016/j.amc.2017.08.043},
      volume = {317},
      year = {2018}
    }
    
  11. S. R. Franco, C. Rodrigo, F. J. Gaspar, and M. A. V. Pinto, “A multigrid waveform relaxation method for solving the poroelasticity equations,” Computational and Applied Mathematics, pp. 1–16, 2018 [Online]. Available at: https://doi.org/10.1007/s40314-018-0603-9
    @article{FrancoEtAl2018a,
      author = {Franco, Sebasti\~{a}o Romero and Rodrigo, Carmen and Gaspar, Francisco Jos\'{e} and Pinto, Marcio Augusto Villela},
      doi = {10.1007/s40314-018-0603-9},
      journal = {Computational and Applied Mathematics},
      pages = {1--16},
      title = {A multigrid waveform relaxation method for solving the poroelasticity equations},
      url = {https://doi.org/10.1007/s40314-018-0603-9},
      year = {2018}
    }
    
  12. H. Fu and H. Wang, “A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation,” Journal of Scientific Computing, 2018 [Online]. Available at: https://doi.org/10.1007/s10915-018-0835-2
    @article{FuWang2018,
      author = {Fu, Hongfei and Wang, Hong},
      doi = {10.1007/s10915-018-0835-2},
      journal = {Journal of Scientific Computing},
      title = {A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation},
      url = {https://doi.org/10.1007/s10915-018-0835-2},
      year = {2018}
    }
    
  13. M. J. Gander, S. Güttel, and M. Petcu, “A Nonlinear ParaExp Algorithm,” in Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2018, pp. 261–270 [Online]. Available at: https://doi.org/10.1007/978-3-319-93873-8_24
    @incollection{GanderEtAl2018,
      author = {Gander, Martin J. and Güttel, Stefan and Petcu, Madalina},
      booktitle = {Lecture Notes in Computational Science and Engineering},
      doi = {10.1007/978-3-319-93873-8_24},
      pages = {261--270},
      publisher = {Springer International Publishing},
      title = {A Nonlinear {ParaExp} Algorithm},
      url = {https://doi.org/10.1007/978-3-319-93873-8_24},
      year = {2018}
    }
    
  14. M. J. Gander, F. Kwok, and H. Zhang, “Multigrid interpretations of the parareal algorithm leading to an overlapping variant and MGRIT,” Computing and Visualization in Science, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0297-y
    @article{GanderEtAl2018_cvs,
      author = {Gander, Martin J. and Kwok, Felix and Zhang, Hui},
      doi = {10.1007/s00791-018-0297-y},
      journal = {Computing and Visualization in Science},
      title = {Multigrid interpretations of the parareal algorithm leading to an overlapping variant and MGRIT},
      url = {https://doi.org/10.1007/s00791-018-0297-y},
      year = {2018}
    }
    
  15. A. Goddard and A. Wathen, “A note on parallel preconditioning for all-at-once evolutionary PDEs,” pp. 135–150, 2018 [Online]. Available at: https://dx.doi.org/10.1553/etna_vol51s135
    @article{GoddenWathen2018,
      address = {Wien},
      author = {Goddard, Anthony and Wathen, Andy},
      doi = {10.1553/etna_vol51s135},
      editor = {Ronny Ramlau, Lothar Reichel (Hg.)},
      pages = {135-150},
      publisher = {Verlag der Österreichischen Akademie der Wissenschaften},
      title = {A note on parallel preconditioning for all-at-once evolutionary PDEs},
      url = {https://dx.doi.org/10.1553/etna_vol51s135},
      year = {2018}
    }
    
  16. S. Götschel and M. L. Minion, “Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST,” in Domain Decomposition Methods in Science and Engineering XXIV, 2018, pp. 363–371 [Online]. Available at: https://doi.org/10.1007/978-3-319-93873-8_34
    @inproceedings{GoetschelMinion2018,
      author = {G\"otschel, Sebastian and Minion, Michael L.},
      booktitle = {Domain Decomposition Methods in Science and Engineering {XXIV}},
      doi = {10.1007/978-3-319-93873-8_34},
      editor = {Bj{\o}rstad, Petter E. and Brenner, Susanne C. and Halpern, Lawrence and Kim, Hyea Hyun and Kornhuber, Ralf and Rahman, Talal and Widlund, Olof B.},
      pages = {363--371},
      publisher = {Springer International Publishing},
      title = {Parallel-in-Time for Parabolic Optimal Control Problems Using {PFASST}},
      url = {https://doi.org/10.1007/978-3-319-93873-8_34},
      year = {2018}
    }
    
  17. S. Günther, N. R. Gauger, and J. B. Schroder, “A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library,” Computing and Visualization in Science, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0300-7
    @article{GuentherEtAl2018,
      author = {G\"unther, S. and Gauger, N. R. and Schroder, J. B.},
      doi = {10.1007/s00791-018-0300-7},
      journal = {Computing and Visualization in Science},
      title = {A Non-Intrusive Parallel-in-Time Adjoint Solver with the {XBraid} Library},
      url = {https://doi.org/10.1007/s00791-018-0300-7},
      year = {2018}
    }
    
  18. A. Hessenthaler, D. Nordsletten, O. Röhrle, J. B. Schroder, and R. D. Falgout, “Convergence of the multigrid reduction in time algorithm for the linear elasticity equations,” Numerical Linear Algebra with Applications, vol. 25, no. 3, p. e2155, 2018 [Online]. Available at: https://dx.doi.org/10.1002/nla.2155
    @article{HessenthalerEtAl2018,
      author = {Hessenthaler, A. and Nordsletten, D. and Röhrle, O. and Schroder, J. B. and Falgout, R. D.},
      doi = {10.1002/nla.2155},
      journal = {Numerical Linear Algebra with Applications},
      number = {3},
      pages = {e2155},
      title = {Convergence of the multigrid reduction in time algorithm for the linear elasticity equations},
      url = {https://dx.doi.org/10.1002/nla.2155},
      volume = {25},
      year = {2018}
    }
    
  19. J. T. Hwang and D. Munster, “Solution of ordinary differential equations in gradient-based multidisciplinary design optimization,” in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, 2018 [Online]. Available at: https://doi.org/10.2514/6.2018-1646
    @inbook{HwangMunster2018,
      author = {Hwang, John T. and Munster, Drayton},
      booktitle = {2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference},
      doi = {doi:10.2514/6.2018-1646},
      publisher = {American Institute of Aeronautics and Astronautics},
      title = {Solution of ordinary differential equations in gradient-based multidisciplinary design optimization},
      url = {https://doi.org/10.2514/6.2018-1646},
      year = {2018}
    }
    
  20. M. Iizuka and K. Ono, “Influence of the phase accuracy of the coarse solver calculation on the convergence of the parareal method iteration for hyperbolic PDEs,” Computing and Visualization in Science, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0299-9
    @article{IizukaEtAl2018,
      author = {Iizuka, Mikio and Ono, Kenji},
      doi = {10.1007/s00791-018-0299-9},
      journal = {Computing and Visualization in Science},
      title = {Influence of the phase accuracy of the coarse solver calculation on the convergence of the parareal method iteration for hyperbolic PDEs},
      url = {https://doi.org/10.1007/s00791-018-0299-9},
      year = {2018}
    }
    
  21. G. L. Kooij, M. A. Botchev, and B. J. Geurts, “An Exponential Time Integrator for the Incompressible Navier–Stokes Equation,” SIAM Journal on Scientific Computing, vol. 40, no. 3, pp. B684–B705, 2018 [Online]. Available at: https://doi.org/10.1137/17M1121950
    @article{KooijEtAl2018,
      author = {Kooij, Gijs L. and Botchev, Mike A. and Geurts, Bernard J.},
      doi = {10.1137/17M1121950},
      journal = {SIAM Journal on Scientific Computing},
      number = {3},
      pages = {B684--B705},
      title = {An Exponential Time Integrator for the Incompressible Navier--Stokes Equation},
      url = {https://doi.org/10.1137/17M1121950},
      volume = {40},
      year = {2018}
    }
    
