This list of publications closely related to parallel-in-time integration is probably not complete. Please feel free to add any missing publications through a pull request on GitHub .

Statistics

Your screen is too small for the diagram to display.


top

2021

  1. A. Blumers, M. Yin, H. Nakajima, Y. Hasegawa, Z. Li, and G. E. Karniadakis, “Multiscale Parareal Algorithm for Long-Time Mesoscopic Simulations of Microvascular Blood Flow in Zebrafish,” arXiv:2101.08414v1 [physics.flu-dyn], 2021 [Online]. Available at: http://arxiv.org/abs/2101.08414v1
    @unpublished{BlumersEtAl2021,
      author = {Blumers, Ansel and Yin, Minglang and Nakajima, Hiroyuki and Hasegawa, Yosuke and Li, Zhen and Karniadakis, George Em},
      howpublished = {arXiv:2101.08414v1 [physics.flu-dyn]},
      title = {Multiscale Parareal Algorithm for Long-Time Mesoscopic Simulations of Microvascular Blood Flow in Zebrafish},
      url = {http://arxiv.org/abs/2101.08414v1},
      year = {2021}
    }
    
  2. M. Cai, J. Mahseredjian, I. Kocar, X. Fu, and A. Haddadi, “A parallelization-in-time approach for accelerating EMT simulations,” Electric Power Systems Research, vol. 197, p. 107346, Aug. 2021 [Online]. Available at: https://doi.org/10.1016/j.epsr.2021.107346
    @article{CaiEtAl2021,
      author = {Cai, Ming and Mahseredjian, Jean and Kocar, Ilhan and Fu, Xiaopeng and Haddadi, Aboutaleb},
      doi = {10.1016/j.epsr.2021.107346},
      journal = {Electric Power Systems Research},
      month = aug,
      pages = {107346},
      publisher = {Elsevier {BV}},
      title = {A parallelization-in-time approach for accelerating {EMT} simulations},
      url = {https://doi.org/10.1016/j.epsr.2021.107346},
      volume = {197},
      year = {2021}
    }
    
  3. M. Caliari, L. Einkemmer, A. Moriggl, and A. Ostermann, “An accurate and time-parallel rational exponential integrator for hyperbolic and oscillatory PDEs,” Journal of Computational Physics, vol. 437, p. 110289, Jul. 2021 [Online]. Available at: https://doi.org/10.1016%2Fj.jcp.2021.110289
    @article{CaliariEtAl2021,
      author = {Caliari, Marco and Einkemmer, Lukas and Moriggl, Alexander and Ostermann, Alexander},
      doi = {10.1016/j.jcp.2021.110289},
      journal = {Journal of Computational Physics},
      month = jul,
      pages = {110289},
      publisher = {Elsevier {BV}},
      title = {An accurate and time-parallel rational exponential integrator for hyperbolic and oscillatory {PDEs}},
      url = {https://doi.org/10.1016%2Fj.jcp.2021.110289},
      volume = {437},
      year = {2021}
    }
    
  4. F. Danieli, B. S. Southworth, and A. J. Wathen, “Space-time block preconditioning for incompressible flow,” arXiv:2101.07003v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2101.07003v1
    @unpublished{DanieliEtAl2021,
      author = {Danieli, Federico and Southworth, Ben S. and Wathen, Andrew J.},
      howpublished = {arXiv:2101.07003v1 [math.NA]},
      title = {Space-time block preconditioning for incompressible flow},
      url = {http://arxiv.org/abs/2101.07003v1},
      year = {2021}
    }
    
  5. F. Danieli and S. MacLachlan, “Multigrid Reduction in Time for non-linear hyperbolic equations,” arXiv:2104.09404v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2104.09404v1
    @unpublished{DanieliEtAl2021b,
      author = {Danieli, Federico and MacLachlan, Scott},
      howpublished = {arXiv:2104.09404v1 [math.NA]},
      title = {Multigrid Reduction in Time for non-linear hyperbolic equations},
      url = {http://arxiv.org/abs/2104.09404v1},
      year = {2021}
    }
    
  6. F. Danieli and A. J. Wathen, “All-at-once solution of linear wave equations,” Numerical Linear Algebra with Applications, May 2021 [Online]. Available at: https://doi.org/10.1002/nla.2386
    @article{DanieliEtAl2021c,
      author = {Danieli, Federico and Wathen, Andrew J.},
      doi = {10.1002/nla.2386},
      journal = {Numerical Linear Algebra with Applications},
      month = may,
      publisher = {Wiley},
      title = {All-at-once solution of linear wave equations},
      url = {https://doi.org/10.1002/nla.2386},
      year = {2021}
    }
    
  7. A. C. Ellison and B. Fornberg, “A parallel-in-time approach for wave-type PDEs,” Numerische Mathematik, Apr. 2021 [Online]. Available at: https://doi.org/10.1007/s00211-021-01197-5
    @article{EllisonEtAl2021,
      author = {Ellison, Abe C. and Fornberg, Bengt},
      doi = {10.1007/s00211-021-01197-5},
      journal = {Numerische Mathematik},
      month = apr,
      publisher = {Springer Science and Business Media {LLC}},
      title = {A parallel-in-time approach for wave-type {PDEs}},
      url = {https://doi.org/10.1007/s00211-021-01197-5},
      year = {2021}
    }
    
  8. R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder, “Multigrid reduction in time with Richardson extrapolation,” ETNA - Electronic Transactions on Numerical Analysis, vol. 54, pp. 210–233, 2021 [Online]. Available at: https://doi.org/10.1553%2Fetna_vol54s210
    @article{FalgoutEtAl2021,
      author = {Falgout, R. D. and Manteuffel, T. A. and O{\textquotesingle}Neill, B. and Schroder, J. B.},
      doi = {10.1553/etna_vol54s210},
      journal = {{ETNA} - Electronic Transactions on Numerical Analysis},
      pages = {210--233},
      publisher = {Osterreichische Akademie der Wissenschaften},
      title = {Multigrid reduction in time with Richardson extrapolation},
      url = {https://doi.org/10.1553%2Fetna_vol54s210},
      volume = {54},
      year = {2021}
    }
    
  9. M. J. Gander, J. Liu, S.-L. Wu, X. Yue, and T. Zhou, “ParaDiag: parallel-in-time algorithms based on the diagonalization technique,” arXiv preprint arXiv:2005.09158, 2021 [Online]. Available at: http://arxiv.org/abs/2005.09158
    @unpublished{GanderEtAl2021,
      author = {Gander, Martin J and Liu, Jun and Wu, Shu-Lin and Yue, Xiaoqiang and Zhou, Tao},
      howpublished = {arXiv preprint arXiv:2005.09158},
      title = {ParaDiag: parallel-in-time algorithms based on the diagonalization technique},
      url = {http://arxiv.org/abs/2005.09158},
      year = {2021}
    }
    
  10. S. Goetschel, M. Minion, D. Ruprecht, and R. Speck, “Twelve Ways To Fool The Masses When Giving Parallel-In-Time Results,” arXiv:2102.11670v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2102.11670v1
    @unpublished{GoetschelEtAl2021,
      author = {Goetschel, Sebastian and Minion, Michael and Ruprecht, Daniel and Speck, Robert},
      howpublished = {arXiv:2102.11670v1 [math.NA]},
      title = {Twelve Ways To Fool The Masses When Giving Parallel-In-Time Results},
      url = {http://arxiv.org/abs/2102.11670v1},
      year = {2021}
    }
    
  11. S. Lakshmiranganatha and S. S. Muknahallipatna, “Performance Analysis of Accelerator Architectures and Programming Models for Parareal Algorithm Solutions of Ordinary Differential Equations,” Journal of Computer and Communications, vol. 09, no. 02, pp. 29–56, 2021 [Online]. Available at: https://doi.org/10.4236/jcc.2021.92003
    @article{LakshmiranganathaEtAl2021,
      author = {Lakshmiranganatha, Sumathi and Muknahallipatna, Suresh S.},
      doi = {10.4236/jcc.2021.92003},
      journal = {Journal of Computer and Communications},
      number = {02},
      pages = {29--56},
      publisher = {Scientific Research Publishing, Inc.},
      title = {Performance Analysis of Accelerator Architectures and Programming Models for Parareal Algorithm Solutions of Ordinary Differential Equations},
      url = {https://doi.org/10.4236/jcc.2021.92003},
      volume = {09},
      year = {2021}
    }
    
  12. S. Li, X. Shao, and R. Chen, “Multilevel space-time multiplicative Schwarz preconditioner for parabolic equations,” Numerical Linear Algebra with Applications, May 2021 [Online]. Available at: https://doi.org/10.1002/nla.2390
    @article{LiEtAl2021,
      author = {Li, Shishun and Shao, Xinping and Chen, Rongliang},
      doi = {10.1002/nla.2390},
      journal = {Numerical Linear Algebra with Applications},
      month = may,
      publisher = {Wiley},
      title = {Multilevel space-time multiplicative Schwarz preconditioner for parabolic equations},
      url = {https://doi.org/10.1002/nla.2390},
      year = {2021}
    }
    
  13. X. Li and Y. Su, “A parallel in time/spectral collocation combined with finite difference method for the time fractional differential equations,” Journal of Algorithms & Computational Technology, vol. 15, p. 174830262110084, Jan. 2021 [Online]. Available at: https://doi.org/10.1177/17483026211008409
    @article{LiEtAl2021b,
      author = {Li, Xianjuan and Su, Yanhui},
      doi = {10.1177/17483026211008409},
      journal = {Journal of Algorithms {\&} Computational Technology},
      month = jan,
      pages = {174830262110084},
      publisher = {{SAGE} Publications},
      title = {A parallel in time/spectral collocation combined with finite difference method for the time fractional differential equations},
      url = {https://doi.org/10.1177/17483026211008409},
      volume = {15},
      year = {2021}
    }
    
  14. X.-lei Lin, M. K. Ng, and Y. Zhi, “A parallel-in-time two-sided preconditioning for all-at-once system from a non-local evolutionary equation with weakly singular kernel,” Journal of Computational Physics, vol. 434, p. 110221, Jun. 2021 [Online]. Available at: https://doi.org/10.1016%2Fj.jcp.2021.110221
    @article{LinEtAl2021,
      author = {Lin, Xue-lei and Ng, Michael K. and Zhi, Yajing},
      doi = {10.1016/j.jcp.2021.110221},
      journal = {Journal of Computational Physics},
      month = jun,
      pages = {110221},
      publisher = {Elsevier {BV}},
      title = {A parallel-in-time two-sided preconditioning for all-at-once system from a non-local evolutionary equation with weakly singular kernel},
      url = {https://doi.org/10.1016%2Fj.jcp.2021.110221},
      volume = {434},
      year = {2021}
    }
    
  15. C. Lyu, N. Lin, and V. Dinavahi, “Device-Level Parallel-in-time Simulation of MMC-Based Energy System for Electric Vehicles,” IEEE Transactions on Vehicular Technology, pp. 1–1, 2021 [Online]. Available at: https://doi.org/10.1109/tvt.2021.3081534
    @article{LyuEtAl2021,
      author = {Lyu, Chengzhang and Lin, Ning and Dinavahi, Venkata},
      doi = {10.1109/tvt.2021.3081534},
      journal = {{IEEE} Transactions on Vehicular Technology},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Device-Level Parallel-in-time Simulation of {MMC}-Based Energy System for Electric Vehicles},
      url = {https://doi.org/10.1109/tvt.2021.3081534},
      year = {2021}
    }
    
  16. N. Margenberg and T. Richter, “Parallel time-stepping for fluid–structure interactions,” Mathematical Modelling of Natural Phenomena, vol. 16, p. 20, 2021 [Online]. Available at: https://doi.org/10.1051/mmnp/2021005
    @article{MargenbergEtAl2021,
      author = {Margenberg, Nils and Richter, Thomas},
      doi = {10.1051/mmnp/2021005},
      editor = {Grandmont, C. and Hillairet, M. and Matin, S. and Muha, B. and Vergarra, Ch.},
      journal = {Mathematical Modelling of Natural Phenomena},
      pages = {20},
      publisher = {{EDP} Sciences},
      title = {Parallel time-stepping for fluid{\textendash}structure interactions},
      url = {https://doi.org/10.1051/mmnp/2021005},
      volume = {16},
      year = {2021}
    }
    
  17. B. Park, K. Sun, A. Dimitrovski, Y. Liu, and S. Simunovic, “Examination of Semi-Analytical Solution Methods in the Coarse Operator of Parareal Algorithm for Power System Simulation,” IEEE Transactions on Power Systems, pp. 1–1, 2021 [Online]. Available at: https://doi.org/10.1109/tpwrs.2021.3069136
    @article{ParkEtAl2021,
      author = {Park, Byungkwon and Sun, Kai and Dimitrovski, Aleksandar and Liu, Yang and Simunovic, Srdjan},
      doi = {10.1109/tpwrs.2021.3069136},
      journal = {{IEEE} Transactions on Power Systems},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Examination of Semi-Analytical Solution Methods in the Coarse Operator of Parareal Algorithm for Power System Simulation},
      url = {https://doi.org/10.1109/tpwrs.2021.3069136},
      year = {2021}
    }
    
  18. M. Patil and A. Datta, “Time-Parallel Scalable Solution of Periodic Rotor Dynamics for Large-Scale 3D Structures,” in AIAA Scitech 2021 Forum, 2021 [Online]. Available at: https://doi.org/10.2514/6.2021-1079
    @inproceedings{PatilEtAl2021,
      author = {Patil, Mrinalgouda and Datta, Anubhav},
      booktitle = {{AIAA} Scitech 2021 Forum},
      doi = {10.2514/6.2021-1079},
      month = jan,
      publisher = {American Institute of Aeronautics and Astronautics},
      title = {Time-Parallel Scalable Solution of Periodic Rotor Dynamics for Large-Scale 3D Structures},
      url = {https://doi.org/10.2514/6.2021-1079},
      year = {2021}
    }
    
  19. J. Schütz, D. C. Seal, and J. Zeifang, “Parallel-in-time high-order multiderivative IMEX solvers,” arXiv:2101.07846v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2101.07846v1
    @unpublished{SchützEtAl2021,
      author = {Schütz, Jochen and Seal, David C. and Zeifang, Jonas},
      howpublished = {arXiv:2101.07846v1 [math.NA]},
      title = {Parallel-in-time high-order multiderivative IMEX solvers},
      url = {http://arxiv.org/abs/2101.07846v1},
      year = {2021}
    }
    
  20. C. S. Skene, M. F. Eggl, and P. J. Schmid, “A parallel-in-time approach for accelerating direct-adjoint studies,” Journal of Computational Physics, vol. 429, p. 110033, Mar. 2021 [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.110033
    @article{SkeneEtAl2021,
      author = {Skene, C.S. and Eggl, M.F. and Schmid, P.J.},
      doi = {10.1016/j.jcp.2020.110033},
      journal = {Journal of Computational Physics},
      month = mar,
      pages = {110033},
      publisher = {Elsevier {BV}},
      title = {A parallel-in-time approach for accelerating direct-adjoint studies},
      url = {https://doi.org/10.1016/j.jcp.2020.110033},
      volume = {429},
      year = {2021}
    }
    
  21. Y. Takahashi, K. Fujiwara, T. Iwashita, and H. Nakashima, “Comparison of Parallel-in-Space-and-Time Finite-Element Methods for Magnetic Field Analysis of Electric Machines,” IEEE Transactions on Magnetics, pp. 1–1, 2021 [Online]. Available at: https://doi.org/10.1109/tmag.2021.3064320
    @article{TakahashiEtAl2021,
      author = {Takahashi, Yasuhito and Fujiwara, Koji and Iwashita, Takeshi and Nakashima, Hiroshi},
      doi = {10.1109/tmag.2021.3064320},
      journal = {{IEEE} Transactions on Magnetics},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Comparison of Parallel-in-Space-and-Time Finite-Element Methods for Magnetic Field Analysis of Electric Machines},
      url = {https://doi.org/10.1109/tmag.2021.3064320},
      year = {2021}
    }
    
  22. S.-L. Wu and T. Zhou, “Parallel implementation for the two-stage SDIRK methods via diagonalization,” Journal of Computational Physics, vol. 428, p. 110076, Mar. 2021 [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.110076
    @article{WuEtAl2021,
      author = {Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1016/j.jcp.2020.110076},
      journal = {Journal of Computational Physics},
      month = mar,
      pages = {110076},
      publisher = {Elsevier {BV}},
      title = {Parallel implementation for the two-stage {SDIRK} methods via diagonalization},
      url = {https://doi.org/10.1016/j.jcp.2020.110076},
      volume = {428},
      year = {2021}
    }
    
  23. S. Wu, T. Zhou, and Z. Zhou, “Stability implies robust convergence of a class of preconditioned parallel-in-time iterative algorithms,” arXiv:2102.04646v2 [math.NA], 2021 [Online]. Available at: https://arxiv.org/abs/2102.04646v2
    @unpublished{WuEtAl2021b,
      author = {Wu, Shulin and Zhou, Tao and Zhou, Zhi},
      howpublished = {arXiv:2102.04646v2 [math.NA]},
      title = {Stability implies robust convergence of a class of preconditioned parallel-in-time iterative algorithms},
      url = {https://arxiv.org/abs/2102.04646v2},
      year = {2021}
    }
    
  24. H. Yamazaki and C. J. Cotter, “Time parallel integration and phase averaging for the nonlinear shallow water equations on the sphere,” arXiv:2103.07706v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2103.07706v1
    @unpublished{YamazakiEtAl2021,
      author = {Yamazaki, Hiroe and Cotter, Colin J},
      howpublished = {arXiv:2103.07706v1 [math.NA]},
      title = {Time parallel integration and phase averaging for the nonlinear shallow water equations on the sphere},
      url = {http://arxiv.org/abs/2103.07706v1},
      year = {2021}
    }
    
  25. X. Yue, K. Pan, J. Zhou, Z. Weng, S. Shu, and J. Tang, “A multigrid-reduction-in-time solver with a new two-level convergence for unsteady fractional Laplacian problems,” Computers & Mathematics with Applications, vol. 89, pp. 57–67, May 2021 [Online]. Available at: https://doi.org/10.1016/j.camwa.2021.02.020
    @article{YueEtAl2021,
      author = {Yue, Xiaoqiang and Pan, Kejia and Zhou, Jie and Weng, Zhifeng and Shu, Shi and Tang, Juan},
      doi = {10.1016/j.camwa.2021.02.020},
      journal = {Computers {\&} Mathematics with Applications},
      month = may,
      pages = {57--67},
      publisher = {Elsevier {BV}},
      title = {A multigrid-reduction-in-time solver with a new two-level convergence for unsteady fractional Laplacian problems},
      url = {https://doi.org/10.1016/j.camwa.2021.02.020},
      volume = {89},
      year = {2021}
    }
    
  26. Y. Zeng, Y. Duan, and B.-S. Liu, “Solving 2D parabolic equations by using time parareal coupling with meshless collocation RBFs methods,” Engineering Analysis with Boundary Elements, vol. 127, pp. 102–112, Jun. 2021 [Online]. Available at: https://doi.org/10.1016/j.enganabound.2021.03.008
    @article{ZengEtAl2021,
      author = {Zeng, Yan and Duan, Yong and Liu, Bi-Sen},
      doi = {10.1016/j.enganabound.2021.03.008},
      journal = {Engineering Analysis with Boundary Elements},
      month = jun,
      pages = {102--112},
      publisher = {Elsevier {BV}},
      title = {Solving 2D parabolic equations by using time parareal coupling with meshless collocation {RBFs} methods},
      url = {https://doi.org/10.1016/j.enganabound.2021.03.008},
      volume = {127},
      year = {2021}
    }
    
  27. Y.-L. Zhao, X.-M. Gu, and A. Ostermann, “A Preconditioning Technique for an All-at-once System from Volterra Subdiffusion Equations with Graded Time Steps,” Journal of Scientific Computing, vol. 88, no. 1, May 2021 [Online]. Available at: https://doi.org/10.1007/s10915-021-01527-7
    @article{ZhaoEtAl2021,
      author = {Zhao, Yong-Liang and Gu, Xian-Ming and Ostermann, Alexander},
      doi = {10.1007/s10915-021-01527-7},
      journal = {Journal of Scientific Computing},
      month = may,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {A Preconditioning Technique for an All-at-once System from Volterra Subdiffusion Equations with Graded Time Steps},
      url = {https://doi.org/10.1007/s10915-021-01527-7},
      volume = {88},
      year = {2021}
    }
    
top

2020

  1. W. Agboh, O. Grainger, D. Ruprecht, and M. Dogar, “Parareal with a Learned Coarse Model for Robotic Manipulation,” Computing and Visualization in Science, vol. 23, no. 8, 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00327-0
    @article{AgbohEtAl2020,
      author = {Agboh, Wisdom and Grainger, Oliver and Ruprecht, Daniel and Dogar, Mehmet},
      journal = {Computing and Visualization in Science},
      number = {8},
      title = {Parareal with a Learned Coarse Model for Robotic Manipulation},
      url = {https://doi.org/10.1007/s00791-020-00327-0},
      volume = {23},
      year = {2020}
    }
    
  2. D. Bast, I. Kulchytska-Ruchka, S. Schoeps, and O. Rain, “Accelerated Steady-State Torque Computation for Induction Machines Using Parallel-In-Time Algorithms,” IEEE Transactions on Magnetics, pp. 1–1, 2020 [Online]. Available at: https://doi.org/10.1109/tmag.2019.2945510
    @article{BastEtAl2020,
      author = {Bast, Denys and Kulchytska-Ruchka, Iryna and Schoeps, Sebastian and Rain, Oliver},
      doi = {10.1109/tmag.2019.2945510},
      journal = {{IEEE} Transactions on Magnetics},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Accelerated Steady-State Torque Computation for Induction Machines Using Parallel-In-Time Algorithms},
      url = {https://doi.org/10.1109/tmag.2019.2945510},
      year = {2020}
    }
    
  3. P. Benedusi, M. Minion, and R. Krause, “An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem,” arXiv:2006.12883v2 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2006.12883v2
    @unpublished{BenedusiEtAl2020,
      author = {Benedusi, Pietro and Minion, Michael and Krause, Rolf},
      howpublished = {arXiv:2006.12883v2 [math.NA]},
      title = {An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem},
      url = {http://arxiv.org/abs/2006.12883v2},
      year = {2020}
    }
    
  4. C.-E. Brehier and X. Wang, “On Parareal Algorithms for Semilinear Parabolic Stochastic PDEs,” SIAM Journal on Numerical Analysis, vol. 58, no. 1, pp. 254–278, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1251011
    @article{BrehierEtAl2020,
      author = {Brehier, Charles-Edouard and Wang, Xu},
      doi = {10.1137/19m1251011},
      journal = {{SIAM} Journal on Numerical Analysis},
      month = jan,
      number = {1},
      pages = {254--278},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {On Parareal Algorithms for Semilinear Parabolic Stochastic {PDEs}},
      url = {https://doi.org/10.1137/19m1251011},
      volume = {58},
      year = {2020}
    }
    
  5. T. Buvoli, “Exponential Polynomial Time Integrators,” arXiv:2011.00670v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2011.00670v1
    @unpublished{Buvoli2020,
      author = {Buvoli, Tommaso},
      howpublished = {arXiv:2011.00670v1 [math.NA]},
      title = {Exponential Polynomial Time Integrators},
      url = {http://arxiv.org/abs/2011.00670v1},
      year = {2020}
    }
    
  6. T. Buvoli and M. L. Minion, “IMEX Parareal Integrators,” arXiv:2011.01604v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2011.01604v1
    @unpublished{BuvoliEtAl2020,
      author = {Buvoli, Tommaso and Minion, Michael L.},
      howpublished = {arXiv:2011.01604v1 [math.NA]},
      title = {IMEX Parareal Integrators},
      url = {http://arxiv.org/abs/2011.01604v1},
      year = {2020}
    }
    
  7. T. Cheng, T. Duan, and V. Dinavahi, “Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Power Systems,” IEEE Open Access Journal of Power and Energy, pp. 1–1, 2020 [Online]. Available at: https://doi.org/10.1109/oajpe.2020.3012636
    @article{ChengEtAl2020,
      author = {Cheng, Tianshi and Duan, Tong and Dinavahi, Venkata},
      doi = {10.1109/oajpe.2020.3012636},
      journal = {{IEEE} Open Access Journal of Power and Energy},
      pages = {1--1},
      publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
      title = {Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Power Systems},
      url = {https://doi.org/10.1109/oajpe.2020.3012636},
      year = {2020}
    }
    
  8. C.-K. Cheng, C.-T. Ho, C. Jia, X. Wang, Z. Zen, and X. Zha, “A Parallel-in-Time Circuit Simulator for Power Delivery Networks with Nonlinear Load Models,” in 2020 IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2020 [Online]. Available at: https://doi.org/10.1109/epeps48591.2020.9231406
    @inproceedings{ChengEtAl2020b,
      author = {Cheng, Chung-Kuan and Ho, Chia-Tung and Jia, Chao and Wang, Xinyuan and Zen, Zhiyu and Zha, Xin},
      booktitle = {2020 {IEEE} 29th Conference on Electrical Performance of Electronic Packaging and Systems ({EPEPS})},
      doi = {10.1109/epeps48591.2020.9231406},
      month = oct,
      publisher = {{IEEE}},
      title = {A Parallel-in-Time Circuit Simulator for Power Delivery Networks with Nonlinear Load Models},
      url = {https://doi.org/10.1109/epeps48591.2020.9231406},
      year = {2020}
    }
    
  9. J. Christopher, R. D. Falgout, J. B. Schroder, S. M. Guzik, and X. Gao, “A space-time parallel algorithm with adaptive mesh refinement for computational fluid dynamics,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00334-1
    @article{ChristopherEtAl2020,
      author = {Christopher, Joshua and Falgout, Robert D. and Schroder, Jacob B. and Guzik, Stephen M. and Gao, Xinfeng},
      doi = {10.1007/s00791-020-00334-1},
      journal = {Computing and Visualization in Science},
      month = sep,
      number = {1-4},
      publisher = {Springer Science and Business Media {LLC}},
      title = {A space-time parallel algorithm with adaptive mesh refinement for computational fluid dynamics},
      url = {https://doi.org/10.1007/s00791-020-00334-1},
      volume = {23},
      year = {2020}
    }
    
  10. A. T. Clarke, C. J. Davies, D. Ruprecht, and S. M. Tobias, “Parallel-in-time integration of Kinematic Dynamos,” Journal of Computational Physics: X, vol. 7, p. 100057, 2020 [Online]. Available at: https://doi.org/10.1016/j.jcpx.2020.100057
    @article{ClarkeEtAl2020a,
      author = {Clarke, Andrew T. and Davies, Christopher J. and Ruprecht, Daniel and Tobias, Steven M.},
      doi = {10.1016/j.jcpx.2020.100057},
      journal = {Journal of Computational Physics: X},
      pages = {100057},
      title = {Parallel-in-time integration of Kinematic Dynamos},
      url = {https://doi.org/10.1016/j.jcpx.2020.100057},
      volume = {7},
      year = {2020}
    }
    
  11. A. Clarke, C. Davies, D. Ruprecht, S. Tobias, and J. S. Oishi, “Performance of parallel-in-time integration for Rayleigh Bénard Convection,” Computing and Visualization in Science, vol. 23, no. 10, 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00332-3
    @article{ClarkeEtAl2020b,
      author = {Clarke, Andrew and Davies, Chris and Ruprecht, Daniel and Tobias, Steven and Oishi, Jeffrey S.},
      journal = {Computing and Visualization in Science},
      number = {10},
      title = {Performance of parallel-in-time integration for {R}ayleigh {B}énard Convection},
      url = {https://doi.org/10.1007/s00791-020-00332-3},
      volume = {23},
      year = {2020}
    }
    
  12. L. D’Amore and R. Cacciapuoti, “Model Reduction in Space and Time for the ab initio decomposition of 4D Variational Data Assimilation Problems,” Applied Numerical Mathematics, Oct. 2020 [Online]. Available at: https://doi.org/10.1016/j.apnum.2020.10.003
    @article{DAmoreEtAl2020,
      author = {D{\textquotesingle}Amore, L. and Cacciapuoti, R.},
      doi = {10.1016/j.apnum.2020.10.003},
      journal = {Applied Numerical Mathematics},
      month = oct,
      publisher = {Elsevier {BV}},
      title = {Model Reduction in Space and Time for the ab initio decomposition of 4D Variational Data Assimilation Problems},
      url = {https://doi.org/10.1016/j.apnum.2020.10.003},
      year = {2020}
    }
    
  13. C. Flamant, P. Protopapas, and D. Sondak, “Solving Differential Equations Using Neural Network Solution Bundles,” arXiv:2006.14372v1 [cs.LG], 2020 [Online]. Available at: http://arxiv.org/abs/2006.14372v1
    @unpublished{FlamantEtAl2020,
      author = {Flamant, Cedric and Protopapas, Pavlos and Sondak, David},
      howpublished = {arXiv:2006.14372v1 [cs.LG]},
      title = {Solving Differential Equations Using Neural Network Solution Bundles},
      url = {http://arxiv.org/abs/2006.14372v1},
      year = {2020}
    }
    
  14. M. J. Gander and T. Lunet, “ParaStieltjes: Parallel computation of Gauss quadrature rules using a Parareal-like approach for the Stieltjes procedure,” Numerical Linear Algebra with Applications, Jun. 2020 [Online]. Available at: https://doi.org/10.1002/nla.2314
    @article{GanderEtAl2020b,
      author = {Gander, Martin J. and Lunet, Thibaut},
      doi = {10.1002/nla.2314},
      journal = {Numerical Linear Algebra with Applications},
      month = jun,
      publisher = {Wiley},
      title = {{ParaStieltjes}: Parallel computation of Gauss quadrature rules using a Parareal-like approach for the Stieltjes procedure},
      url = {https://doi.org/10.1002/nla.2314},
      year = {2020}
    }
    