  22. C. Lederman and D. Bilyeu, “An Approximate Time-Parallel Method for the Fast and Accurate Computation of Particle Trajectories in a Magnetic Field,” Journal of Applied Mathematics and Physics, vol. 6, pp. 498–519, 2018 [Online]. Available at: https://doi.org/10.4236/jamp.2018.63046
    @article{LedermanBilyeu2018,
      author = {Lederman, Carl and Bilyeu, David},
      doi = {10.4236/jamp.2018.63046 },
      journal = {Journal of Applied Mathematics and Physics},
      pages = {498--519},
      title = {An Approximate Time-Parallel Method for the Fast and Accurate Computation of Particle Trajectories in a Magnetic Field},
      url = {https://doi.org/10.4236/jamp.2018.63046},
      volume = {6},
      year = {2018}
    }
    
  23. J. Liang and M. C. Lin, “Time-Domain Parallelization for Accelerating Cloth Simulation,” Computer Graphics Forum, vol. 37, no. 8, pp. 21–34, 2018 [Online]. Available at: https://dx.doi.org/10.1111/cgf.13509
    @article{LiangLin2018,
      author = {Liang, Junbang and Lin, Ming C.},
      doi = {10.1111/cgf.13509},
      journal = {Computer Graphics Forum},
      number = {8},
      pages = {21--34},
      title = {Time-Domain Parallelization for Accelerating Cloth Simulation},
      url = {https://dx.doi.org/10.1111/cgf.13509},
      volume = {37},
      year = {2018}
    }
    
  24. T. Lunet, J. Bodart, S. Gratton, and X. Vasseur, “Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening,” Computing and Visualization in Science, vol. 19, no. 1, pp. 31–44, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0295-0
    @article{LunetEtAl2018,
      author = {Lunet, Thibaut and Bodart, Julien and Gratton, Serge and Vasseur, Xavier},
      doi = {10.1007/s00791-018-0295-0},
      journal = {Computing and Visualization in Science},
      number = {1},
      pages = {31--44},
      title = {Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening},
      url = {https://doi.org/10.1007/s00791-018-0295-0},
      volume = {19},
      year = {2018}
    }
    
  25. Y. Maday and O. Mula, “A Scalable Adaptive Parareal Algorithm With Online Stopping Criterion,” hal-01781257, version 1, 2018 [Online]. Available at: https://hal.archives-ouvertes.fr/hal-01781257/
    @unpublished{MadayMula2018,
      author = {Maday, Yvon and Mula, Olga},
      howpublished = {hal-01781257, version 1},
      title = {A Scalable Adaptive Parareal Algorithm With Online Stopping Criterion},
      url = {https://hal.archives-ouvertes.fr/hal-01781257/},
      year = {2018}
    }
    
  26. F. Magoulès, G. Gbikpi-Benissan, and Q. Zou, “Asynchronous Iterations of Parareal Algorithm for Option Pricing Models,” Mathematics, vol. 6, no. 4, 2018 [Online]. Available at: https://doi.org/10.3390/math6040045
    @article{MagoulesEtAl2018,
      author = {Magoul{\`e}s, Fr{\'e}d{\'e}ric and Gbikpi-Benissan, Guillaume and Zou, Qinmeng},
      doi = {10.3390/math6040045},
      journal = {Mathematics},
      number = {4},
      title = {Asynchronous Iterations of Parareal Algorithm for Option Pricing Models},
      url = {https://doi.org/10.3390/math6040045},
      volume = {6},
      year = {2018}
    }
    
  27. F. Magoulès and G. Gbikpi-Benissan, “Asynchronous Parareal Time Discretization For Partial Differential Equations,” SIAM Journal on Scientific Computing, vol. 40, no. 6, pp. C704–C725, Jan. 2018 [Online]. Available at: https://doi.org/10.1137/17m1149225
    @article{MagoulesEtAl2018b,
      author = {Magoul{\`{e}}s, Fr{\'{e}}d{\'{e}}ric and Gbikpi-Benissan, Guillaume},
      doi = {10.1137/17m1149225},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {6},
      pages = {C704--C725},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Asynchronous Parareal Time Discretization For Partial Differential Equations},
      url = {https://doi.org/10.1137/17m1149225},
      volume = {40},
      year = {2018}
    }
    
  28. T. Manteuffel, J. Ruge, and B. Southworth, “Nonsymmetric Algebraic Multigrid Based on Local Approximate Ideal Restriction,” SIAM Journal on Scientific Computing, vol. 40, no. 6, pp. A4105–A4130, 2018.
    @article{MaRuSo2018,
      author = {Manteuffel, T. and Ruge, J. and Southworth, B.},
      journal = {SIAM Journal on Scientific Computing},
      number = {6},
      pages = {A4105--A4130},
      title = {Nonsymmetric Algebraic Multigrid Based on Local Approximate Ideal Restriction},
      volume = {40},
      year = {2018}
    }
    
  29. V. Mele, E. M. Constantinescu, L. Carracciuolo, and L. D’Amore, “A PETSc parallel-in-time solver based on MGRIT algorithm,” Concurrency and Computation: Practice and Experience, vol. 0, no. 0, p. e4928, 2018 [Online]. Available at: https://dx.doi.org/10.1002/cpe.4928
    @article{MeleEtAl2018,
      author = {Mele, Valeria and Constantinescu, Emil M. and Carracciuolo, Luisa and D'Amore, Luisa},
      doi = {10.1002/cpe.4928},
      journal = {Concurrency and Computation: Practice and Experience},
      number = {0},
      pages = {e4928},
      title = {{A PETSc parallel-in-time solver based on MGRIT algorithm}},
      url = {https://dx.doi.org/10.1002/cpe.4928},
      volume = {0},
      year = {2018}
    }
    
  30. Z. Miao, Y.-L. Jiang, and Y.-B. Yang, “Convergence analysis of a parareal-in-time algorithm for the incompressible non-isothermal flows,” International Journal of Computer Mathematics, vol. 0, no. 0, pp. 1–18, 2018 [Online]. Available at: https://doi.org/10.1080/00207160.2018.1498484
    @article{MiaoEtAl2018,
      author = {Miao, Zhen and Jiang, Yao-Lin and Yang, Yun-Bo},
      doi = {10.1080/00207160.2018.1498484},
      journal = {International Journal of Computer Mathematics},
      number = {0},
      pages = {1--18},
      title = {Convergence analysis of a parareal-in-time algorithm for the incompressible non-isothermal flows},
      url = {https://doi.org/10.1080/00207160.2018.1498484},
      volume = {0},
      year = {2018}
    }
    
  31. S. A. Morton, “An Implicit BDF2 Time-Parallel Algorithm for Solving Convection Diffusion Equations,” in 2018 AIAA Aerospace Sciences Meeting, 2018 [Online]. Available at: https://doi.org/10.2514/6.2018-1046
    @inbook{Morton2018,
      author = {Morton, Scott A.},
      booktitle = {2018 AIAA Aerospace Sciences Meeting},
      doi = {doi:10.2514/6.2018-1046},
      title = {An Implicit BDF2 Time-Parallel Algorithm for Solving Convection Diffusion Equations},
      url = {https://doi.org/10.2514/6.2018-1046},
      year = {2018}
    }
    
  32. A. S. Nielsen, G. Brunner, and J. S. Hesthaven, “Communication-aware adaptive parareal with application to a nonlinear hyperbolic system of partial differential equations,” Journal of Computational Physics, 2018 [Online]. Available at: https://doi.org/10.1016/j.jcp.2018.04.056
    @article{NielsenEtAl2018,
      author = {Nielsen, Allan S. and Brunner, Gilles and Hesthaven, Jan S.},
      doi = {10.1016/j.jcp.2018.04.056},
      journal = {Journal of Computational Physics},
      title = {Communication-aware adaptive parareal with application to a nonlinear hyperbolic system of partial differential equations},
      url = {https://doi.org/10.1016/j.jcp.2018.04.056},
      year = {2018}
    }
    
  33. B. W. Ong and B. C. Mandal, “Pipeline implementations of Neumann–Neumann and Dirichlet–Neumann waveform relaxation methods,” Numerical Algorithms, vol. 78, no. 1, pp. 1–20, May 2018 [Online]. Available at: https://doi.org/10.1007/s11075-017-0364-3
    @article{OngMandal2018,
      author = {Ong, Benjamin W. and Mandal, Bankim C.},
      day = {01},
      doi = {10.1007/s11075-017-0364-3},
      journal = {Numerical Algorithms},
      month = may,
      number = {1},
      pages = {1--20},
      title = {{Pipeline implementations of Neumann--Neumann and Dirichlet--Neumann waveform relaxation methods}},
      url = {https://doi.org/10.1007/s11075-017-0364-3},
      volume = {78},
      year = {2018}
    }
    