  15. M. J. Gander, F. Kwok, and J. Salomon, “PARAOPT: A Parareal Algorithm for Optimality Systems,” SIAM Journal on Scientific Computing, vol. 42, no. 5, pp. A2773–A2802, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1292291
    @article{GanderEtAl2020c,
      author = {Gander, Martin J. and Kwok, Felix and Salomon, Julien},
      doi = {10.1137/19m1292291},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {5},
      pages = {A2773--A2802},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {{PARAOPT}: A Parareal Algorithm for Optimality Systems},
      url = {https://doi.org/10.1137/19m1292291},
      volume = {42},
      year = {2020}
    }
    
  16. M. J. Gander and S.-L. Wu, “A Diagonalization-Based Parareal Algorithm for Dissipative and Wave Propagation Problems,” SIAM Journal on Numerical Analysis, vol. 58, no. 5, pp. 2981–3009, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1271683
    @article{GanderEtAl2020d,
      author = {Gander, Martin J. and Wu, Shu-Lin},
      doi = {10.1137/19m1271683},
      journal = {{SIAM} Journal on Numerical Analysis},
      month = jan,
      number = {5},
      pages = {2981--3009},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {A Diagonalization-Based Parareal Algorithm for Dissipative and Wave Propagation Problems},
      url = {https://doi.org/10.1137/19m1271683},
      volume = {58},
      year = {2020}
    }
    
  17. M. J. Gander, I. Kulchytska-Ruchka, and S. Schöps, “A New Parareal Algorithm for Time-Periodic Problems with Discontinuous Inputs,” in Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2020, pp. 243–250 [Online]. Available at: https://doi.org/10.1007/978-3-030-56750-7_27
    @incollection{GanderEtAl2020e,
      author = {Gander, Martin J. and Kulchytska-Ruchka, Iryna and Schöps, Sebastian},
      booktitle = {Lecture Notes in Computational Science and Engineering},
      doi = {10.1007/978-3-030-56750-7_27},
      pages = {243--250},
      publisher = {Springer International Publishing},
      title = {A New Parareal Algorithm for Time-Periodic Problems with Discontinuous Inputs},
      url = {https://doi.org/10.1007/978-3-030-56750-7_27},
      year = {2020}
    }
    
  18. I. C. Garcia, I. Kulchytska-Ruchka, M. Clemens, and S. Schöps, “Parallel-in-Time Solution of Eddy Current Problems Using Implicit and Explicit Time-stepping Methods,” arXiv:2012.07603v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2012.07603v1
    @unpublished{GarciaEtAl2020,
      author = {Garcia, Idoia Cortes and Kulchytska-Ruchka, Iryna and Clemens, Markus and Schöps, Sebastian},
      howpublished = {arXiv:2012.07603v1 [math.NA]},
      title = {Parallel-in-Time Solution of Eddy Current Problems Using Implicit and Explicit Time-stepping Methods},
      url = {http://arxiv.org/abs/2012.07603v1},
      year = {2020}
    }
    
  19. A. Garmon and D. Perez, “Exploiting Model Uncertainty to Improve the Scalability of Long-Time Simulations using Parallel Trajectory Splicing,” Modelling and Simulation in Materials Science and Engineering, Jul. 2020 [Online]. Available at: https://doi.org/10.1088/1361-651x/aba511
    @article{GarmonEtAl2020,
      author = {Garmon, Andrew and Perez, Danny},
      doi = {10.1088/1361-651x/aba511},
      journal = {Modelling and Simulation in Materials Science and Engineering},
      month = jul,
      publisher = {{IOP} Publishing},
      title = {Exploiting Model Uncertainty to Improve the Scalability of Long-Time Simulations using Parallel Trajectory Splicing},
      url = {https://doi.org/10.1088/1361-651x/aba511},
      year = {2020}
    }
    
  20. X.-M. Gu and S.-L. Wu, “A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel,” Journal of Computational Physics, vol. 417, p. 109576, Sep. 2020 [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.109576
    @article{GuEtAl2020,
      author = {Gu, Xian-Ming and Wu, Shu-Lin},
      doi = {10.1016/j.jcp.2020.109576},
      journal = {Journal of Computational Physics},
      month = sep,
      pages = {109576},
      publisher = {Elsevier {BV}},
      title = {A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel},
      url = {https://doi.org/10.1016/j.jcp.2020.109576},
      volume = {417},
      year = {2020}
    }
    
  21. J. Hahne, S. Friedhoff, and M. Bolten, “PyMGRIT: A Python Package for the parallel-in-time method MGRIT,” arXiv:2008.05172v1 [cs.MS], 2020 [Online]. Available at: http://arxiv.org/abs/2008.05172v1
    @unpublished{HahneEtAl2020,
      author = {Hahne, Jens and Friedhoff, Stephanie and Bolten, Matthias},
      howpublished = {arXiv:2008.05172v1 [cs.MS]},
      title = {PyMGRIT: A Python Package for the parallel-in-time method MGRIT},
      url = {http://arxiv.org/abs/2008.05172v1},
      year = {2020}
    }
    
  22. F. P. Hamon, M. Schreiber, and M. L. Minion, “Parallel-in-time multi-level integration of the shallow-water equations on the rotating sphere,” Journal of Computational Physics, vol. 407, p. 109210, Apr. 2020 [Online]. Available at: https://doi.org/10.1016/j.jcp.2019.109210
    @article{HamonEtAl2020,
      author = {Hamon, Fran{\c{c}}ois P. and Schreiber, Martin and Minion, Michael L.},
      doi = {10.1016/j.jcp.2019.109210},
      journal = {Journal of Computational Physics},
      month = apr,
      pages = {109210},
      publisher = {Elsevier {BV}},
      title = {Parallel-in-time multi-level integration of the shallow-water equations on the rotating sphere},
      url = {https://doi.org/10.1016/j.jcp.2019.109210},
      volume = {407},
      year = {2020}
    }
    
  23. A. Hessenthaler, B. S. Southworth, D. Nordsletten, O. Röhrle, R. D. Falgout, and J. B. Schroder, “Multilevel Convergence Analysis of Multigrid-Reduction-in-Time,” SIAM Journal on Scientific Computing, vol. 42, no. 2, pp. A771–A796, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1238812
    @article{HessenthalerEtAl2020,
      author = {Hessenthaler, Andreas and Southworth, Ben S. and Nordsletten, David and Röhrle, Oliver and Falgout, Robert D. and Schroder, Jacob B.},
      doi = {10.1137/19m1238812},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {2},
      pages = {A771--A796},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Multilevel Convergence Analysis of Multigrid-Reduction-in-Time},
      url = {https://doi.org/10.1137/19m1238812},
      volume = {42},
      year = {2020}
    }
    
  24. N. E. Hodge, “Towards Improved Speed and Accuracy of Laser Powder Bed FusionSimulations via Representation of Multiple Time Scales,” Additive Manufacturing, p. 101600, Oct. 2020 [Online]. Available at: https://doi.org/10.1016/j.addma.2020.101600
    @article{Hodge2020,
      author = {Hodge, N.E.},
      doi = {10.1016/j.addma.2020.101600},
      journal = {Additive Manufacturing},
      month = oct,
      pages = {101600},
      publisher = {Elsevier {BV}},
      title = {Towards Improved Speed and Accuracy of Laser Powder Bed {FusionSimulations} via Representation of Multiple Time Scales},
      url = {https://doi.org/10.1016/j.addma.2020.101600},
      year = {2020}
    }
    
  25. X. Hu, C. Rodrigo, and F. J. Gaspar, “Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation,” Journal of Computational Physics, p. 109540, May 2020 [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.109540
    @article{HuEtAl2020,
      author = {Hu, Xiaozhe and Rodrigo, Carmen and Gaspar, Francisco J.},
      doi = {10.1016/j.jcp.2020.109540},
      journal = {Journal of Computational Physics},
      month = may,
      pages = {109540},
      publisher = {Elsevier {BV}},
      title = {Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation},
      url = {https://doi.org/10.1016/j.jcp.2020.109540},
      year = {2020}
    }
    
  26. K. Jałowiecki, A. Więckowski, P. Gawron, and B. Gardas, “Parallel in time dynamics with quantum annealers,” Scientific Reports, vol. 10, no. 1, Aug. 2020 [Online]. Available at: https://doi.org/10.1038/s41598-020-70017-x
    @article{JałowieckiEtAl2020,
      author = {Ja{\l}owiecki, Konrad and Wi{\k{e}}ckowski, Andrzej and Gawron, Piotr and Gardas, Bart{\l}omiej},
      doi = {10.1038/s41598-020-70017-x},
      journal = {Scientific Reports},
      month = aug,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Parallel in time dynamics with quantum annealers},
      url = {https://doi.org/10.1038/s41598-020-70017-x},
      volume = {10},
      year = {2020}
    }
    
  27. A. Kirby, S. Samsi, M. Jones, A. Reuther, J. Kepner, and V. Gadepally, “Layer-Parallel Training with GPU Concurrency of Deep Residual Neural Networks via Nonlinear Multigrid,” in 2020 IEEE High Performance Extreme Computing Conference (HPEC), 2020 [Online]. Available at: https://doi.org/10.1109/hpec43674.2020.9286180
    @inproceedings{KirbyEtAl2020,
      author = {Kirby, Andrew and Samsi, Siddharth and Jones, Michael and Reuther, Albert and Kepner, Jeremy and Gadepally, Vijay},
      booktitle = {2020 {IEEE} High Performance Extreme Computing Conference ({HPEC})},
      doi = {10.1109/hpec43674.2020.9286180},
      month = sep,
      publisher = {{IEEE}},
      title = {Layer-Parallel Training with {GPU} Concurrency of Deep Residual Neural Networks via Nonlinear Multigrid},
      url = {https://doi.org/10.1109/hpec43674.2020.9286180},
      year = {2020}
    }
    
  28. S. Lakshmiranganatha and S. S. Muknahallipatna, “Graphical Processing Unit Based Time-Parallel Numerical Method for Ordinary Differential Equations,” Journal of Computer and Communications, vol. 08, no. 02, pp. 39–63, 2020 [Online]. Available at: https://doi.org/10.4236/jcc.2020.82004
    @article{LakshmiranganathaEtAl2020,
      author = {Lakshmiranganatha, Sumathi and Muknahallipatna, Suresh S.},
      doi = {10.4236/jcc.2020.82004},
      journal = {Journal of Computer and Communications},
      number = {02},
      pages = {39--63},
      publisher = {Scientific Research Publishing, Inc.},
      title = {Graphical Processing Unit Based Time-Parallel Numerical Method for Ordinary Differential Equations},
      url = {https://doi.org/10.4236/jcc.2020.82004},
      volume = {08},
      year = {2020}
    }
    
  29. U. Langer and M. Zank, “Efficient Direct Space-Time Finite Element Solvers for Parabolic Initial-Boundary Value Problems in Anisotropic Sobolev Spaces,” arXiv:2008.01996v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2008.01996v1
    @unpublished{LangerEtAl2020,
      author = {Langer, Ulrich and Zank, Marco},
      howpublished = {arXiv:2008.01996v1 [math.NA]},
      title = {Efficient Direct Space-Time Finite Element Solvers for Parabolic Initial-Boundary Value Problems in Anisotropic Sobolev Spaces},
      url = {http://arxiv.org/abs/2008.01996v1},
      year = {2020}
    }
    
  30. F. Legoll, T. Lelièvre, K. Myerscough, and G. Samaey, “Parareal computation of stochastic differential equations with time-scale separation: a numerical convergence study,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00329-y
    @article{LegollEtAl2020,
      author = {Legoll, Fr{\'{e}}d{\'{e}}ric and Leli{\`{e}}vre, Tony and Myerscough, Keith and Samaey, Giovanni},
      doi = {10.1007/s00791-020-00329-y},
      journal = {Computing and Visualization in Science},
      month = sep,
      number = {1-4},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Parareal computation of stochastic differential equations with time-scale separation: a numerical convergence study},
      url = {https://doi.org/10.1007/s00791-020-00329-y},
      volume = {23},
      year = {2020}
    }
    
  31. H. Liu, A. Cheng, and H. Wang, “A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations,” Journal of Scientific Computing, vol. 85, no. 1, Oct. 2020 [Online]. Available at: https://doi.org/10.1007/s10915-020-01321-x
    @article{LiuEtAl2020,
      author = {Liu, Huan and Cheng, Aijie and Wang, Hong},
      doi = {10.1007/s10915-020-01321-x},
      journal = {Journal of Scientific Computing},
      month = oct,
      number = {1},
      publisher = {Springer Science and Business Media {LLC}},
      title = {A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations},
      url = {https://doi.org/10.1007/s10915-020-01321-x},
      volume = {85},
      year = {2020}
    }
    
  32. J. Liu and Z. Wang, “A ROM-accelerated parallel-in-time preconditioner for solving all-at-once systems from evolutionary PDEs,” arXiv:2012.09148v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2012.09148v1
    @unpublished{LiuEtAl2020b,
      author = {Liu, Jun and Wang, Zhu},
      howpublished = {arXiv:2012.09148v1 [math.NA]},
      title = {A ROM-accelerated parallel-in-time preconditioner for solving all-at-once systems from evolutionary PDEs},
      url = {http://arxiv.org/abs/2012.09148v1},
      year = {2020}
    }
    
  33. J. Liu and S.-L. Wu, “A Fast Block \textdollar}alpha\textdollar-Circulant Preconditoner for All-at-Once Systems From Wave Equations,” SIAM Journal on Matrix Analysis and Applications, vol. 41, no. 4, pp. 1912–1943, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1309869
    @article{LiuEtAl2020c,
      author = {Liu, Jun and Wu, Shu-Lin},
      doi = {10.1137/19m1309869},
      journal = {{SIAM} Journal on Matrix Analysis and Applications},
      month = jan,
      number = {4},
      pages = {1912--1943},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {A Fast Block {\textdollar}{\textbackslash}alpha{\textdollar}-Circulant Preconditoner for All-at-Once Systems From Wave Equations},
      url = {https://doi.org/10.1137/19m1309869},
      volume = {41},
      year = {2020}
    }
    
  34. E. Lorin, “Derivation and analysis of parallel-in-time neural ordinary differential equations,” Annals of Mathematics and Artificial Intelligence, Jul. 2020 [Online]. Available at: https://doi.org/10.1007/s10472-020-09702-6
    @article{Lorin2020,
      author = {Lorin, E.},
      doi = {10.1007/s10472-020-09702-6},
      journal = {Annals of Mathematics and Artificial Intelligence},
      month = jul,
      publisher = {Springer Science and Business Media {LLC}},
      title = {Derivation and analysis of parallel-in-time neural ordinary differential equations},
      url = {https://doi.org/10.1007/s10472-020-09702-6},
      year = {2020}
    }
    
  35. X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis, “PPINN: Parareal physics-informed neural network for time-dependent PDEs,” Computer Methods in Applied Mechanics and Engineering, vol. 370, p. 113250, Oct. 2020 [Online]. Available at: https://doi.org/10.1016/j.cma.2020.113250
    @article{MengEtAl2020,
      author = {Meng, Xuhui and Li, Zhen and Zhang, Dongkun and Karniadakis, George Em},
      doi = {10.1016/j.cma.2020.113250},
      journal = {Computer Methods in Applied Mechanics and Engineering},
      month = oct,
      pages = {113250},
      publisher = {Elsevier {BV}},
      title = {{PPINN}: Parareal physics-informed neural network for time-dependent {PDEs}},
      url = {https://doi.org/10.1016/j.cma.2020.113250},
      volume = {370},
      year = {2020}
    }
    
  36. H. Nguyen and R. Tsai, “A stable parareal-like method for the second order wave equation,” Journal of Computational Physics, vol. 405, p. 109156, 2020 [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0021999119308617
    @article{NguyenTsai2020,
      author = {Nguyen, Hieu and Tsai, Richard},
      doi = {https://doi.org/10.1016/j.jcp.2019.109156},
      issn = {0021-9991},
      journal = {Journal of Computational Physics},
      keywords = {Parallel-in-time, Wave equation, Procrustes problem},
      pages = {109156},
      title = {A stable parareal-like method for the second order wave equation},
      url = {http://www.sciencedirect.com/science/article/pii/S0021999119308617},
      volume = {405},
      year = {2020}
    }
    
  37. B. W. Ong and J. B. Schroder, “Applications of time parallelization,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00331-4
    @article{OngEtAl2020,
      author = {Ong, Benjamin W. and Schroder, Jacob B.},
      doi = {10.1007/s00791-020-00331-4},
      journal = {Computing and Visualization in Science},
      month = sep,
      number = {1-4},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Applications of time parallelization},
      url = {https://doi.org/10.1007/s00791-020-00331-4},
      volume = {23},
      year = {2020}
    }
    
  38. B. Park, K. Sun, A. Dimitrovski, Y. Liu, M. A. Arif, S. Allu, and S. Simunovic, “Performance and Feature Improvements in Parareal-based Power System Dynamic Simulation,” in 2020 IEEE International Conference on Power Systems Technology (POWERCON), 2020 [Online]. Available at: https://doi.org/10.1109/powercon48463.2020.9230544
    @inproceedings{ParkEtAl2020,
      author = {Park, Byungkwon and Sun, Kai and Dimitrovski, Aleksandar and Liu, Yang and Arif, Md Arifin and Allu, Srikanth and Simunovic, Srdjan},
      booktitle = {2020 {IEEE} International Conference on Power Systems Technology ({POWERCON})},
      doi = {10.1109/powercon48463.2020.9230544},
      month = sep,
      publisher = {{IEEE}},
      title = {Performance and Feature Improvements in Parareal-based Power System Dynamic Simulation},
      url = {https://doi.org/10.1109/powercon48463.2020.9230544},
      year = {2020}
    }
    
  39. A. Pels, I. Kulchytska-Ruchka, and S. Schöps, “Parallel-in-Time Simulation of Power Converters Using Multirate PDEs,” arXiv:2006.06544v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2006.06544v1
    @unpublished{PelsEtAl2020,
      author = {Pels, Andreas and Kulchytska-Ruchka, Iryna and Schöps, Sebastian},
      howpublished = {arXiv:2006.06544v1 [math.NA]},
      title = {Parallel-in-Time Simulation of Power Converters Using Multirate PDEs},
      url = {http://arxiv.org/abs/2006.06544v1},
      year = {2020}
    }
    
  40. H. Rittich and R. Speck, “Time-parallel simulation of the Schrödinger Equation,” Computer Physics Communications, vol. 255, p. 107363, Oct. 2020 [Online]. Available at: https://doi.org/10.1016/j.cpc.2020.107363
    @article{RittichEtAl2020,
      author = {Rittich, Hannah and Speck, Robert},
      doi = {10.1016/j.cpc.2020.107363},
      journal = {Computer Physics Communications},
      month = oct,
      pages = {107363},
      publisher = {Elsevier {BV}},
      title = {Time-parallel simulation of the Schrödinger Equation},
      url = {https://doi.org/10.1016/j.cpc.2020.107363},
      volume = {255},
      year = {2020}
    }
    
  41. R. Schöbel and R. Speck, “PFASST-ER: combining the parallel full approximation scheme in space and time with parallelization across the method,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00330-5
    @article{SchöbelEtAl2020,
      author = {Schöbel, Ruth and Speck, Robert},
      doi = {10.1007/s00791-020-00330-5},
      journal = {Computing and Visualization in Science},
      month = sep,
      number = {1-4},
      publisher = {Springer Science and Business Media {LLC}},
      title = {{PFASST}-{ER}: combining the parallel full approximation scheme in space and time with parallelization across the method},
      url = {https://doi.org/10.1007/s00791-020-00330-5},
      volume = {23},
      year = {2020}
    }
    
  42. L. Z. sci, “Convergence Analysis of Parareal Algorithm Based on Milstein Scheme for Stochastic Differential Equations,” Journal of Computational Mathematics, vol. 38, no. 3, pp. 487–501, Jun. 2020 [Online]. Available at: https://doi.org/10.4208/jcm.1901-m2018-0085
    @article{sci2020,
      author = {sci, Liying Zhang},
      doi = {10.4208/jcm.1901-m2018-0085},
      journal = {Journal of Computational Mathematics},
      month = jun,
      number = {3},
      pages = {487--501},
      publisher = {Global Science Press},
      title = {Convergence Analysis of Parareal Algorithm Based on Milstein Scheme for Stochastic Differential Equations},
      url = {https://doi.org/10.4208/jcm.1901-m2018-0085},
      volume = {38},
      year = {2020}
    }
    
  43. A. A. Sivas, B. S. Southworth, and S. Rhebergen, “AIR algebraic multigrid for a space-time hybridizable discontinuous Galerkin discretization of advection(-diffusion),” arXiv:2010.11130v2 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2010.11130v2
    @unpublished{SivasEtAl2020,
      author = {Sivas, Abdullah A. and Southworth, Ben S. and Rhebergen, Sander},
      howpublished = {arXiv:2010.11130v2 [math.NA]},
      title = {AIR algebraic multigrid for a space-time hybridizable discontinuous Galerkin discretization of advection(-diffusion)},
      url = {http://arxiv.org/abs/2010.11130v2},
      year = {2020}
    }
    
  44. B. Song, Y.-L. Jiang, and X. Wang, “Analysis of two new parareal algorithms based on the Dirichlet-Neumann/Neumann-Neumann waveform relaxation method for the heat equation,” Numerical Algorithms, Jun. 2020 [Online]. Available at: https://doi.org/10.1007/s11075-020-00949-y
    @article{SongEtAl2020,
      author = {Song, Bo and Jiang, Yao-Lin and Wang, Xiaolong},
      doi = {10.1007/s11075-020-00949-y},
      journal = {Numerical Algorithms},
      month = jun,
      publisher = {Springer Science and Business Media {LLC}},
      title = {Analysis of two new parareal algorithms based on the Dirichlet-Neumann/Neumann-Neumann waveform relaxation method for the heat equation},
      url = {https://doi.org/10.1007/s11075-020-00949-y},
      year = {2020}
    }
    
  45. B. Stump and A. Plotkowski, “Spatiotemporal parallelization of an analytical heat conduction model for additive manufacturing via a hybrid OpenMP \mathplus MPI approach,” Computational Materials Science, vol. 184, p. 109861, Nov. 2020 [Online]. Available at: https://doi.org/10.1016/j.commatsci.2020.109861
    @article{StumpEtAl2020,
      author = {Stump, B. and Plotkowski, A.},
      doi = {10.1016/j.commatsci.2020.109861},
      journal = {Computational Materials Science},
      month = nov,
      pages = {109861},
      publisher = {Elsevier {BV}},
      title = {Spatiotemporal parallelization of an analytical heat conduction model for additive manufacturing via a hybrid {OpenMP}~$\mathplus$~{MPI} approach},
      url = {https://doi.org/10.1016/j.commatsci.2020.109861},
      volume = {184},
      year = {2020}
    }
    
  46. R. van Venetië and J. Westerdiep, “A scalable algorithm for solving linear parabolic evolution equations,” arXiv:2009.08875v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2009.08875v1
    @unpublished{VenetiëEtAl2020,
      author = {van Venetië, Raymond and Westerdiep, Jan},
      howpublished = {arXiv:2009.08875v1 [math.NA]},
      title = {A scalable algorithm for solving linear parabolic evolution equations},
      url = {http://arxiv.org/abs/2009.08875v1},
      year = {2020}
    }
    
  47. S.-L. Wu and J. Liu, “A Parallel-In-Time Block-Circulant Preconditioner for Optimal Control of Wave Equations,” SIAM Journal on Scientific Computing, vol. 42, no. 3, pp. A1510–A1540, Jan. 2020 [Online]. Available at: https://doi.org/10.1137/19m1289613
    @article{WuEtAl2020,
      author = {Wu, Shu-Lin and Liu, Jun},
      doi = {10.1137/19m1289613},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {3},
      pages = {A1510--A1540},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {A Parallel-In-Time Block-Circulant Preconditioner for Optimal Control of Wave Equations},
      url = {https://doi.org/10.1137/19m1289613},
      volume = {42},
      year = {2020}
    }
    
  48. S. Wu and Z. Zhou, “Parallel-in-time high-order BDF schemes for diffusion and subdiffusion equations,” arXiv:2007.13125v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2007.13125v1
    @unpublished{WuEtAl2020b,
      author = {Wu, Shuonan and Zhou, Zhi},
      howpublished = {arXiv:2007.13125v1 [math.NA]},
      title = {Parallel-in-time high-order BDF schemes for diffusion and subdiffusion equations},
      url = {http://arxiv.org/abs/2007.13125v1},
      year = {2020}
    }
    
  49. S.-L. Wu and T. Zhou, “Diagonalization-based parallel-in-time algorithms for parabolic PDE-constrained optimization problems,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 26, p. 88, 2020 [Online]. Available at: https://doi.org/10.1051/cocv/2020012
    @article{WuEtAl2020c,
      author = {Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1051/cocv/2020012},
      journal = {{ESAIM}: Control, Optimisation and Calculus of Variations},
      pages = {88},
      publisher = {{EDP} Sciences},
      title = {Diagonalization-based parallel-in-time algorithms for parabolic {PDE}-constrained optimization problems},
      url = {https://doi.org/10.1051/cocv/2020012},
      volume = {26},
      year = {2020}
    }
    
  50. Y.-L. Zhao, X.-M. Gu, M. Li, and H.-Y. Jian, “Preconditioners for all-at-once system from the fractional mobile/immobile advection–diffusion model,” Journal of Applied Mathematics and Computing, Jul. 2020 [Online]. Available at: https://doi.org/10.1007/s12190-020-01410-y
    @article{ZhaoEtAl2020,
      author = {Zhao, Yong-Liang and Gu, Xian-Ming and Li, Meng and Jian, Huan-Yan},
      doi = {10.1007/s12190-020-01410-y},
      journal = {Journal of Applied Mathematics and Computing},
      month = jul,
      publisher = {Springer Science and Business Media {LLC}},
      title = {Preconditioners for all-at-once system from the fractional mobile/immobile advection{\textendash}diffusion model},
      url = {https://doi.org/10.1007/s12190-020-01410-y},
      year = {2020}
    }
    
  51. Y.-L. Zhao, X.-M. Gu, and A. Ostermann, “A parallel preconditioning technique for an all-at-once system from subdiffusion equations with variable time steps,” arXiv:2007.14636v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2007.14636v1
    @unpublished{ZhaoEtAl2020b,
      author = {Zhao, Yong-Liang and Gu, Xian-Ming and Ostermann, Alexander},
      howpublished = {arXiv:2007.14636v1 [math.NA]},
      title = {A parallel preconditioning technique for an all-at-once system from subdiffusion equations with variable time steps},
      url = {http://arxiv.org/abs/2007.14636v1},
      year = {2020}
    }
    
top

2019

  1. W. C. Agboh, D. Ruprecht, and M. R. Dogar, “Combining Coarse and Fine Physics for Manipulation using Parallel-in-Time Integration,” in The International Symposium on Robotics Research (ISRR), 2019 [Online]. Available at: https://arxiv.org/abs/1903.08470
    @inproceedings{AgbohEtAl2019,
      author = {Agboh, Wisdom C. and Ruprecht, Daniel and Dogar, Mehmet R.},
      booktitle = {The International Symposium on Robotics Research (ISRR)},
      note = {Accepted},
      publisher = {Springer},
      title = {Combining Coarse and Fine Physics for Manipulation using Parallel-in-Time Integration},
      url = {https://arxiv.org/abs/1903.08470},
      year = {2019}
    }
    
  2. A. L. Blumers, Z. Li, and G. E. Karniadakis, “Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics,” Journal of Computational Physics, vol. 393, pp. 214–228, 2019 [Online]. Available at: https://doi.org/10.1016/j.jcp.2019.05.016
    @article{BlumersEtAl2019,
      author = {Blumers, Ansel L. and Li, Zhen and Karniadakis, George Em},
      doi = {10.1016/j.jcp.2019.05.016},
      journal = {Journal of Computational Physics},
      pages = {214 - 228},
      title = {Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics},
      url = {https://doi.org/10.1016/j.jcp.2019.05.016},
      volume = {393},
      year = {2019}
    }
    
  3. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-Driven Time Parallelism via Forecasting,” SIAM Journal on Scientific Computing, vol. 41, no. 3, pp. B466–B496, Jan. 2019 [Online]. Available at: https://doi.org/10.1137/18m1174362
    @article{CarlbergEtAl2019,
      author = {Carlberg, Kevin and Brencher, Lukas and Haasdonk, Bernard and Barth, Andrea},
      doi = {10.1137/18m1174362},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {3},
      pages = {B466--B496},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Data-Driven Time Parallelism via Forecasting},
      url = {https://doi.org/10.1137/18m1174362},
      volume = {41},
      year = {2019}
    }
    
  4. S. Dohr, J. Zapletal, G. Of, M. Merta, and M. Kravčenko, “A parallel space–time boundary element method for the heat equation,” Computers & Mathematics with Applications, 2019 [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0898122118307296
    @article{DohrEtAl2019,
      author = {Dohr, Stefan and Zapletal, Jan and Of, Günther and Merta, Michal and Kravčenko, Michal},
      doi = {https://doi.org/10.1016/j.camwa.2018.12.031},
      journal = {Computers \& Mathematics with Applications},
      title = {A parallel space–time boundary element method for the heat equation},
      url = {http://www.sciencedirect.com/science/article/pii/S0898122118307296},
      year = {2019}
    }
    