  34. G. Pagès, O. Pironneau, and G. Sall, “The Parareal Algorithm for American Options,” SIAM Journal on Financial Mathematics, vol. 9, no. 3, pp. 966–993, 2018 [Online]. Available at: https://doi.org/10.1137/17M1138832
    @article{PagesEtAl2018,
      author = {Pagès, G. and Pironneau, O. and Sall, G.},
      doi = {10.1137/17M1138832},
      journal = {SIAM Journal on Financial Mathematics},
      number = {3},
      pages = {966--993},
      title = {The Parareal Algorithm for American Options},
      url = {https://doi.org/10.1137/17M1138832},
      volume = {9},
      year = {2018}
    }
    
  35. D. Ruprecht, “Wave propagation characteristics of Parareal,” Computing and Visualization in Science, vol. 19, no. 1, pp. 1–17, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0296-z
    @article{Ruprecht2018,
      author = {Ruprecht, D.},
      doi = {10.1007/s00791-018-0296-z},
      journal = {Computing and Visualization in Science},
      number = {1},
      pages = {1--17},
      title = {Wave propagation characteristics of Parareal},
      url = {https://doi.org/10.1007/s00791-018-0296-z},
      volume = {19},
      year = {2018}
    }
    
  36. G. Samaey and T. Slawig, “A micro/macro parallel-in-time (parareal) algorithm applied to a climate model with discontinuous non-monotone coefficients and oscillatory forcing,” arXiv:1806.04442 [math.NA], 2018 [Online]. Available at: https://arxiv.org/abs/1806.04442
    @unpublished{SamaeyEtAl2018,
      author = {Samaey, Giovanni and Slawig, Thomas},
      howpublished = {arXiv:1806.04442 [math.NA]},
      title = {A micro/macro parallel-in-time (parareal) algorithm applied to a climate model with discontinuous non-monotone coefficients and oscillatory forcing},
      url = {https://arxiv.org/abs/1806.04442},
      year = {2018}
    }
    
  37. A. Schmitt, M. Schreiber, P. Peixoto, and M. Schäfer, “A numerical study of a semi-Lagrangian Parareal method applied to the viscous Burgers equation,” Computing and Visualization in Science, vol. 19, no. 1, pp. 45–57, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0294-1
    @article{SchmittEtAl2018,
      author = {Schmitt, A. and Schreiber, M. and Peixoto, P. and Sch{\"a}fer, M.},
      doi = {10.1007/s00791-018-0294-1},
      journal = {Computing and Visualization in Science},
      number = {1},
      pages = {45--57},
      title = {A numerical study of a semi-Lagrangian Parareal method applied to the viscous Burgers equation},
      url = {https://doi.org/10.1007/s00791-018-0294-1},
      volume = {19},
      year = {2018}
    }
    
  38. S. Schöps, I. Niyonzima, and M. Clemens, “Parallel-In-Time Simulation of Eddy Current Problems Using Parareal,” IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1–4, 2018 [Online]. Available at: https://dx.doi.org/10.1109/TMAG.2017.2763090
    @article{SchoepsEtAl2018,
      author = {Schöps, Sebastian and Niyonzima, Innocent and Clemens, Markus},
      doi = {10.1109/TMAG.2017.2763090},
      journal = {IEEE Transactions on Magnetics},
      number = {3},
      pages = {1--4},
      title = {Parallel-In-Time Simulation of Eddy Current Problems Using Parareal},
      url = {https://dx.doi.org/10.1109/TMAG.2017.2763090},
      volume = {54},
      year = {2018}
    }
    
  39. M. Schreiber, P. S. Peixoto, T. Haut, and B. Wingate, “Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems,” The International Journal of High Performance Computing Applications, vol. 32, no. 6, pp. 913–933, 2018 [Online]. Available at: https://doi.org/10.1177/1094342016687625
    @article{SchreiberEtAl2018,
      author = {Schreiber, Martin and Peixoto, Pedro S and Haut, Terry and Wingate, Beth},
      doi = {10.1177/1094342016687625},
      journal = {The International Journal of High Performance Computing Applications},
      number = {6},
      pages = {913--933},
      title = {Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems},
      url = {https://doi.org/10.1177/1094342016687625},
      volume = {32},
      year = {2018}
    }
    
  40. M. Schreiber and R. Loft, “A parallel time integrator for solving the linearized shallow water equations on the rotating sphere,” Numerical Linear Algebra with Applications, 2018 [Online]. Available at: https://doi.org/10.1002/nla.2220
    @article{SchreiberLoft2018,
      author = {Schreiber, M. and Loft, R.},
      doi = {10.1002/nla.2220},
      journal = {Numerical Linear Algebra with Applications},
      title = {A parallel time integrator for solving the linearized shallow water equations on the rotating sphere},
      url = {https://doi.org/10.1002/nla.2220},
      year = {2018}
    }
    
  41. J. B. Schroder, R. D. Falgout, C. S. Woodward, P. Top, and M. Lecouvez, “Parallel-in-Time Solution of Power Systems with Scheduled Events,” in 2018 IEEE Power & Energy Society General Meeting (PESGM), 2018, pp. 1–5.
    @inproceedings{SchroderEtAl2018,
      author = {Schroder, Jacob B and Falgout, Robert D and Woodward, Carol S and Top, Philip and Lecouvez, Matthieu},
      booktitle = {2018 IEEE Power \& Energy Society General Meeting (PESGM)},
      organization = {IEEE},
      pages = {1--5},
      title = {Parallel-in-Time Solution of Power Systems with Scheduled Events},
      year = {2018}
    }
    
  42. R. Speck, “Parallelizing spectral deferred corrections across the method,” Computing and Visualization in Science, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0298-x
    @article{Speck2018,
      author = {Speck, Robert},
      doi = {10.1007/s00791-018-0298-x},
      journal = {Computing and Visualization in Science},
      title = {Parallelizing spectral deferred corrections across the method},
      url = {https://doi.org/10.1007/s00791-018-0298-x},
      year = {2018}
    }
    
  43. W. Subber and A. Sarkar, “A Parallel Time Integrator for Noisy Nonlinear Oscillatory Systems,” Journal of Computational Physics, 2018 [Online]. Available at: https://doi.org/10.1016/j.jcp.2018.01.019
    @article{Subber2018,
      author = {Subber, Waad and Sarkar, Abhijit},
      doi = {10.1016/j.jcp.2018.01.019},
      journal = {Journal of Computational Physics},
      title = {A Parallel Time Integrator for Noisy Nonlinear Oscillatory Systems},
      url = {https://doi.org/10.1016/j.jcp.2018.01.019},
      year = {2018}
    }
    
  44. A. T. Weaver, S. Gürol, J. Tshimanga, M. Chrust, and A. Piacentini, “‘Time’-Parallel diffusion-based correlation operators,” Quarterly Journal of the Royal Meteorological Society, vol. 144, no. 716, pp. 2067–2088, Oct. 2018 [Online]. Available at: https://doi.org/10.1002/qj.3302
    @article{WeaverEtAl2018,
      author = {Weaver, Anthony T. and Gürol, Selime and Tshimanga, Jean and Chrust, Marcin and Piacentini, Andrea},
      doi = {10.1002/qj.3302},
      journal = {Quarterly Journal of the Royal Meteorological Society},
      month = oct,
      number = {716},
      pages = {2067--2088},
      publisher = {Wiley},
      title = {{\textquotedblleft}Time{\textquotedblright}-Parallel diffusion-based correlation operators},
      url = {https://doi.org/10.1002/qj.3302},
      volume = {144},
      year = {2018}
    }
    
  45. S. Wu, “Toward Parallel Coarse Grid Correction for the Parareal Algorithm,” SIAM Journal on Scientific Computing, vol. 40, no. 3, pp. A1446–A1472, 2018 [Online]. Available at: https://doi.org/10.1137/17M1141102
    @article{Wu2018,
      author = {Wu, S.},
      doi = {10.1137/17M1141102},
      journal = {SIAM Journal on Scientific Computing},
      number = {3},
      pages = {A1446--A1472},
      title = {Toward Parallel Coarse Grid Correction for the Parareal Algorithm},
      url = {https://doi.org/10.1137/17M1141102},
      volume = {40},
      year = {2018}
    }
    