  5. S. Friedhoff, J. Hahne, I. Kulchytska-Ruchka, and S. Schöps, “Exploring Parallel-in-Time Approaches for Eddy Current Problems,” in Progress in Industrial Mathematics at ECMI 2018, Springer International Publishing, 2019, pp. 373–379 [Online]. Available at: https://doi.org/10.1007/978-3-030-27550-1_47
    @incollection{FriedhoffEtAl2019,
      author = {Friedhoff, Stephanie and Hahne, Jens and Kulchytska-Ruchka, Iryna and Schöps, Sebastian},
      booktitle = {Progress in Industrial Mathematics at {ECMI} 2018},
      doi = {10.1007/978-3-030-27550-1_47},
      pages = {373--379},
      publisher = {Springer International Publishing},
      title = {Exploring Parallel-in-Time Approaches for Eddy Current Problems},
      url = {https://doi.org/10.1007/978-3-030-27550-1_47},
      year = {2019}
    }
    
  6. S. Friedhoff, J. Hahne, and S. Schöps, “Multigrid-reduction-in-time for Eddy Current problems,” PAMM, vol. 19, no. 1, Nov. 2019 [Online]. Available at: https://doi.org/10.1002/pamm.201900262
    @article{FriedhoffEtAl2019b,
      author = {Friedhoff, Stephanie and Hahne, Jens and Schöps, Sebastian},
      doi = {10.1002/pamm.201900262},
      journal = {{PAMM}},
      month = nov,
      number = {1},
      publisher = {Wiley},
      title = {Multigrid-reduction-in-time for Eddy Current problems},
      url = {https://doi.org/10.1002/pamm.201900262},
      volume = {19},
      year = {2019}
    }
    
  7. S. Friedhoff and B. S. Southworth, “On ‘Optimal’ h-Independent Convergence of Parareal and MGRIT Using Runge-Kutta Time Integration,” arXiv:1906.06672 [math.NA], 2019 [Online]. Available at: https://arxiv.org/abs/1906.06672
    @unpublished{FriedhoffSouthworth2019,
      author = {Friedhoff, Stephanie and Southworth, Ben S.},
      howpublished = {arXiv:1906.06672 [math.NA]},
      title = {On ``{O}ptimal'' h-{I}ndependent {C}onvergence of {P}arareal and {MGRIT} {U}sing {R}unge-{K}utta {T}ime {I}ntegration},
      url = {https://arxiv.org/abs/1906.06672},
      year = {2019}
    }
    
  8. M. Gander, L. Halpern, J. Rannou, and J. Ryan, “A Direct Time Parallel Solver by Diagonalization for the Wave Equation,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A220–A245, 2019 [Online]. Available at: https://doi.org/10.1137/17M1148347
    @article{GanderEtAl2019,
      author = {Gander, M. and Halpern, L. and Rannou, J. and Ryan, J.},
      doi = {10.1137/17M1148347},
      journal = {SIAM Journal on Scientific Computing},
      number = {1},
      pages = {A220--A245},
      title = {A Direct Time Parallel Solver by Diagonalization for the Wave Equation},
      url = {https://doi.org/10.1137/17M1148347},
      volume = {41},
      year = {2019}
    }
    
  9. M. Gander, Y. Jiang, and B. Song, “A Superlinear Convergence Estimate for the Parareal Schwarz Waveform Relaxation Algorithm,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. A1148–A1169, 2019 [Online]. Available at: https://doi.org/10.1137/18M1177226
    @article{GanderEtAl2019b,
      author = {Gander, M. and Jiang, Y. and Song, B.},
      doi = {10.1137/18M1177226},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {A1148--A1169},
      title = {A Superlinear Convergence Estimate for the Parareal Schwarz Waveform Relaxation Algorithm},
      url = {https://doi.org/10.1137/18M1177226},
      volume = {41},
      year = {2019}
    }
    
  10. M. J. Gander, I. Kulchytska-Ruchka, I. Niyonzima, and S. Schöps, “A New Parareal Algorithm for Problems with Discontinuous Sources,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. B375–B395, 2019 [Online]. Available at: https://doi.org/10.1137/18M1175653
    @article{GanderEtAl2019c,
      author = {Gander, Martin J. and Kulchytska-Ruchka, Iryna and Niyonzima, Innocent and Schöps, Sebastian},
      doi = {10.1137/18M1175653},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {B375--B395},
      title = {A New Parareal Algorithm for Problems with Discontinuous Sources},
      url = {https://doi.org/10.1137/18M1175653},
      volume = {41},
      year = {2019}
    }
    
  11. M. J. Gander and S.-L. Wu, “Convergence analysis of a periodic-like waveform relaxation method for initial-value problems via the diagonalization technique,” Numerische Mathematik, vol. 143, no. 2, pp. 489–527, Jun. 2019 [Online]. Available at: https://doi.org/10.1007/s00211-019-01060-8
    @article{GanderEtAl2019d,
      author = {Gander, Martin J. and Wu, Shu-Lin},
      doi = {10.1007/s00211-019-01060-8},
      journal = {Numerische Mathematik},
      month = jun,
      number = {2},
      pages = {489--527},
      publisher = {Springer Science and Business Media {LLC}},
      title = {Convergence analysis of a periodic-like waveform relaxation method for initial-value problems via the diagonalization technique},
      url = {https://doi.org/10.1007/s00211-019-01060-8},
      volume = {143},
      year = {2019}
    }
    
  12. S. Götschel and M. L. Minion, “An Efficient Parallel-in-Time Method for Optimization with Parabolic PDEs,” SIAM Journal on Scientific Computing, vol. 41, no. 6, pp. C603–C626, Jan. 2019 [Online]. Available at: https://doi.org/10.1137/19m1239313
    @article{GötschelEtAl2019,
      author = {Götschel, Sebastian and Minion, Michael L.},
      doi = {10.1137/19m1239313},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {6},
      pages = {C603--C626},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {An Efficient Parallel-in-Time Method for Optimization with Parabolic {PDEs}},
      url = {https://doi.org/10.1137/19m1239313},
      volume = {41},
      year = {2019}
    }
    
  13. F. Hédin and T. Lelièvre, “gen.parRep: A first implementation of the Generalized Parallel Replica dynamics for the long time simulation of metastable biochemical systems,” Computer Physics Communications, 2019 [Online]. Available at: https://doi.org/10.1016/j.cpc.2019.01.005
    @article{HedinLelievre2019,
      author = {Hédin, Florent and Lelièvre, Tony},
      doi = {10.1016/j.cpc.2019.01.005},
      journal = {Computer Physics Communications},
      title = {gen.parRep: A first implementation of the Generalized Parallel Replica dynamics for the long time simulation of metastable biochemical systems},
      url = {https://doi.org/10.1016/j.cpc.2019.01.005},
      year = {2019}
    }
    
  14. J. Hong, X. Wang, and L. Zhang, “Parareal Exponential \textdollar}theta\textdollar-Scheme for Longtime Simulation of Stochastic Schrödinger Equations with Weak Damping,” SIAM Journal on Scientific Computing, vol. 41, no. 6, pp. B1155–B1177, Jan. 2019 [Online]. Available at: https://doi.org/10.1137/18m1176749
    @article{HongEtAl2019,
      author = {Hong, Jialin and Wang, Xu and Zhang, Liying},
      doi = {10.1137/18m1176749},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {6},
      pages = {B1155--B1177},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Parareal Exponential {\textdollar}{\textbackslash}theta{\textdollar}-Scheme for Longtime Simulation of Stochastic Schrödinger Equations with Weak Damping},
      url = {https://doi.org/10.1137/18m1176749},
      volume = {41},
      year = {2019}
    }
    
  15. A. Howse, H. Sterck, R. Falgout, S. MacLachlan, and J. Schroder, “Parallel-In-Time Multigrid with Adaptive Spatial Coarsening for The Linear Advection and Inviscid Burgers Equations,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A538–A565, 2019 [Online]. Available at: https://dx.doi.org/10.1137/17M1144982
    @article{HowseEtAl2019,
      author = {Howse, A. and Sterck, H. and Falgout, R. and MacLachlan, S. and Schroder, J.},
      doi = {10.1137/17M1144982},
      journal = {SIAM Journal on Scientific Computing},
      number = {1},
      pages = {A538--A565},
      title = {Parallel-In-Time Multigrid with Adaptive Spatial Coarsening for The Linear Advection and Inviscid Burgers Equations},
      url = {https://dx.doi.org/10.1137/17M1144982},
      volume = {41},
      year = {2019}
    }
    
  16. O. A. Krzysik, H. D. Sterck, S. P. MacLachlan, and S. Friedhoff, “On selecting coarse-grid operators for Parareal and MGRIT applied to linear advection,” arXiv:1902.07757 [math.NA], 2019 [Online]. Available at: https://arxiv.org/abs/1902.07757
    @unpublished{KrzysikEtAl2019,
      author = {Krzysik, Oliver A. and Sterck, Hans De and MacLachlan, Scott P. and Friedhoff, Stephanie},
      howpublished = {arXiv:1902.07757 [math.NA]},
      title = {On selecting coarse-grid operators for Parareal and MGRIT applied to linear advection},
      url = {https://arxiv.org/abs/1902.07757},
      year = {2019}
    }
    
  17. F. Kwok and B. Ong, “Schwarz Waveform Relaxation with Adaptive Pipelining,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A339–A364, 2019 [Online]. Available at: https://doi.org/10.1137/17M115311X
    @article{KwokOng2019,
      author = {Kwok, F. and Ong, B.},
      doi = {10.1137/17M115311X},
      journal = {SIAM Journal on Scientific Computing},
      number = {1},
      pages = {A339--A364},
      title = {Schwarz Waveform Relaxation with Adaptive Pipelining},
      url = {https://doi.org/10.1137/17M115311X},
      volume = {41},
      year = {2019}
    }
    
  18. S. Li, R. Chen, and X. Shao, “Parallel two-level space–time hybrid Schwarz method for solving linear parabolic equations,” Applied Numerical Mathematics, vol. 139, pp. 120–135, 2019 [Online]. Available at: https://doi.org/10.1016/j.apnum.2019.01.016
    @article{LiEtAl2019,
      author = {Li, Shishun and Chen, Rongliang and Shao, Xinping},
      doi = {10.1016/j.apnum.2019.01.016},
      journal = {Applied Numerical Mathematics},
      pages = {120--135},
      title = {Parallel two-level space–time hybrid Schwarz method for solving linear parabolic equations},
      url = {https://doi.org/10.1016/j.apnum.2019.01.016},
      volume = {139},
      year = {2019}
    }
    
  19. S. Li, X. Shao, and X.-C. Cai, “Highly parallel space-time domain decomposition methods for parabolic problems,” CCF Transactions on High Performance Computing, 2019 [Online]. Available at: https://doi.org/10.1007/s42514-019-00003-x
    @article{LiEtAl2019b,
      author = {Li, Shishun and Shao, Xinping and Cai, Xiao-Chuan},
      doi = {10.1007/s42514-019-00003-x},
      journal = {CCF Transactions on High Performance Computing},
      title = {Highly parallel space-time domain decomposition methods for parabolic problems},
      url = {https://doi.org/10.1007/s42514-019-00003-x},
      year = {2019}
    }
    
  20. V. Mele, D. Romano, E. M. Constantinescu, L. Carracciuolo, and L. D’Amore, “Performance Evaluation for a PETSc Parallel-in-Time Solver Based on the MGRIT Algorithm,” in Euro-Par 2018: Parallel Processing Workshops, 2019, pp. 716–728 [Online]. Available at: https://doi.org/10.1002/cpe.4928
    @inproceedings{MeleEtAl2019,
      author = {Mele, Valeria and Romano, Diego and Constantinescu, Emil M. and Carracciuolo, Luisa and D'Amore, Luisa},
      booktitle = {Euro-Par 2018: Parallel Processing Workshops},
      doi = {10.1002/cpe.4928},
      editor = {Mencagli, Gabriele and B. Heras, Dora and Cardellini, Valeria and Casalicchio, Emiliano and Jeannot, Emmanuel and Wolf, Felix and Salis, Antonio and Schifanella, Claudio and Manumachu, Ravi Reddy and Ricci, Laura and Beccuti, Marco and Antonelli, Laura and Garcia Sanchez, Jos{\'e} Daniel and Scott, Stephen L.},
      pages = {716--728},
      publisher = {Springer International Publishing},
      title = {Performance Evaluation for a PETSc Parallel-in-Time Solver Based on the MGRIT Algorithm},
      url = {https://doi.org/10.1002/cpe.4928},
      year = {2019}
    }
    
  21. M. Neumüller and I. Smears, “Time-Parallel Iterative Solvers for Parabolic Evolution Equations,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. C28–C51, 2019 [Online]. Available at: https://doi.org/10.1137/18M1172466
    @article{NeumuellerSmears2019,
      author = {Neum{\"u}ller, M. and Smears, I.},
      doi = {10.1137/18M1172466},
      journal = {SIAM Journal on Scientific Computing},
      number = {1},
      pages = {C28--C51},
      title = {Time-Parallel Iterative Solvers for Parabolic Evolution Equations},
      url = {https://doi.org/10.1137/18M1172466},
      volume = {41},
      year = {2019}
    }
    
  22. A. G. Peddle, T. Haut, and B. Wingate, “Parareal Convergence for Oscillatory PDEłowercases with Finite Time-Scale Separation,” SIAM Journal on Scientific Computing, vol. 41, no. 6, pp. A3476–A3497, Jan. 2019 [Online]. Available at: https://doi.org/10.1137/17m1131611
    @article{PeddleEtAl2019,
      author = {Peddle, Adam G. and Haut, Terry and Wingate, Beth},
      doi = {10.1137/17m1131611},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {6},
      pages = {A3476--A3497},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Parareal Convergence for Oscillatory {PDE}{\l}owercases with Finite Time-Scale Separation},
      url = {https://doi.org/10.1137/17m1131611},
      volume = {41},
      year = {2019}
    }
    
  23. Rosa-Raı́ces Jorge L., B. Zhang, and T. F. Miller, “Path-accelerated stochastic molecular dynamics: Parallel-in-time integration using path integrals,” The Journal of Chemical Physics, vol. 151, no. 16, p. 164120, Oct. 2019 [Online]. Available at: https://doi.org/10.1063/1.5125455
    @article{Rosa-RaícesEtAl2019,
      author = {Rosa-Ra{\'{\i}}ces, Jorge L. and Zhang, Bin and Miller, Thomas F.},
      doi = {10.1063/1.5125455},
      journal = {The Journal of Chemical Physics},
      month = oct,
      number = {16},
      pages = {164120},
      publisher = {{AIP} Publishing},
      title = {Path-accelerated stochastic molecular dynamics: Parallel-in-time integration using path integrals},
      url = {https://doi.org/10.1063/1.5125455},
      volume = {151},
      year = {2019}
    }
    