  46. S.-L. Wu and T. Zhou, “Parareal algorithms with local time-integrators for time fractional differential equations,” Journal of Computational Physics, vol. 358, pp. 135–149, 2018 [Online]. Available at: https://doi.org/10.1016/j.jcp.2017.12.029
    @article{WuZhou2018_JCP,
      author = {Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1016/j.jcp.2017.12.029},
      journal = {Journal of Computational Physics},
      pages = {135--149},
      title = {Parareal algorithms with local time-integrators for time fractional differential equations},
      url = {https://doi.org/10.1016/j.jcp.2017.12.029},
      volume = {358},
      year = {2018}
    }
    
  47. G. R. Yalla and B. Engquist, “Parallel in Time Algorithms for Multiscale Dynamical Systems Using Interpolation and Neural Networks,” in Proceedings of the High Performance Computing Symposium, 2018, pp. 9:1–9:12 [Online]. Available at: http://dl.acm.org/citation.cfm?id=3213069.3213078
    @inproceedings{YallaEnquist2018,
      articleno = {9},
      author = {Yalla, Gopal R. and Engquist, Bjorn},
      booktitle = {Proceedings of the High Performance Computing Symposium},
      pages = {9:1--9:12},
      publisher = {Society for Computer Simulation International},
      series = {HPC '18},
      title = {Parallel in Time Algorithms for Multiscale Dynamical Systems Using Interpolation and Neural Networks},
      url = {http://dl.acm.org/citation.cfm?id=3213069.3213078},
      year = {2018}
    }
    
  48. X. Q. Yue, S. Shu, X. W. Xu, W. P. Bu, and K. J. Pan, “Parallel-in-Time with Fully Finite Element Multigrid for 2-D Space-fractional Diffusion Equations,” arXiv:1805.06688 [math.NA], 2018 [Online]. Available at: https://arxiv.org/abs/1805.06688v1
    @unpublished{YueEtAl2018,
      author = {Yue, X.~Q. and Shu, S. and Xu, X.~W. and Bu, W.~P. and Pan, K.~J.},
      howpublished = {arXiv:1805.06688 [math.NA]},
      title = {Parallel-in-Time with Fully Finite Element Multigrid for 2-D Space-fractional Diffusion Equations},
      url = {https://arxiv.org/abs/1805.06688v1},
      year = {2018}
    }
    
  49. S. Zhu and S. Weng, “A parallel spectral deferred correction method for first-order evolution problems,” BIT Numerical Mathematics, pp. 1–28, 2018 [Online]. Available at: https://doi.org/10.1007/s10543-018-0702-4
    @article{ZhuWeng2018,
      author = {Zhu, Shuai and Weng, Shilie},
      doi = {10.1007/s10543-018-0702-4},
      journal = {BIT Numerical Mathematics},
      pages = {1--28},
      title = {A parallel spectral deferred correction method for first-order evolution problems},
      url = {https://doi.org/10.1007/s10543-018-0702-4},
      year = {2018}
    }
    
top

2017

  1. G. Ariel, H. Nguyen, and R. Tsai, “θ-parareal schemes,” arXiv:1704.06882 [math.NA], 2017 [Online]. Available at: https://arxiv.org/abs/1704.06882
    @unpublished{ArielEtAl2017,
      author = {Ariel, Gil and Nguyen, Hieu and Tsai, Richard},
      howpublished = {arXiv:1704.06882 [math.NA]},
      title = {$\theta$-parareal schemes},
      url = {https://arxiv.org/abs/1704.06882},
      year = {2017}
    }
    
  2. S. Badia and M. Olm, “Space-Time Balancing Domain Decomposition,” SIAM Journal on Scientific Computing, vol. 39, no. 2, pp. C194–C213, 2017 [Online]. Available at: https://doi.org/10.1137/16M1074266
    @article{BadiaEtAl2017,
      author = {Badia, Santiago and Olm, Marc},
      doi = {10.1137/16M1074266},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {C194--C213},
      title = {Space-Time Balancing Domain Decomposition},
      url = {https://doi.org/10.1137/16M1074266},
      volume = {39},
      year = {2017}
    }
    
  3. P. Belliveau and E. Haber, “Coupled simulation of electromagnetic induction and IP effects using stretched exponential relaxation,” Geophysics, pp. 1–61, 2017 [Online]. Available at: https://doi.org/10.1190/geo2017-0494.1
    @article{BelliveauHaber2017,
      author = {Belliveau, Patrick and Haber, Eldad},
      doi = {10.1190/geo2017-0494.1},
      journal = {Geophysics},
      pages = {1-–61},
      title = {Coupled simulation of electromagnetic induction and {IP} effects using stretched exponential relaxation},
      url = {https://doi.org/10.1190/geo2017-0494.1},
      year = {2017}
    }
    
  4. E. Blayo, A. Rousseau, and M. Tayachi, “Boundary conditions and Schwarz waveform relaxation method for linear viscous Shallow Water equations in hydrodynamics,” The SMAI journal of computational mathematics, vol. 3, pp. 117–137, 2017 [Online]. Available at: https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_2017__3__117_0
    @article{BlayoEtAl2017,
      author = {Blayo, Eric and Rousseau, Antoine and Tayachi, Manel},
      doi = {10.5802/smai-jcm.22},
      journal = {The SMAI journal of computational mathematics},
      language = {en},
      pages = {117-137},
      publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
      title = {Boundary conditions and Schwarz waveform relaxation method for linear viscous Shallow Water equations in hydrodynamics},
      url = {https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_2017__3__117_0},
      volume = {3},
      year = {2017}
    }
    
  5. M. Bolten, D. Moser, and R. Speck, “A multigrid perspective on the parallel full approximation scheme in space and time,” Numerical Linear Algebra with Applications, vol. 24, no. 6, p. e2110, 2017 [Online]. Available at: https://dx.doi.org/10.1002/nla.2110
    @article{BoltenEtAl2017,
      author = {Bolten, Matthias and Moser, Dieter and Speck, Robert},
      doi = {10.1002/nla.2110},
      journal = {Numerical Linear Algebra with Applications},
      number = {6},
      pages = {e2110},
      title = {A multigrid perspective on the parallel full approximation scheme in space and time},
      url = {https://dx.doi.org/10.1002/nla.2110},
      volume = {24},
      year = {2017}
    }
    
  6. V. A. Dobrev, T. Kolev, N. A. Petersson, and J. B. Schroder, “Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT),” SIAM Journal on Scientific Computing, vol. 39, no. 5, pp. S501–S527, 2017 [Online]. Available at: https://doi.org/10.1137/16M1074096
    @article{DobrevEtAl2017,
      author = {Dobrev, V.~A. and Kolev, Tz. and Petersson, N.~A. and Schroder, J.~B.},
      doi = {10.1137/16M1074096},
      journal = {SIAM Journal on Scientific Computing},
      number = {5},
      pages = {S501--S527},
      title = {Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT)},
      url = {https://doi.org/10.1137/16M1074096},
      volume = {39},
      year = {2017}
    }
    
  7. R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder, “Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study,” SIAM Journal on Scientific Computing, vol. 39, no. 5, pp. S298–S322, 2017 [Online]. Available at: https://doi.org/10.1137/16M1082330
    @article{FalgoutEtAl2017,
      author = {Falgout, R.~D. and Manteuffel, T.~A. and O'Neill, B. and Schroder, J.~B.},
      doi = {10.1137/16M1082330},
      journal = {SIAM Journal on Scientific Computing},
      number = {5},
      pages = {S298--S322},
      title = {Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study},
      url = {https://doi.org/10.1137/16M1082330},
      volume = {39},
      year = {2017}
    }
    
  8. R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, J. B. Schroder, and S. Vandewalle, “Multigrid methods with space–time concurrency,” Computing and Visualization in Science, vol. 18, no. 4, pp. 123–143, 2017 [Online]. Available at: https://doi.org/10.1007/s00791-017-0283-9
    @article{FalgoutEtAl2017b,
      author = {Falgout, R.~D. and Friedhoff, S. and Kolev, Tz.~V. and MacLachlan, S. P. and Schroder, J.~B. and Vandewalle, S.},
      doi = {10.1007/s00791-017-0283-9},
      journal = {Computing and Visualization in Science},
      number = {4},
      pages = {123--143},
      title = {Multigrid methods with space--time concurrency},
      url = {https://doi.org/10.1007/s00791-017-0283-9},
      volume = {18},
      year = {2017}
    }
    
  9. M. J. Gander and L. Halpern, “Time Parallelization for Nonlinear Problems Based on Diagonalization,” in Domain Decomposition Methods in Science and Engineering XXIII, 2017, pp. 163–170 [Online]. Available at: https://doi.org/10.1007/978-3-319-52389-7_15
    @inproceedings{GanderHalpern2017,
      author = {Gander, Martin J. and Halpern, Laurence},
      booktitle = {Domain Decomposition Methods in Science and Engineering {XXIII}},
      doi = {10.1007/978-3-319-52389-7_15},
      editor = {Lee, Chang-Ock and Cai, Xiao-Chuan and Keyes, David E. and Kim, Hyea Hyun and Klawonn, Axel and Park, Eun-Jae and Widlund, Olof B.},
      pages = {163--170},
      publisher = {Springer International Publishing},
      title = {Time Parallelization for Nonlinear Problems Based on Diagonalization},
      url = {https://doi.org/10.1007/978-3-319-52389-7_15},
      year = {2017}
    }
    
  10. F. J. Gaspar and C. Rodrigo, “Multigrid Waveform Relaxation for the Time-Fractional Heat Equation,” SIAM Journal on Scientific Computing, vol. 39, no. 4, pp. A1201–A1224, 2017 [Online]. Available at: https://doi.org/10.1137/16M1090193
    @article{GasparRodrigo2017,
      author = {Gaspar, Francisco J. and Rodrigo, Carmen},
      doi = {10.1137/16M1090193},
      journal = {SIAM Journal on Scientific Computing},
      number = {4},
      pages = {A1201--A1224},
      title = {Multigrid Waveform Relaxation for the Time-Fractional Heat Equation},
      url = {https://doi.org/10.1137/16M1090193},
      volume = {39},
      year = {2017}
    }
    
  11. S. Han and O. A. Bauchau, “Parallel Time-Integration of Flexible Multibody Dynamics Based on Newton-Waveform Method,” in 13th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, 2017, vol. 6 [Online]. Available at: https://dx.doi.org/10.1115/DETC2017-68232
    @inproceedings{HanEtAl2017,
      author = {Han, Shilei and Bauchau, Olivier A.},
      booktitle = {13th International Conference on Multibody Systems, Nonlinear Dynamics, and Control},
      doi = {10.1115/DETC2017-68232},
      title = {Parallel Time-Integration of Flexible Multibody Dynamics Based on Newton-Waveform Method},
      url = {https://dx.doi.org/10.1115/DETC2017-68232},
      volume = {6},
      year = {2017}
    }
    
  12. A. J. M. Howse, “Nonlinear Preconditioning Methods for Optimization and Parallel-In-Time Methods for 1D Scalar Hyperbolic Partial Differential Equations,” PhD thesis, UWSpace, 2017 [Online]. Available at: http://hdl.handle.net/10012/12559
    @phdthesis{Howse2017,
      author = {Howse, Alexander James Maxwell},
      publisher = {UWSpace},
      title = {Nonlinear Preconditioning Methods for Optimization and Parallel-In-Time Methods for 1D Scalar Hyperbolic Partial Differential Equations},
      url = {http://hdl.handle.net/10012/12559},
      year = {2017}
    }
    
  13. J. Jansson and J. Hoffman, “Direct FEM parallel-in-time computation of turbulent flow,” 2017 [Online]. Available at: http://www.csc.kth.se/ jjan/publications/pit_preprint_2017-08-09.pdf
    @unpublished{JanssonEtAl2017,
      author = {Jansson, Johan and Hoffman, Johan},
      howpublished. = {KTH Preprint},
      title = {Direct FEM parallel-in-time computation of turbulent flow},
      url = {http://www.csc.kth.se/~jjan/publications/pit_preprint_2017-08-09.pdf},
      year = {2017}
    }
    
  14. G. L. Kooij, M. A. Botchev, and B. J. Geurts, “A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations,” Journal of Computational and Applied Mathematics, vol. 316, pp. 229–246, 2017 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2016.09.036
    @article{KooijEtAl2017,
      author = {Kooij, G.L. and Botchev, M.A. and Geurts, B.J.},
      doi = {10.1016/j.cam.2016.09.036},
      journal = {Journal of Computational and Applied Mathematics},
      note = {Selected Papers from NUMDIFF-14},
      pages = {229--246},
      title = {A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations},
      url = {http://dx.doi.org/10.1016/j.cam.2016.09.036},
      volume = {316},
      year = {2017}
    }
    
  15. A. Kreienbuehl, P. Benedusi, D. Ruprecht, and R. Krause, “Time-parallel gravitational collapse simulation,” Communications in Applied Mathematics and Computational Science, vol. 12, no. 1, pp. 109–128, 2017 [Online]. Available at: http://dx.doi.org/10.2140/camcos.2017.12.109
    @article{KreienbuehlEtAl2017,
      author = {Kreienbuehl, Andreas and Benedusi, Pietro and Ruprecht, Daniel and Krause, Rolf},
      doi = {10.2140/camcos.2017.12.109},
      issue = {1},
      journal = {Communications in Applied Mathematics and Computational Science},
      pages = {109--128},
      title = {Time-parallel gravitational collapse simulation},
      url = {http://dx.doi.org/10.2140/camcos.2017.12.109},
      volume = {12},
      year = {2017}
    }
    
  16. T. M. Masthay and S. Perugini, “Parareal Algorithm Implementation and Simulation in Julia,” arXiv:1706.08569v1 [cs.MS], 2017 [Online]. Available at: https://arxiv.org/pdf/1706.08569.pdf
    @unpublished{MasthayEtAl2017,
      author = {Masthay, Tyler M. and Perugini, Saverio},
      howpublished = {arXiv:1706.08569v1 [cs.MS]},
      title = {Parareal Algorithm Implementation and Simulation in Julia},
      url = {https://arxiv.org/pdf/1706.08569.pdf},
      year = {2017}
    }
    
  17. M. Merkel, I. Niyonzima, and S. Schöps, “ParaExp Using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations,” Radio Science, vol. 52, no. 12, pp. 1558–1569, 2017 [Online]. Available at: https://dx.doi.org/10.1002/2017RS006357
    @article{MerkelEtAl2017,
      author = {Merkel, Melina and Niyonzima, Innocent and Schöps, Sebastian},
      doi = {10.1002/2017RS006357},
      journal = {Radio Science},
      number = {12},
      pages = {1558--1569},
      title = {ParaExp Using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations},
      url = {https://dx.doi.org/10.1002/2017RS006357},
      volume = {52},
      year = {2017}
    }
    
  18. W. Pazner and P.-O. Persson, “Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations,” Journal of Computational Physics, vol. 335, pp. 700–717, 2017 [Online]. Available at: https://doi.org/10.1016/j.jcp.2017.01.050
    @article{Pazner2017700,
      author = {Pazner, Will and Persson, Per-Olof},
      doi = {10.1016/j.jcp.2017.01.050},
      journal = {Journal of Computational Physics},
      pages = {700--717},
      title = {{Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations}},
      url = {https://doi.org/10.1016/j.jcp.2017.01.050},
      volume = {335},
      year = {2017}
    }
    
  19. D. Perez, R. Huang, and A. F. Voter, “Long-time molecular dynamics simulations on massively parallel platforms: A comparison of parallel replica dynamics and parallel trajectory splicing,” Journal of Materials Research, pp. 1–10, 2017 [Online]. Available at: https://dx.doi.org/10.1557/jmr.2017.456
    @article{PerezEtAl2017,
      author = {Perez, Danny and Huang, Rao and Voter, Arthur F.},
      doi = {10.1557/jmr.2017.456},
      journal = {Journal of Materials Research},
      pages = {1-–10},
      title = {Long-time molecular dynamics simulations on massively parallel platforms: A comparison of parallel replica dynamics and parallel trajectory splicing},
      url = {https://dx.doi.org/10.1557/jmr.2017.456},
      year = {2017}
    }
    