  24. D. Samaddar, D. P. Coster, X. Bonnin, L. A. Berry, W. R. Elwasif, and D. B. Batchelor, “Application of the parareal algorithm to simulations of ELMs in ITER plasma,” Computer Physics Communications, vol. 235, pp. 246–257, 2019 [Online]. Available at: https://doi.org/10.1016/j.cpc.2018.08.007
    @article{SamaddarEtAl2019,
      author = {Samaddar, D. and Coster, D.P. and Bonnin, X. and Berry, L.A. and Elwasif, W.R. and Batchelor, D.B.},
      doi = {10.1016/j.cpc.2018.08.007},
      journal = {Computer Physics Communications},
      pages = {246--257},
      title = {Application of the parareal algorithm to simulations of {ELM}s in {ITER} plasma},
      url = {https://doi.org/10.1016/j.cpc.2018.08.007},
      volume = {235},
      year = {2019}
    }
    
  25. M. Schreiber, N. Schaeffer, and R. Loft, “Exponential Integrators with Parallel-in-Time Rational Approximations for Shallow-Water Equations on the Rotating Sphere,” Parallel Computing, 2019 [Online]. Available at: https://dx.doi.org/10.1016/j.parco.2019.01.005
    @article{SchreiberLoft2019,
      author = {Schreiber, M. and Schaeffer, N. and Loft, R.},
      doi = {10.1016/j.parco.2019.01.005},
      journal = {Parallel Computing},
      title = {Exponential Integrators with Parallel-in-Time Rational Approximations for Shallow-Water Equations on the Rotating Sphere},
      url = {https://dx.doi.org/10.1016/j.parco.2019.01.005},
      year = {2019}
    }
    
  26. M. Schreiber and R. Loft, “A parallel time integrator for solving the linearized shallow water equations on the rotating sphere,” Numerical Linear Algebra with Applications, vol. 26, no. 2, p. e2220, 2019 [Online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2220
    @article{SchreiberLoft2019b,
      author = {Schreiber, Martin and Loft, Richard},
      doi = {10.1002/nla.2220},
      journal = {Numerical Linear Algebra with Applications},
      number = {2},
      pages = {e2220},
      title = {A parallel time integrator for solving the linearized shallow water equations on the rotating sphere},
      url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2220},
      volume = {26},
      year = {2019}
    }
    
  27. B. S. Southworth, “Necessary Conditions and Tight Two-level Convergence Bounds for Parareal and Multigrid Reduction in Time,” SIAM J. Matrix Anal. Appl., vol. 40, no. 2, pp. 564–608, 2019.
    @article{Southworth2019,
      author = {Southworth, Ben S.},
      doi = {https://doi.org/10.1137/18M1226208},
      journal = {SIAM J. Matrix Anal. Appl.},
      number = {2},
      pages = {564--608},
      title = {Necessary {C}onditions and {T}ight {T}wo-level {C}onvergence {B}ounds for {P}arareal and {M}ultigrid {R}eduction in {T}ime},
      volume = {40},
      year = {2019}
    }
    
  28. R. Speck, “Algorithm 997: pySDC - Prototyping Spectral Deferred Corrections,” ACM Transactions on Mathematical Software, vol. 45, no. 3, pp. 1–23, Aug. 2019 [Online]. Available at: https://doi.org/10.1145/3310410
    @article{Speck2019,
      author = {Speck, Robert},
      doi = {10.1145/3310410},
      journal = {{ACM} Transactions on Mathematical Software},
      month = aug,
      number = {3},
      pages = {1--23},
      publisher = {Association for Computing Machinery ({ACM})},
      title = {Algorithm 997: pySDC - Prototyping Spectral Deferred Corrections},
      url = {https://doi.org/10.1145/3310410},
      volume = {45},
      year = {2019}
    }
    
  29. R. Speck, M. Knobloch, A. Gocht, and S. Lührs, “Using performance analysis tools for parallel-in-time integrators – Does my time-parallel code do what I think it does?,” arXiv:1911.13027v1 [cs.PF], 2019 [Online]. Available at: http://arxiv.org/abs/1911.13027v1
    @unpublished{SpeckEtAl2019,
      author = {Speck, Robert and Knobloch, Michael and Gocht, Andreas and Lührs, Sebastian},
      howpublished = {arXiv:1911.13027v1 [cs.PF]},
      title = {Using performance analysis tools for parallel-in-time integrators -- Does my time-parallel code do what I think it does?},
      url = {http://arxiv.org/abs/1911.13027v1},
      year = {2019}
    }
    
  30. S. Wang, Y. Shao, and Z. Peng, “A Parallel-in-Space-and-Time Method for Transient Electromagnetic Problems,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 6, pp. 3961–3973, 2019 [Online]. Available at: https://doi.org/10.1109/TAP.2019.2909937
    @article{WangEtSl2019,
      author = {Wang, S. and Shao, Y. and Peng, Z.},
      doi = {10.1109/TAP.2019.2909937},
      journal = {IEEE Transactions on Antennas and Propagation},
      number = {6},
      pages = {3961-3973},
      title = {A Parallel-in-Space-and-Time Method for Transient Electromagnetic Problems},
      url = {https://doi.org/10.1109/TAP.2019.2909937},
      volume = {67},
      year = {2019}
    }
    
  31. S.-L. Wu and T. Zhou, “Acceleration of the Two-Level MGRIT Algorithm via the Diagonalization Technique,” SIAM Journal on Scientific Computing, vol. 41, no. 5, pp. A3421–A3448, Jan. 2019 [Online]. Available at: https://doi.org/10.1137/18m1207697
    @article{WuEtAl2019,
      author = {Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1137/18m1207697},
      journal = {{SIAM} Journal on Scientific Computing},
      month = jan,
      number = {5},
      pages = {A3421--A3448},
      publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})},
      title = {Acceleration of the Two-Level {MGRIT} Algorithm via the Diagonalization Technique},
      url = {https://doi.org/10.1137/18m1207697},
      volume = {41},
      year = {2019}
    }
    
  32. L. Zhang, W. Zhou, and L. Ji, “Parareal algorithms applied to stochastic differential equations with conserved quantities,” Journal of Computational Mathematics, vol. 37, no. 1, pp. 48–60, 2019 [Online]. Available at: https://doi.org/10.4208/jcm.1708-m2017-0089
    @article{ZhangEtAl2019,
      author = {Zhang, Liying and Zhou, Weien and Ji, Lihai},
      doi = {10.4208/jcm.1708-m2017-0089},
      journal = {Journal of Computational Mathematics},
      number = {1},
      pages = {48--60},
      title = {Parareal algorithms applied to stochastic differential equations with conserved quantities},
      url = {https://doi.org/10.4208/jcm.1708-m2017-0089},
      volume = {37},
      year = {2019}
    }
    
top

2018

  1. S. Badia and M. Olm, “Nonlinear parallel-in-time Schur complement solvers for ordinary differential equations,” Journal of Computational and Applied Mathematics, vol. 344, pp. 794–806, 2018 [Online]. Available at: https://doi.org/10.1016/j.cam.2017.09.033
    @article{BadiaEtAl2018,
      author = {Badia, Santiago and Olm, Marc},
      doi = {10.1016/j.cam.2017.09.033},
      journal = {Journal of Computational and Applied Mathematics},
      pages = {794--806},
      title = {Nonlinear parallel-in-time Schur complement solvers for ordinary differential equations},
      url = {https://doi.org/10.1016/j.cam.2017.09.033},
      volume = {344},
      year = {2018}
    }
    
  2. P. Benedusi, C. Garoni, R. Krause, X. Li, and S. Serra-Capizzano, “Space-Time FE-DG Discretization of the Anisotropic Diffusion Equation in Any Dimension: The Spectral Symbol,” SIAM Journal on Matrix Analysis and Applications, vol. 39, no. 3, pp. 1383–1420, 2018 [Online]. Available at: https://doi.org/10.1137/17M113527X
    @article{BenedusiEtAl2018,
      author = {Benedusi, Pietro and Garoni, Carlo and Krause, Rolf and Li, Xiaozhou and Serra-Capizzano, Stefano},
      doi = {10.1137/17M113527X},
      journal = {SIAM Journal on Matrix Analysis and Applications},
      number = {3},
      pages = {1383-1420},
      title = {Space-Time FE-DG Discretization of the Anisotropic Diffusion Equation in Any Dimension: The Spectral Symbol},
      url = {https://doi.org/10.1137/17M113527X},
      volume = {39},
      year = {2018}
    }
    
  3. M. Bolten, D. Moser, and R. Speck, “Asymptotic convergence of the parallel full approximation scheme in space and time for linear problems,” Numerical Linear Algebra with Applications, vol. 25, no. 6, p. e2208, 2018 [Online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2208
    @article{BoltenEtAl2018,
      author = {Bolten, Matthias and Moser, Dieter and Speck, Robert},
      doi = {10.1002/nla.2208},
      journal = {Numerical Linear Algebra with Applications},
      number = {6},
      pages = {e2208},
      title = {Asymptotic convergence of the parallel full approximation scheme in space and time for linear problems},
      url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2208},
      volume = {25},
      year = {2018}
    }
    
  4. Manuel Borregales and Kundan Kumar and Florin Adrian Radu and Carmen Rodrigo and Francisco José Gaspar, “A partially parallel-in-time fixed-stress splitting method for Biot’s consolidation model,” Computers & Mathematics with Applications, 2018 [Online]. Available at: https://doi.org/10.1016/j.camwa.2018.09.005
    @article{BorregalesEtAl2018,
      author = {{Manuel Borregales and Kundan Kumar and Florin Adrian Radu and Carmen Rodrigo and Francisco Jos{\'e} Gaspar}},
      doi = {10.1016/j.camwa.2018.09.005},
      journal = {Computers \& Mathematics with Applications},
      title = {{A partially parallel-in-time fixed-stress splitting method for Biot’s consolidation model}},
      url = {https://doi.org/10.1016/j.camwa.2018.09.005},
      year = {2018}
    }
    
  5. S. Bu, “Time parallelization scheme with an adaptive time step size for solving stiff initial value problems,” Open Mathematics, vol. 16, no. 1, pp. 210–218, 2018 [Online]. Available at: https://doi.org/10.1515/math-2018-0022
    @article{Bu2018,
      author = {Bu, Sunyoung},
      doi = {10.1515/math-2018-0022},
      issue = {1},
      journal = {Open Mathematics},
      pages = {210--218},
      title = {Time parallelization scheme with an adaptive time step size for solving stiff initial value problems},
      url = {https://doi.org/10.1515/math-2018-0022},
      volume = {16},
      year = {2018}
    }
    
  6. L. D’Amore and R. Cacciapuoti, “DD-DA PinT-based model: A Domain Decomposition approach in space and time, based on Parareal, for solving the 4D-Var Data Assimilation model,” arXiv:1807.07107 [math.NA], 2018 [Online]. Available at: https://arxiv.org/abs/1807.07107
    @unpublished{DamoreEtAl2018,
      author = {D'Amore, Luisa and Cacciapuoti, Rosalba},
      howpublished = {arXiv:1807.07107 [math.NA]},
      title = {DD-DA PinT-based model: A Domain Decomposition approach in space and time, based on Parareal, for solving the 4D-Var Data Assimilation model},
      url = {https://arxiv.org/abs/1807.07107},
      year = {2018}
    }
    
  7. N. Duan, S. Simunovic, A. Dimitrovski, and K. Sun, “Improving the Convergence Rate of Parareal-in-time Power System Simulation using the Krylov Subspace,” in 2018 IEEE Power Energy Society General Meeting (PESGM), 2018, pp. 1–5 [Online]. Available at: https://dx.doi.org/10.1109/PESGM.2018.8586354
    @inproceedings{DuanEtAl2018,
      author = {{Duan}, N. and {Simunovic}, S. and {Dimitrovski}, A. and {Sun}, K.},
      booktitle = {2018 IEEE Power Energy Society General Meeting (PESGM)},
      doi = {10.1109/PESGM.2018.8586354},
      pages = {1--5},
      title = {Improving the Convergence Rate of Parareal-in-time Power System Simulation using the {K}rylov Subspace},
      url = {https://dx.doi.org/10.1109/PESGM.2018.8586354},
      year = {2018}
    }
    
  8. R. Dyja, B. Ganapathysubramanian, and K. G. van der Zee, “Parallel-In-Space-Time, Adaptive Finite Element Framework for Nonlinear Parabolic Equations,” SIAM Journal on Scientific Computing, vol. 40, no. 3, pp. C283–C304, 2018 [Online]. Available at: https://doi.org/10.1137/16M108985X
    @article{DyjaEtal2018,
      author = {Dyja, Robert and Ganapathysubramanian, Baskar and van der Zee, Kristoffer G.},
      doi = {10.1137/16M108985X},
      journal = {SIAM Journal on Scientific Computing},
      number = {3},
      pages = {C283--C304},
      title = {Parallel-In-Space-Time, Adaptive Finite Element Framework for Nonlinear Parabolic Equations},
      url = {https://doi.org/10.1137/16M108985X},
      volume = {40},
      year = {2018}
    }
    
  9. L. Fischer, S. Götschel, and M. Weiser, “Lossy data compression reduces communication time in hybrid time-parallel integrators,” Computing and Visualization in Science, vol. 19, no. 1, pp. 19–30, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0293-2
    @article{FischerEtAl2018,
      author = {Fischer, L. and G\"otschel, S. and Weiser, M.},
      doi = {10.1007/s00791-018-0293-2},
      journal = {Computing and Visualization in Science},
      number = {1},
      pages = {19--30},
      title = {Lossy data compression reduces communication time in hybrid time-parallel integrators},
      url = {https://doi.org/10.1007/s00791-018-0293-2},
      volume = {19},
      year = {2018}
    }
    
  10. S. R. Franco, F. J. Gaspar, M. A. V. Pinto, and C. Rodrigo, “Multigrid method based on a space-time approach with standard coarsening for parabolic problems,” Applied Mathematics and Computation, vol. 317, no. Supplement C, pp. 25–34, 2018 [Online]. Available at: https://doi.org/10.1016/j.amc.2017.08.043
    @article{FrancoEtAl2018,
      author = {Franco, Sebasti\~{a}o Romero and Gaspar, Francisco Jos\'{e} and Pinto, Marcio Augusto Villela and Rodrigo, Carmen},
      doi = {10.1016/j.amc.2017.08.043},
      journal = {Applied Mathematics and Computation},
      number = {Supplement C},
      pages = {25--34},
      title = {Multigrid method based on a space-time approach with standard coarsening for parabolic problems},
      url = {https://doi.org/10.1016/j.amc.2017.08.043},
      volume = {317},
      year = {2018}
    }
    
  11. S. R. Franco, C. Rodrigo, F. J. Gaspar, and M. A. V. Pinto, “A multigrid waveform relaxation method for solving the poroelasticity equations,” Computational and Applied Mathematics, pp. 1–16, 2018 [Online]. Available at: https://doi.org/10.1007/s40314-018-0603-9
    @article{FrancoEtAl2018a,
      author = {Franco, Sebasti\~{a}o Romero and Rodrigo, Carmen and Gaspar, Francisco Jos\'{e} and Pinto, Marcio Augusto Villela},
      doi = {10.1007/s40314-018-0603-9},
      journal = {Computational and Applied Mathematics},
      pages = {1--16},
      title = {A multigrid waveform relaxation method for solving the poroelasticity equations},
      url = {https://doi.org/10.1007/s40314-018-0603-9},
      year = {2018}
    }
    