  20. D. Ruprecht, “Shared Memory Pipelined Parareal,” in Euro-Par 2017: Parallel Processing: 23rd International Conference on Parallel and Distributed Computing, Santiago de Compostela, Spain, August 28 – September 1, 2017, Proceedings, F. F. Rivera, T. F. Pena, and J. C. Cabaleiro, Eds. Springer International Publishing, 2017, pp. 669–681 [Online]. Available at: https://doi.org/10.1007/978-3-319-64203-1_48
    @inbook{Ruprecht2017_lncs,
      author = {Ruprecht, Daniel},
      booktitle = {Euro-Par 2017: Parallel Processing: 23rd International Conference on Parallel and Distributed Computing, Santiago de Compostela, Spain, August 28 -- September 1, 2017, Proceedings},
      doi = {10.1007/978-3-319-64203-1_48},
      editor = {Rivera, Francisco F. and Pena, Tom{\'a}s F. and Cabaleiro, Jos{\'e} C.},
      pages = {669--681},
      publisher = {Springer International Publishing},
      title = {Shared Memory Pipelined Parareal},
      url = {https://doi.org/10.1007/978-3-319-64203-1_48},
      year = {2017}
    }
    
  21. R. Speck and D. Ruprecht, “Toward fault-tolerant parallel-in-time integration with PFASST ,” Parallel Computing, vol. 62, pp. 20–37, 2017 [Online]. Available at: http://dx.doi.org/10.1016/j.parco.2016.12.001
    @article{SpeckRuprecht2017,
      author = {Speck, Robert and Ruprecht, Daniel},
      doi = {10.1016/j.parco.2016.12.001},
      journal = {Parallel Computing},
      pages = {20--37},
      title = {Toward fault-tolerant parallel-in-time integration with {PFASST} },
      url = {http://dx.doi.org/10.1016/j.parco.2016.12.001},
      volume = {62},
      year = {2017}
    }
    
  22. S. Wang and Z. Peng, “Space-time parallel computation for time-domain Maxwell’s equations,” in 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), 2017, pp. 1680–1683 [Online]. Available at: http://ieeexplore.ieee.org/document/8065615/
    @inproceedings{WangPeng2017,
      author = {Wang, S. and Peng, Z.},
      booktitle = {2017 International Conference on Electromagnetics in Advanced Applications (ICEAA)},
      doi = {10.1109/ICEAA.2017.8065615},
      month = sep,
      number = {},
      pages = {1680--1683},
      title = {Space-time parallel computation for time-domain Maxwell's equations},
      url = {http://ieeexplore.ieee.org/document/8065615/},
      volume = {},
      year = {2017}
    }
    
  23. S.-L. Wu, “Three rapidly convergent parareal solvers with application to time-dependent PDEs with fractional Laplacian,” Mathematical Methods in the Applied Sciences, 2017 [Online]. Available at: http://dx.doi.org/10.1002/mma.4273
    @article{Wu2017,
      author = {Wu, Shu-Lin},
      doi = {10.1002/mma.4273},
      journal = {Mathematical Methods in the Applied Sciences},
      title = {Three rapidly convergent parareal solvers with application to time-dependent PDEs with fractional Laplacian},
      url = {http://dx.doi.org/10.1002/mma.4273},
      year = {2017}
    }
    
  24. S.-L. Wu, “An efficient parareal algorithm for a class of time-dependent problems with fractional Laplacian,” Applied Mathematics and Computation, vol. 307, pp. 329–341, 2017 [Online]. Available at: http://dx.doi.org/10.1016/j.amc.2017.02.012
    @article{Wu2017b,
      author = {Wu, Shu-Lin},
      doi = {10.1016/j.amc.2017.02.012},
      journal = {Applied Mathematics and Computation},
      pages = {329--341},
      title = {An efficient parareal algorithm for a class of time-dependent problems with fractional Laplacian},
      url = {http://dx.doi.org/10.1016/j.amc.2017.02.012},
      volume = {307},
      year = {2017}
    }
    
  25. S.-L. Wu and T.-Z. Huang, “A fast second-order parareal solver for fractional optimal control problems,” Journal of Vibration and Control, vol. 0, no. 0, p. 1077546317705557, 2017 [Online]. Available at: http://dx.doi.org/10.1177/1077546317705557
    @article{WuEtAl2017,
      author = {Wu, Shu-Lin and Huang, Ting-Zhu},
      doi = {10.1177/1077546317705557},
      journal = {Journal of Vibration and Control},
      number = {0},
      pages = {1077546317705557},
      title = {A fast second-order parareal solver for fractional optimal control problems},
      url = {http://dx.doi.org/10.1177/1077546317705557},
      volume = {0},
      year = {2017}
    }
    
top

2016

  1. M. Alhubail and Q. Wang, “The swept rule for breaking the latency barrier in time advancing PDEs,” Journal of Computational Physics, vol. 307, pp. 110–121, 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2015.11.026
    @article{AlhubailEtAl2016,
      author = {Alhubail, Maitham and Wang, Qiqi},
      doi = {10.1016/j.jcp.2015.11.026},
      journal = {Journal of Computational Physics},
      pages = {110--121},
      title = {The swept rule for breaking the latency barrier in time advancing {PDEs}},
      url = {http://dx.doi.org/10.1016/j.jcp.2015.11.026},
      volume = {307},
      year = {2016}
    }
    
  2. G. Ariel, S. J. Kim, and R. Tsai, “Parareal Multiscale Methods for Highly Oscillatory Dynamical Systems,” SIAM Journal on Scientific Computing, vol. 38, no. 6, pp. A3540–A3564, Jan. 2016 [Online]. Available at: https://doi.org/10.1137/15m1011044
    @article{ArielEtAl2016,
      author = {Ariel, Gil and Kim, Seong Jun and Tsai, Richard},
      doi = {10.1137/15m1011044},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {6},
      pages = {A3540--A3564},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Parareal Multiscale Methods for Highly Oscillatory Dynamical Systems},
      url = {https://doi.org/10.1137/15m1011044},
      volume = {38},
      year = {2016}
    }
    
  3. M. Astorino, F. Chouly, and A. Quarteroni, “A Time-Parallel Framework for Coupling Finite Element and Lattice Boltzmann Methods,” Applied Mathematics Research eXpress, vol. 2016, no. 1, pp. 24–67, 2016 [Online]. Available at: http://dx.doi.org/10.1093/amrx/abv009
    @article{Astorino2016,
      author = {Astorino, Matteo and Chouly, Franz and Quarteroni, Alfio},
      doi = {10.1093/amrx/abv009},
      journal = {Applied Mathematics Research eXpress},
      number = {1},
      pages = {24--67},
      title = {A Time-Parallel Framework for Coupling Finite Element and Lattice Boltzmann Methods},
      url = {http://dx.doi.org/10.1093/amrx/abv009},
      volume = {2016},
      year = {2016}
    }
    
  4. T. Beck, “In-Time Parallelization Of Atmospheric Chemical Kinetics,” PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2016 [Online]. Available at: http://archiv.ub.uni-heidelberg.de/volltextserver/20092/1/TBeck_Phd_a.pdf
    @phdthesis{Beck2016,
      author = {Beck, Teresa},
      school = {Ruprecht-Karls-Universit\"{a}t Heidelberg},
      title = {In-Time Parallelization Of Atmospheric Chemical Kinetics},
      url = {http://archiv.ub.uni-heidelberg.de/volltextserver/20092/1/TBeck_Phd_a.pdf},
      year = {2016}
    }
    
  5. P. Benedusi, D. Hupp, P. Arbenz, and R. Krause, “A Parallel Multigrid Solver for Time–periodic Incompressible Navier–Stokes Equations in 3D,” in Numerical Mathematics and Advanced Applications ENUMATH 2015, 2016, pp. 265–273 [Online]. Available at: https://doi.org/10.1007/978-3-319-39929-4_26
    @inproceedings{BenedusiEtAl2016,
      author = {Benedusi, P. and Hupp, D. and Arbenz, P. and Krause, R.},
      booktitle = {Numerical Mathematics and Advanced Applications ENUMATH 2015},
      doi = {10.1007/978-3-319-39929-4_26},
      organization = {Springer},
      pages = {265--273},
      title = {{A Parallel Multigrid Solver for Time--periodic Incompressible Navier--Stokes Equations in 3D}},
      url = {https://doi.org/10.1007/978-3-319-39929-4_26},
      year = {2016}
    }
    
  6. J. H. Chaudhry, D. Estep, S. Tavener, V. Carey, and J. Sandelin, “A Posteriori Error Analysis of Two-Stage Computation Methods with Application to Efficient Discretization and the Parareal Algorithm,” SIAM Journal on Numerical Analysis, vol. 54, no. 5, pp. 2974–3002, 2016 [Online]. Available at: http://dx.doi.org/10.1137/16M1079014
    @article{ChaudryEtAl2016,
      author = {Chaudhry, Jehanzeb Hameed and Estep, Don and Tavener, Simon and Carey, Varis and Sandelin, Jeff},
      doi = {10.1137/16M1079014},
      journal = {SIAM Journal on Numerical Analysis},
      number = {5},
      pages = {2974--3002},
      title = {A Posteriori Error Analysis of Two-Stage Computation Methods with Application to Efficient Discretization and the Parareal Algorithm},
      url = {http://dx.doi.org/10.1137/16M1079014},
      volume = {54},
      year = {2016}
    }
    
  7. F. De Vuyst, “Efficient solvers for time-dependent problems: a review of IMEX, LATIN, PARAEXP and PARAREAL algorithms for heat-type problems with potential use of approximate exponential integrators and reduced-order models,” Advanced Modeling and Simulation in Engineering Sciences, pp. 3–8, 2016 [Online]. Available at: http://dx.doi.org/10.1186/s40323-016-0063-y
    @article{DeVuyst2016,
      author = {De Vuyst, Florian},
      doi = {10.1186/s40323-016-0063-y},
      journal = {Advanced Modeling and Simulation in Engineering Sciences},
      pages = {3--8},
      title = {Efficient solvers for time-dependent problems: a review of {IMEX}, {LATIN}, {PARAEXP} and {PARAREAL} algorithms for heat-type problems with potential use of approximate exponential integrators and reduced-order models},
      url = {http://dx.doi.org/10.1186/s40323-016-0063-y},
      year = {2016}
    }
    
  8. A. Eghbal, A. G. Gerber, and E. Aubanel, “Acceleration of Unsteady Hydrodynamic Simulations Using the Parareal Algorithm,” Journal of Computational Science , vol. 19, pp. 57–76, 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.jocs.2016.12.006
    @article{EghbalEtAl2016,
      author = {Eghbal, Araz and Gerber, Andrew G. and Aubanel, Eric},
      doi = {10.1016/j.jocs.2016.12.006},
      journal = {Journal of Computational Science },
      pages = {57--76},
      title = {Acceleration of Unsteady Hydrodynamic Simulations Using the Parareal Algorithm},
      url = {http://dx.doi.org/10.1016/j.jocs.2016.12.006},
      volume = {19},
      year = {2016}
    }
    
  9. R. D. Falgout, T. A. Manteuffel, B. Southworth, and J. B. Schroder, “Parallel-In-Time For Moving Meshes,” Lawrence Livermore National Laboratory, 2016 [Online]. Available at: http://www.osti.gov/scitech/servlets/purl/1239230
    @techreport{FalgoutEtAl2016,
      author = {Falgout, R.~D. and Manteuffel, T.~A. and Southworth, B. and Schroder, J. B.},
      doi = {10.2172/1239230},
      institution = {Lawrence Livermore National Laboratory},
      title = {Parallel-In-Time For Moving Meshes},
      url = {http://www.osti.gov/scitech/servlets/purl/1239230},
      year = {2016}
    }
    
  10. H. Gahvari, V. A. Dobrev, R. D. Falgout, T. V. Kolev, J. B. Schroder, M. Schulz, and U. Meier Yang, “A Performance Model for Allocating the Parallelism in a Multigrid-in-Time Solver,” in 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems, 2016 [Online]. Available at: http://dx.doi.org/10.1109/PMBS.2016.8
    @inproceedings{GahvariEtAl2016,
      author = {Gahvari, Hormozd and Dobrev, Veselin A. and Falgout, Rob D. and Kolev, Tzanio V. and Schroder, Jacob B. and Schulz, Martin and {Meier Yang}, Ulrike},
      booktitle = {7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems},
      doi = {10.1109/PMBS.2016.8},
      title = {A Performance Model for Allocating the Parallelism in a Multigrid-in-Time Solver},
      url = {http://dx.doi.org/10.1109/PMBS.2016.8},
      year = {2016}
    }
    
  11. M. J. Gander, L. Halpern, J. Ryan, and T. T. B. Tran, “A Direct Solver for Time Parallelization,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, pp. 491–499 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-18827-0_50
    @inproceedings{GanderEtAl2016,
      author = {Gander, Martin J. and Halpern, Laurence and Ryan, Juliet and Tran, Thuy Thi Bich},
      booktitle = {Domain Decomposition Methods in Science and Engineering XXII},
      doi = {10.1007/978-3-319-18827-0_50},
      editor = {Dickopf, Thomas and Gander, Martin J. and Halpern, Laurence and Krause, Rolf and Pavarino, Luca F.},
      pages = {491--499},
      publisher = {Springer International Publishing},
      title = {{A Direct Solver for Time Parallelization}},
      url = {http://dx.doi.org/10.1007/978-3-319-18827-0_50},
      year = {2016}
    }
    
  12. R. GUETAT, “Coupling Parareal with Non-Overlapping Domain Decomposition Method,” Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, vol. Volume 23 - 2016 - Special..., Dec. 2016 [Online]. Available at: https://doi.org/10.46298/arima.1474
    @article{GUETAT2016,
      author = {GUETAT, Rim},
      doi = {10.46298/arima.1474},
      journal = {Revue Africaine de la Recherche en Informatique et Math{\'{e}}matiques Appliqu{\'{e}}es},
      month = dec,
      publisher = {Centre pour la Communication Scientifique Directe ({CCSD})},
      title = {Coupling Parareal with Non-Overlapping Domain Decomposition Method},
      url = {https://doi.org/10.46298/arima.1474},
      volume = {Volume 23 - 2016 - Special...},
      year = {2016}
    }
    
  13. G. Gurrala, A. Dimitrovski, S. Pannala, S. Simunovic, and M. Starke, “Parareal in Time for Fast Power System Dynamic Simulations,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 1820–1830, 2016 [Online]. Available at: http://dx.doi.org/10.1109/TPWRS.2015.2434833
    @article{GurralaEtAl2016,
      author = {{Gurrala}, G. and {Dimitrovski}, A. and {Pannala}, S. and {Simunovic}, S. and {Starke}, M.},
      doi = {10.1109/TPWRS.2015.2434833},
      journal = {IEEE Transactions on Power Systems},
      number = {3},
      pages = {1820--1830},
      title = {{Parareal in Time for Fast Power System Dynamic Simulations}},
      url = {http://dx.doi.org/10.1109/TPWRS.2015.2434833},
      volume = {31},
      year = {2016}
    }
    
  14. T. S. Haut, T. Babb, P. G. Martinsson, and B. A. Wingate, “A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator,” IMA Journal of Numerical Analysis, vol. 36, no. 2, pp. 688–716, 2016 [Online]. Available at: http://dx.doi.org/10.1093/imanum/drv021
    @article{Haut2016,
      author = {Haut, T.~S. and Babb, T. and Martinsson, P.~G. and Wingate, B.~A.},
      doi = {10.1093/imanum/drv021},
      journal = {IMA Journal of Numerical Analysis},
      number = {2},
      pages = {688--716},
      title = {A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator},
      url = {http://dx.doi.org/10.1093/imanum/drv021},
      volume = {36},
      year = {2016}
    }
    
  15. A. Lapin and A. Romanenko, “Udzawa-type iterative method with parareal preconditioner for a parabolic optimal control problem,” IOP Conference Series: Materials Science and Engineering, vol. 158, no. 1, p. 012059, 2016 [Online]. Available at: http://dx.doi.org/10.1088/1757-899X/158/1/012059
    @article{LapinEtAl2016,
      author = {Lapin, A and Romanenko, A},
      doi = {10.1088/1757-899X/158/1/012059},
      journal = {IOP Conference Series: Materials Science and Engineering},
      number = {1},
      pages = {012059},
      title = {Udzawa-type iterative method with parareal preconditioner for a parabolic optimal control problem},
      url = {http://dx.doi.org/10.1088/1757-899X/158/1/012059},
      volume = {158},
      year = {2016}
    }
    