  12. H. Fu and H. Wang, “A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation,” Journal of Scientific Computing, 2018 [Online]. Available at: https://doi.org/10.1007/s10915-018-0835-2
    @article{FuWang2018,
      author = {Fu, Hongfei and Wang, Hong},
      doi = {10.1007/s10915-018-0835-2},
      journal = {Journal of Scientific Computing},
      title = {A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation},
      url = {https://doi.org/10.1007/s10915-018-0835-2},
      year = {2018}
    }
    
  13. M. J. Gander, S. Güttel, and M. Petcu, “A Nonlinear ParaExp Algorithm,” in Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2018, pp. 261–270 [Online]. Available at: https://doi.org/10.1007/978-3-319-93873-8_24
    @incollection{GanderEtAl2018,
      author = {Gander, Martin J. and Güttel, Stefan and Petcu, Madalina},
      booktitle = {Lecture Notes in Computational Science and Engineering},
      doi = {10.1007/978-3-319-93873-8_24},
      pages = {261--270},
      publisher = {Springer International Publishing},
      title = {A Nonlinear {ParaExp} Algorithm},
      url = {https://doi.org/10.1007/978-3-319-93873-8_24},
      year = {2018}
    }
    
  14. M. J. Gander, F. Kwok, and H. Zhang, “Multigrid interpretations of the parareal algorithm leading to an overlapping variant and MGRIT,” Computing and Visualization in Science, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0297-y
    @article{GanderEtAl2018_cvs,
      author = {Gander, Martin J. and Kwok, Felix and Zhang, Hui},
      doi = {10.1007/s00791-018-0297-y},
      journal = {Computing and Visualization in Science},
      title = {Multigrid interpretations of the parareal algorithm leading to an overlapping variant and MGRIT},
      url = {https://doi.org/10.1007/s00791-018-0297-y},
      year = {2018}
    }
    
  15. A. Goddard and A. Wathen, “A note on parallel preconditioning for all-at-once evolutionary PDEs,” pp. 135–150, 2018 [Online]. Available at: https://dx.doi.org/10.1553/etna_vol51s135
    @article{GoddenWathen2018,
      address = {Wien},
      author = {Goddard, Anthony and Wathen, Andy},
      doi = {10.1553/etna_vol51s135},
      editor = {Ronny Ramlau, Lothar Reichel (Hg.)},
      pages = {135-150},
      publisher = {Verlag der Österreichischen Akademie der Wissenschaften},
      title = {A note on parallel preconditioning for all-at-once evolutionary PDEs},
      url = {https://dx.doi.org/10.1553/etna_vol51s135},
      year = {2018}
    }
    
  16. S. Götschel and M. L. Minion, “Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST,” in Domain Decomposition Methods in Science and Engineering XXIV, 2018, pp. 363–371 [Online]. Available at: https://doi.org/10.1007/978-3-319-93873-8_34
    @inproceedings{GoetschelMinion2018,
      author = {G\"otschel, Sebastian and Minion, Michael L.},
      booktitle = {Domain Decomposition Methods in Science and Engineering {XXIV}},
      doi = {10.1007/978-3-319-93873-8_34},
      editor = {Bj{\o}rstad, Petter E. and Brenner, Susanne C. and Halpern, Lawrence and Kim, Hyea Hyun and Kornhuber, Ralf and Rahman, Talal and Widlund, Olof B.},
      pages = {363--371},
      publisher = {Springer International Publishing},
      title = {Parallel-in-Time for Parabolic Optimal Control Problems Using {PFASST}},
      url = {https://doi.org/10.1007/978-3-319-93873-8_34},
      year = {2018}
    }
    
  17. S. Günther, N. R. Gauger, and J. B. Schroder, “A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library,” Computing and Visualization in Science, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0300-7
    @article{GuentherEtAl2018,
      author = {G\"unther, S. and Gauger, N. R. and Schroder, J. B.},
      doi = {10.1007/s00791-018-0300-7},
      journal = {Computing and Visualization in Science},
      title = {A Non-Intrusive Parallel-in-Time Adjoint Solver with the {XBraid} Library},
      url = {https://doi.org/10.1007/s00791-018-0300-7},
      year = {2018}
    }
    
  18. A. Hessenthaler, D. Nordsletten, O. Röhrle, J. B. Schroder, and R. D. Falgout, “Convergence of the multigrid reduction in time algorithm for the linear elasticity equations,” Numerical Linear Algebra with Applications, vol. 25, no. 3, p. e2155, 2018 [Online]. Available at: https://dx.doi.org/10.1002/nla.2155
    @article{HessenthalerEtAl2018,
      author = {Hessenthaler, A. and Nordsletten, D. and Röhrle, O. and Schroder, J. B. and Falgout, R. D.},
      doi = {10.1002/nla.2155},
      journal = {Numerical Linear Algebra with Applications},
      number = {3},
      pages = {e2155},
      title = {Convergence of the multigrid reduction in time algorithm for the linear elasticity equations},
      url = {https://dx.doi.org/10.1002/nla.2155},
      volume = {25},
      year = {2018}
    }
    
  19. J. T. Hwang and D. Munster, “Solution of ordinary differential equations in gradient-based multidisciplinary design optimization,” in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, 2018 [Online]. Available at: https://doi.org/10.2514/6.2018-1646
    @inbook{HwangMunster2018,
      author = {Hwang, John T. and Munster, Drayton},
      booktitle = {2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference},
      doi = {doi:10.2514/6.2018-1646},
      publisher = {American Institute of Aeronautics and Astronautics},
      title = {Solution of ordinary differential equations in gradient-based multidisciplinary design optimization},
      url = {https://doi.org/10.2514/6.2018-1646},
      year = {2018}
    }
    
  20. M. Iizuka and K. Ono, “Influence of the phase accuracy of the coarse solver calculation on the convergence of the parareal method iteration for hyperbolic PDEs,” Computing and Visualization in Science, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0299-9
    @article{IizukaEtAl2018,
      author = {Iizuka, Mikio and Ono, Kenji},
      doi = {10.1007/s00791-018-0299-9},
      journal = {Computing and Visualization in Science},
      title = {Influence of the phase accuracy of the coarse solver calculation on the convergence of the parareal method iteration for hyperbolic PDEs},
      url = {https://doi.org/10.1007/s00791-018-0299-9},
      year = {2018}
    }
    
  21. G. L. Kooij, M. A. Botchev, and B. J. Geurts, “An Exponential Time Integrator for the Incompressible Navier–Stokes Equation,” SIAM Journal on Scientific Computing, vol. 40, no. 3, pp. B684–B705, 2018 [Online]. Available at: https://doi.org/10.1137/17M1121950
    @article{KooijEtAl2018,
      author = {Kooij, Gijs L. and Botchev, Mike A. and Geurts, Bernard J.},
      doi = {10.1137/17M1121950},
      journal = {SIAM Journal on Scientific Computing},
      number = {3},
      pages = {B684--B705},
      title = {An Exponential Time Integrator for the Incompressible Navier--Stokes Equation},
      url = {https://doi.org/10.1137/17M1121950},
      volume = {40},
      year = {2018}
    }
    
  22. C. Lederman and D. Bilyeu, “An Approximate Time-Parallel Method for the Fast and Accurate Computation of Particle Trajectories in a Magnetic Field,” Journal of Applied Mathematics and Physics, vol. 6, pp. 498–519, 2018 [Online]. Available at: https://doi.org/10.4236/jamp.2018.63046
    @article{LedermanBilyeu2018,
      author = {Lederman, Carl and Bilyeu, David},
      doi = {10.4236/jamp.2018.63046 },
      journal = {Journal of Applied Mathematics and Physics},
      pages = {498--519},
      title = {An Approximate Time-Parallel Method for the Fast and Accurate Computation of Particle Trajectories in a Magnetic Field},
      url = {https://doi.org/10.4236/jamp.2018.63046},
      volume = {6},
      year = {2018}
    }
    
  23. J. Liang and M. C. Lin, “Time-Domain Parallelization for Accelerating Cloth Simulation,” Computer Graphics Forum, vol. 37, no. 8, pp. 21–34, 2018 [Online]. Available at: https://dx.doi.org/10.1111/cgf.13509
    @article{LiangLin2018,
      author = {Liang, Junbang and Lin, Ming C.},
      doi = {10.1111/cgf.13509},
      journal = {Computer Graphics Forum},
      number = {8},
      pages = {21--34},
      title = {Time-Domain Parallelization for Accelerating Cloth Simulation},
      url = {https://dx.doi.org/10.1111/cgf.13509},
      volume = {37},
      year = {2018}
    }
    
  24. T. Lunet, J. Bodart, S. Gratton, and X. Vasseur, “Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening,” Computing and Visualization in Science, vol. 19, no. 1, pp. 31–44, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0295-0
    @article{LunetEtAl2018,
      author = {Lunet, Thibaut and Bodart, Julien and Gratton, Serge and Vasseur, Xavier},
      doi = {10.1007/s00791-018-0295-0},
      journal = {Computing and Visualization in Science},
      number = {1},
      pages = {31--44},
      title = {Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening},
      url = {https://doi.org/10.1007/s00791-018-0295-0},
      volume = {19},
      year = {2018}
    }
    
  25. Y. Maday and O. Mula, “A Scalable Adaptive Parareal Algorithm With Online Stopping Criterion,” hal-01781257, version 1, 2018 [Online]. Available at: https://hal.archives-ouvertes.fr/hal-01781257/
    @unpublished{MadayMula2018,
      author = {Maday, Yvon and Mula, Olga},
      howpublished = {hal-01781257, version 1},
      title = {A Scalable Adaptive Parareal Algorithm With Online Stopping Criterion},
      url = {https://hal.archives-ouvertes.fr/hal-01781257/},
      year = {2018}
    }
    
  26. F. Magoulès, G. Gbikpi-Benissan, and Q. Zou, “Asynchronous Iterations of Parareal Algorithm for Option Pricing Models,” Mathematics, vol. 6, no. 4, 2018 [Online]. Available at: https://doi.org/10.3390/math6040045
    @article{MagoulesEtAl2018,
      author = {Magoul{\`e}s, Fr{\'e}d{\'e}ric and Gbikpi-Benissan, Guillaume and Zou, Qinmeng},
      doi = {10.3390/math6040045},
      journal = {Mathematics},
      number = {4},
      title = {Asynchronous Iterations of Parareal Algorithm for Option Pricing Models},
      url = {https://doi.org/10.3390/math6040045},
      volume = {6},
      year = {2018}
    }
    
  27. T. Manteuffel, J. Ruge, and B. Southworth, “Nonsymmetric Algebraic Multigrid Based on Local Approximate Ideal Restriction,” SIAM Journal on Scientific Computing, vol. 40, no. 6, pp. A4105–A4130, 2018.
    @article{MaRuSo2018,
      author = {Manteuffel, T. and Ruge, J. and Southworth, B.},
      journal = {SIAM Journal on Scientific Computing},
      number = {6},
      pages = {A4105--A4130},
      title = {Nonsymmetric Algebraic Multigrid Based on Local Approximate Ideal Restriction},
      volume = {40},
      year = {2018}
    }
    
  28. V. Mele, E. M. Constantinescu, L. Carracciuolo, and L. D’Amore, “A PETSc parallel-in-time solver based on MGRIT algorithm,” Concurrency and Computation: Practice and Experience, vol. 0, no. 0, p. e4928, 2018 [Online]. Available at: https://dx.doi.org/10.1002/cpe.4928
    @article{MeleEtAl2018,
      author = {Mele, Valeria and Constantinescu, Emil M. and Carracciuolo, Luisa and D'Amore, Luisa},
      doi = {10.1002/cpe.4928},
      journal = {Concurrency and Computation: Practice and Experience},
      number = {0},
      pages = {e4928},
      title = {{A PETSc parallel-in-time solver based on MGRIT algorithm}},
      url = {https://dx.doi.org/10.1002/cpe.4928},
      volume = {0},
      year = {2018}
    }
    
  29. Z. Miao, Y.-L. Jiang, and Y.-B. Yang, “Convergence analysis of a parareal-in-time algorithm for the incompressible non-isothermal flows,” International Journal of Computer Mathematics, vol. 0, no. 0, pp. 1–18, 2018 [Online]. Available at: https://doi.org/10.1080/00207160.2018.1498484
    @article{MiaoEtAl2018,
      author = {Miao, Zhen and Jiang, Yao-Lin and Yang, Yun-Bo},
      doi = {10.1080/00207160.2018.1498484},
      journal = {International Journal of Computer Mathematics},
      number = {0},
      pages = {1--18},
      title = {Convergence analysis of a parareal-in-time algorithm for the incompressible non-isothermal flows},
      url = {https://doi.org/10.1080/00207160.2018.1498484},
      volume = {0},
      year = {2018}
    }
    
  30. S. A. Morton, “An Implicit BDF2 Time-Parallel Algorithm for Solving Convection Diffusion Equations,” in 2018 AIAA Aerospace Sciences Meeting, 2018 [Online]. Available at: https://doi.org/10.2514/6.2018-1046
    @inbook{Morton2018,
      author = {Morton, Scott A.},
      booktitle = {2018 AIAA Aerospace Sciences Meeting},
      doi = {doi:10.2514/6.2018-1046},
      title = {An Implicit BDF2 Time-Parallel Algorithm for Solving Convection Diffusion Equations},
      url = {https://doi.org/10.2514/6.2018-1046},
      year = {2018}
    }
    
  31. A. S. Nielsen, G. Brunner, and J. S. Hesthaven, “Communication-aware adaptive parareal with application to a nonlinear hyperbolic system of partial differential equations,” Journal of Computational Physics, 2018 [Online]. Available at: https://doi.org/10.1016/j.jcp.2018.04.056
    @article{NielsenEtAl2018,
      author = {Nielsen, Allan S. and Brunner, Gilles and Hesthaven, Jan S.},
      doi = {10.1016/j.jcp.2018.04.056},
      journal = {Journal of Computational Physics},
      title = {Communication-aware adaptive parareal with application to a nonlinear hyperbolic system of partial differential equations},
      url = {https://doi.org/10.1016/j.jcp.2018.04.056},
      year = {2018}
    }
    
  32. B. W. Ong and B. C. Mandal, “Pipeline implementations of Neumann–Neumann and Dirichlet–Neumann waveform relaxation methods,” Numerical Algorithms, vol. 78, no. 1, pp. 1–20, May 2018 [Online]. Available at: https://doi.org/10.1007/s11075-017-0364-3
    @article{OngMandal2018,
      author = {Ong, Benjamin W. and Mandal, Bankim C.},
      day = {01},
      doi = {10.1007/s11075-017-0364-3},
      journal = {Numerical Algorithms},
      month = may,
      number = {1},
      pages = {1--20},
      title = {{Pipeline implementations of Neumann--Neumann and Dirichlet--Neumann waveform relaxation methods}},
      url = {https://doi.org/10.1007/s11075-017-0364-3},
      volume = {78},
      year = {2018}
    }
    