  16. M. Lecouvez, R. D. Falgout, C. S. Woodward, and P. Top, “A parallel multigrid reduction in time method for power systems,” in 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016, pp. 1–5 [Online]. Available at: https://dx.doi.org/10.1109/PESGM.2016.7741520
    @inproceedings{Lecouvez2016,
      author = {{Lecouvez}, M. and {Falgout}, R.~D. and {Woodward}, C.~S. and {Top}, P.},
      booktitle = {2016 IEEE Power and Energy Society General Meeting (PESGM)},
      doi = {10.1109/PESGM.2016.7741520},
      pages = {1--5},
      title = {A parallel multigrid reduction in time method for power systems},
      url = {https://dx.doi.org/10.1109/PESGM.2016.7741520},
      year = {2016}
    }
    
  17. C. Lederman, R. Martin, and J.-L. Cambier, “Time-parallel solutions to differential equations via functional optimization,” Computational and Applied Mathematics, pp. 1–25, 2016 [Online]. Available at: http://dx.doi.org/10.1007/s40314-016-0319-7
    @article{Lederman2016,
      author = {Lederman, C. and Martin, R. and Cambier, J.-L.},
      doi = {10.1007/s40314-016-0319-7},
      journal = {Computational and Applied Mathematics},
      pages = {1--25},
      title = {Time-parallel solutions to differential equations via functional optimization},
      url = {http://dx.doi.org/10.1007/s40314-016-0319-7},
      year = {2016}
    }
    
  18. J. I. Leffell, J. Sitaraman, V. K. Lakshminarayan, and A. M. Wissink, “Towards Efficient Parallel-in-Time Simulation of Periodic Flows,” in 54th AIAA Aerospace Sciences Meeting, 2016 [Online]. Available at: http://dx.doi.org/10.2514/6.2016-0066
    @inproceedings{LeffellEtAl2016,
      author = {Leffell, Joshua I. and Sitaraman, Jayanarayanan and Lakshminarayan, Vinod K. and Wissink, Andrew M.},
      booktitle = {54th AIAA Aerospace Sciences Meeting},
      doi = {10.2514/6.2016-0066},
      publisher = {American Institute of Aeronautics and Astronautics},
      title = {Towards Efficient Parallel-in-Time Simulation of Periodic Flows},
      url = {http://dx.doi.org/10.2514/6.2016-0066},
      year = {2016}
    }
    
  19. S. Matsuoka, H. Amano, K. Nakajima, K. Inoue, T. Kudoh, N. Maruyama, K. Taura, T. Iwashita, T. Katagiri, T. Hanawa, and T. Endo, “From FLOPS to BYTES: Disruptive Change in High-performance Computing Towards the Post-moore Era,” in Proceedings of the ACM International Conference on Computing Frontiers, New York, NY, USA, 2016, pp. 274–281 [Online]. Available at: http://dx.doi.org/10.1145/2903150.2906830
    @inproceedings{MatsuokaEtAl2016,
      address = {New York, NY, USA},
      author = {Matsuoka, Satoshi and Amano, Hideharu and Nakajima, Kengo and Inoue, Koji and Kudoh, Tomohiro and Maruyama, Naoya and Taura, Kenjiro and Iwashita, Takeshi and Katagiri, Takahiro and Hanawa, Toshihiro and Endo, Toshio},
      booktitle = {Proceedings of the ACM International Conference on Computing Frontiers},
      doi = {10.1145/2903150.2906830},
      location = {Como, Italy},
      numpages = {8},
      pages = {274--281},
      publisher = {ACM},
      series = {CF '16},
      title = {From FLOPS to BYTES: Disruptive Change in High-performance Computing Towards the Post-moore Era},
      url = {http://dx.doi.org/10.1145/2903150.2906830},
      year = {2016}
    }
    
  20. M. Merkel, I. Niyonzima, and S. Schöps, “An Application of ParaExp to Electromagnetic Wave Problems,” in Proceedings of 2016 URSI International Symposium on Electromagnetic Theory (EMTS), 2016 [Online]. Available at: https://doi.org/10.1109/URSI-EMTS.2016.7571330
    @inproceedings{MerkelEtAl2016,
      author = {Merkel, Melina and Niyonzima, Innocent and Schöps, Sebastian},
      booktitle = {Proceedings of 2016 URSI International Symposium on Electromagnetic Theory (EMTS)},
      doi = {10.1109/URSI-EMTS.2016.7571330},
      editor = {Sihvola, Ari},
      note = {arXiv:1607.00368 [math.NA]},
      publisher = {IEEE},
      title = {An Application of ParaExp to Electromagnetic Wave Problems},
      url = {https://doi.org/10.1109/URSI-EMTS.2016.7571330},
      year = {2016}
    }
    
  21. M. J. Gander and M. Neumüller, “Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems,” SIAM Journal on Scientific Computing, vol. 38, no. 4, pp. A2173–A2208, 2016 [Online]. Available at: http://dx.doi.org/10.1137/15M1046605
    @article{NeumuellerGander2016,
      author = {Gander, Martin J. and Neum\"uller, Martin},
      doi = {10.1137/15M1046605},
      journal = {SIAM Journal on Scientific Computing},
      number = {4},
      pages = {A2173--A2208},
      title = {Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems},
      url = {http://dx.doi.org/10.1137/15M1046605},
      volume = {38},
      year = {2016}
    }
    
  22. A. S. Nielsen and J. S. Hesthaven, “Fault Tolerance in the Parareal Method,” in Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale, New York, NY, USA, 2016, pp. 1–8 [Online]. Available at: http://dx.doi.org/10.1145/2909428.2909431
    @inproceedings{NielsenHesthaven2016,
      acmid = {2909431},
      address = {New York, NY, USA},
      author = {Nielsen, Allan S. and Hesthaven, Jan S.},
      booktitle = {Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale},
      doi = {10.1145/2909428.2909431},
      isbn = {978-1-4503-4349-7},
      location = {Kyoto, Japan},
      numpages = {8},
      pages = {1--8},
      publisher = {ACM},
      series = {FTXS '16},
      title = {Fault Tolerance in the Parareal Method},
      url = {http://dx.doi.org/10.1145/2909428.2909431},
      year = {2016}
    }
    
  23. B. W. Ong, R. D. Haynes, and K. Ladd, “Algorithm 965: RIDC Methods: A Family of Parallel Time Integrators,” ACM Trans. Math. Softw., vol. 43, no. 1, pp. 8:1–8:13, 2016 [Online]. Available at: http://dx.doi.org/10.1145/2964377
    @article{OngEtAl2016,
      articleno = {8},
      author = {Ong, Benjamin W. and Haynes, Ronald D. and Ladd, Kyle},
      doi = {10.1145/2964377},
      journal = {ACM Trans. Math. Softw.},
      number = {1},
      numpages = {13},
      pages = {8:1--8:13},
      title = {Algorithm 965: {RIDC} Methods: A Family of Parallel Time Integrators},
      url = {http://dx.doi.org/10.1145/2964377},
      volume = {43},
      year = {2016}
    }
    
  24. D. Ruprecht, R. Speck, and R. Krause, “Parareal for Diffusion Problems with Space- and Time-Dependent Coefficients,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, pp. 371–378 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-18827-0_37
    @inproceedings{RuprechtEtAl2016,
      author = {Ruprecht, Daniel and Speck, Robert and Krause, Rolf},
      booktitle = {Domain Decomposition Methods in Science and Engineering {XXII}},
      doi = {10.1007/978-3-319-18827-0_37},
      editor = {Dickopf, Thomas and Gander, J. Martin and Halpern, Laurence and Krause, Rolf and Pavarino, F. Luca},
      pages = {371--378},
      publisher = {Springer International Publishing},
      title = {Parareal for Diffusion Problems with Space- and Time-Dependent Coefficients},
      url = {http://dx.doi.org/10.1007/978-3-319-18827-0_37},
      year = {2016}
    }
    
  25. T. Sekine, T. Tsuji, T. Oyama, F. Magoulès, and K. Uchida, “Speedup of parallel computing by parareal method in transient stability analysis of Japanese power system,” in 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), 2016, pp. 1177–1182 [Online]. Available at: http://dx.doi.org/10.1109/ISGT-Asia.2016.7796552
    @inproceedings{SekineEtAl2016,
      author = {Sekine, T. and Tsuji, T. and Oyama, T. and Magoulès, F. and Uchida, K.},
      booktitle = {2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia)},
      doi = {10.1109/ISGT-Asia.2016.7796552},
      pages = {1177--1182},
      title = {Speedup of parallel computing by parareal method in transient stability analysis of Japanese power system},
      url = {http://dx.doi.org/10.1109/ISGT-Asia.2016.7796552},
      year = {2016}
    }