  33. G. Pagès, O. Pironneau, and G. Sall, “The Parareal Algorithm for American Options,” SIAM Journal on Financial Mathematics, vol. 9, no. 3, pp. 966–993, 2018 [Online]. Available at: https://doi.org/10.1137/17M1138832
    @article{PagesEtAl2018,
      author = {Pagès, G. and Pironneau, O. and Sall, G.},
      doi = {10.1137/17M1138832},
      journal = {SIAM Journal on Financial Mathematics},
      number = {3},
      pages = {966--993},
      title = {The Parareal Algorithm for American Options},
      url = {https://doi.org/10.1137/17M1138832},
      volume = {9},
      year = {2018}
    }
    
  34. D. Ruprecht, “Wave propagation characteristics of Parareal,” Computing and Visualization in Science, vol. 19, no. 1, pp. 1–17, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0296-z
    @article{Ruprecht2018,
      author = {Ruprecht, D.},
      doi = {10.1007/s00791-018-0296-z},
      journal = {Computing and Visualization in Science},
      number = {1},
      pages = {1--17},
      title = {Wave propagation characteristics of Parareal},
      url = {https://doi.org/10.1007/s00791-018-0296-z},
      volume = {19},
      year = {2018}
    }
    
  35. G. Samaey and T. Slawig, “A micro/macro parallel-in-time (parareal) algorithm applied to a climate model with discontinuous non-monotone coefficients and oscillatory forcing,” arXiv:1806.04442 [math.NA], 2018 [Online]. Available at: https://arxiv.org/abs/1806.04442
    @unpublished{SamaeyEtAl2018,
      author = {Samaey, Giovanni and Slawig, Thomas},
      howpublished = {arXiv:1806.04442 [math.NA]},
      title = {A micro/macro parallel-in-time (parareal) algorithm applied to a climate model with discontinuous non-monotone coefficients and oscillatory forcing},
      url = {https://arxiv.org/abs/1806.04442},
      year = {2018}
    }
    
  36. A. Schmitt, M. Schreiber, P. Peixoto, and M. Schäfer, “A numerical study of a semi-Lagrangian Parareal method applied to the viscous Burgers equation,” Computing and Visualization in Science, vol. 19, no. 1, pp. 45–57, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0294-1
    @article{SchmittEtAl2018,
      author = {Schmitt, A. and Schreiber, M. and Peixoto, P. and Sch{\"a}fer, M.},
      doi = {10.1007/s00791-018-0294-1},
      journal = {Computing and Visualization in Science},
      number = {1},
      pages = {45--57},
      title = {A numerical study of a semi-Lagrangian Parareal method applied to the viscous Burgers equation},
      url = {https://doi.org/10.1007/s00791-018-0294-1},
      volume = {19},
      year = {2018}
    }
    
  37. S. Schöps, I. Niyonzima, and M. Clemens, “Parallel-In-Time Simulation of Eddy Current Problems Using Parareal,” IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1–4, 2018 [Online]. Available at: https://dx.doi.org/10.1109/TMAG.2017.2763090
    @article{SchoepsEtAl2018,
      author = {Schöps, Sebastian and Niyonzima, Innocent and Clemens, Markus},
      doi = {10.1109/TMAG.2017.2763090},
      journal = {IEEE Transactions on Magnetics},
      number = {3},
      pages = {1--4},
      title = {Parallel-In-Time Simulation of Eddy Current Problems Using Parareal},
      url = {https://dx.doi.org/10.1109/TMAG.2017.2763090},
      volume = {54},
      year = {2018}
    }
    
  38. M. Schreiber, P. S. Peixoto, T. Haut, and B. Wingate, “Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems,” The International Journal of High Performance Computing Applications, vol. 32, no. 6, pp. 913–933, 2018 [Online]. Available at: https://doi.org/10.1177/1094342016687625
    @article{SchreiberEtAl2018,
      author = {Schreiber, Martin and Peixoto, Pedro S and Haut, Terry and Wingate, Beth},
      doi = {10.1177/1094342016687625},
      journal = {The International Journal of High Performance Computing Applications},
      number = {6},
      pages = {913--933},
      title = {Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems},
      url = {https://doi.org/10.1177/1094342016687625},
      volume = {32},
      year = {2018}
    }
    
  39. M. Schreiber and R. Loft, “A parallel time integrator for solving the linearized shallow water equations on the rotating sphere,” Numerical Linear Algebra with Applications, 2018 [Online]. Available at: https://doi.org/10.1002/nla.2220
    @article{SchreiberLoft2018,
      author = {Schreiber, M. and Loft, R.},
      doi = {10.1002/nla.2220},
      journal = {Numerical Linear Algebra with Applications},
      title = {A parallel time integrator for solving the linearized shallow water equations on the rotating sphere},
      url = {https://doi.org/10.1002/nla.2220},
      year = {2018}
    }
    
  40. J. B. Schroder, R. D. Falgout, C. S. Woodward, P. Top, and M. Lecouvez, “Parallel-in-Time Solution of Power Systems with Scheduled Events,” in 2018 IEEE Power & Energy Society General Meeting (PESGM), 2018, pp. 1–5.
    @inproceedings{SchroderEtAl2018,
      author = {Schroder, Jacob B and Falgout, Robert D and Woodward, Carol S and Top, Philip and Lecouvez, Matthieu},
      booktitle = {2018 IEEE Power \& Energy Society General Meeting (PESGM)},
      organization = {IEEE},
      pages = {1--5},
      title = {Parallel-in-Time Solution of Power Systems with Scheduled Events},
      year = {2018}
    }
    
  41. R. Speck, “Parallelizing spectral deferred corrections across the method,” Computing and Visualization in Science, 2018 [Online]. Available at: https://doi.org/10.1007/s00791-018-0298-x
    @article{Speck2018,
      author = {Speck, Robert},
      doi = {10.1007/s00791-018-0298-x},
      journal = {Computing and Visualization in Science},
      title = {Parallelizing spectral deferred corrections across the method},
      url = {https://doi.org/10.1007/s00791-018-0298-x},
      year = {2018}
    }
    
  42. W. Subber and A. Sarkar, “A Parallel Time Integrator for Noisy Nonlinear Oscillatory Systems,” Journal of Computational Physics, 2018 [Online]. Available at: https://doi.org/10.1016/j.jcp.2018.01.019
    @article{Subber2018,
      author = {Subber, Waad and Sarkar, Abhijit},
      doi = {10.1016/j.jcp.2018.01.019},
      journal = {Journal of Computational Physics},
      title = {A Parallel Time Integrator for Noisy Nonlinear Oscillatory Systems},
      url = {https://doi.org/10.1016/j.jcp.2018.01.019},
      year = {2018}
    }
    
  43. S. Wu, “Toward Parallel Coarse Grid Correction for the Parareal Algorithm,” SIAM Journal on Scientific Computing, vol. 40, no. 3, pp. A1446–A1472, 2018 [Online]. Available at: https://doi.org/10.1137/17M1141102
    @article{Wu2018,
      author = {Wu, S.},
      doi = {10.1137/17M1141102},
      journal = {SIAM Journal on Scientific Computing},
      number = {3},
      pages = {A1446--A1472},
      title = {Toward Parallel Coarse Grid Correction for the Parareal Algorithm},
      url = {https://doi.org/10.1137/17M1141102},
      volume = {40},
      year = {2018}
    }
    
  44. S.-L. Wu and T. Zhou, “Parareal algorithms with local time-integrators for time fractional differential equations,” Journal of Computational Physics, vol. 358, pp. 135–149, 2018 [Online]. Available at: https://doi.org/10.1016/j.jcp.2017.12.029
    @article{WuZhou2018_JCP,
      author = {Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1016/j.jcp.2017.12.029},
      journal = {Journal of Computational Physics},
      pages = {135--149},
      title = {Parareal algorithms with local time-integrators for time fractional differential equations},
      url = {https://doi.org/10.1016/j.jcp.2017.12.029},
      volume = {358},
      year = {2018}
    }
    
  45. G. R. Yalla and B. Engquist, “Parallel in Time Algorithms for Multiscale Dynamical Systems Using Interpolation and Neural Networks,” in Proceedings of the High Performance Computing Symposium, 2018, pp. 9:1–9:12 [Online]. Available at: http://dl.acm.org/citation.cfm?id=3213069.3213078
    @inproceedings{YallaEnquist2018,
      articleno = {9},
      author = {Yalla, Gopal R. and Engquist, Bjorn},
      booktitle = {Proceedings of the High Performance Computing Symposium},
      pages = {9:1--9:12},
      publisher = {Society for Computer Simulation International},
      series = {HPC '18},
      title = {Parallel in Time Algorithms for Multiscale Dynamical Systems Using Interpolation and Neural Networks},
      url = {http://dl.acm.org/citation.cfm?id=3213069.3213078},
      year = {2018}
    }
    
  46. X. Q. Yue, S. Shu, X. W. Xu, W. P. Bu, and K. J. Pan, “Parallel-in-Time with Fully Finite Element Multigrid for 2-D Space-fractional Diffusion Equations,” arXiv:1805.06688 [math.NA], 2018 [Online]. Available at: https://arxiv.org/abs/1805.06688v1
    @unpublished{YueEtAl2018,
      author = {Yue, X.~Q. and Shu, S. and Xu, X.~W. and Bu, W.~P. and Pan, K.~J.},
      howpublished = {arXiv:1805.06688 [math.NA]},
      title = {Parallel-in-Time with Fully Finite Element Multigrid for 2-D Space-fractional Diffusion Equations},
      url = {https://arxiv.org/abs/1805.06688v1},
      year = {2018}
    }
    
  47. S. Zhu and S. Weng, “A parallel spectral deferred correction method for first-order evolution problems,” BIT Numerical Mathematics, pp. 1–28, 2018 [Online]. Available at: https://doi.org/10.1007/s10543-018-0702-4
    @article{ZhuWeng2018,
      author = {Zhu, Shuai and Weng, Shilie},
      doi = {10.1007/s10543-018-0702-4},
      journal = {BIT Numerical Mathematics},
      pages = {1--28},
      title = {A parallel spectral deferred correction method for first-order evolution problems},
      url = {https://doi.org/10.1007/s10543-018-0702-4},
      year = {2018}
    }
    
top

2017

  1. G. Ariel, H. Nguyen, and R. Tsai, “θ-parareal schemes,” arXiv:1704.06882 [math.NA], 2017 [Online]. Available at: https://arxiv.org/abs/1704.06882
    @unpublished{ArielEtAl2017,
      author = {Ariel, Gil and Nguyen, Hieu and Tsai, Richard},
      howpublished = {arXiv:1704.06882 [math.NA]},
      title = {$\theta$-parareal schemes},
      url = {https://arxiv.org/abs/1704.06882},
      year = {2017}
    }
    
  2. S. Badia and M. Olm, “Space-Time Balancing Domain Decomposition,” SIAM Journal on Scientific Computing, vol. 39, no. 2, pp. C194–C213, 2017 [Online]. Available at: https://doi.org/10.1137/16M1074266
    @article{BadiaEtAl2017,
      author = {Badia, Santiago and Olm, Marc},
      doi = {10.1137/16M1074266},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {C194--C213},
      title = {Space-Time Balancing Domain Decomposition},
      url = {https://doi.org/10.1137/16M1074266},
      volume = {39},
      year = {2017}
    }
    
  3. P. Belliveau and E. Haber, “Coupled simulation of electromagnetic induction and IP effects using stretched exponential relaxation,” Geophysics, pp. 1–61, 2017 [Online]. Available at: https://doi.org/10.1190/geo2017-0494.1
    @article{BelliveauHaber2017,
      author = {Belliveau, Patrick and Haber, Eldad},
      doi = {10.1190/geo2017-0494.1},
      journal = {Geophysics},
      pages = {1-–61},
      title = {Coupled simulation of electromagnetic induction and {IP} effects using stretched exponential relaxation},
      url = {https://doi.org/10.1190/geo2017-0494.1},
      year = {2017}
    }
    
  4. E. Blayo, A. Rousseau, and M. Tayachi, “Boundary conditions and Schwarz waveform relaxation method for linear viscous Shallow Water equations in hydrodynamics,” The SMAI journal of computational mathematics, vol. 3, pp. 117–137, 2017 [Online]. Available at: https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_2017__3__117_0
    @article{BlayoEtAl2017,
      author = {Blayo, Eric and Rousseau, Antoine and Tayachi, Manel},
      doi = {10.5802/smai-jcm.22},
      journal = {The SMAI journal of computational mathematics},
      language = {en},
      pages = {117-137},
      publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
      title = {Boundary conditions and Schwarz waveform relaxation method for linear viscous Shallow Water equations in hydrodynamics},
      url = {https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_2017__3__117_0},
      volume = {3},
      year = {2017}
    }
    
  5. M. Bolten, D. Moser, and R. Speck, “A multigrid perspective on the parallel full approximation scheme in space and time,” Numerical Linear Algebra with Applications, vol. 24, no. 6, p. e2110, 2017 [Online]. Available at: https://dx.doi.org/10.1002/nla.2110
    @article{BoltenEtAl2017,
      author = {Bolten, Matthias and Moser, Dieter and Speck, Robert},
      doi = {10.1002/nla.2110},
      journal = {Numerical Linear Algebra with Applications},
      number = {6},
      pages = {e2110},
      title = {A multigrid perspective on the parallel full approximation scheme in space and time},
      url = {https://dx.doi.org/10.1002/nla.2110},
      volume = {24},
      year = {2017}
    }
    
  6. V. A. Dobrev, T. Kolev, N. A. Petersson, and J. B. Schroder, “Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT),” SIAM Journal on Scientific Computing, vol. 39, no. 5, pp. S501–S527, 2017 [Online]. Available at: https://doi.org/10.1137/16M1074096
    @article{DobrevEtAl2017,
      author = {Dobrev, V.~A. and Kolev, Tz. and Petersson, N.~A. and Schroder, J.~B.},
      doi = {10.1137/16M1074096},
      journal = {SIAM Journal on Scientific Computing},
      number = {5},
      pages = {S501--S527},
      title = {Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT)},
      url = {https://doi.org/10.1137/16M1074096},
      volume = {39},
      year = {2017}
    }
    
  7. R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder, “Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study,” SIAM Journal on Scientific Computing, vol. 39, no. 5, pp. S298–S322, 2017 [Online]. Available at: https://doi.org/10.1137/16M1082330
    @article{FalgoutEtAl2017,
      author = {Falgout, R.~D. and Manteuffel, T.~A. and O'Neill, B. and Schroder, J.~B.},
      doi = {10.1137/16M1082330},
      journal = {SIAM Journal on Scientific Computing},
      number = {5},
      pages = {S298--S322},
      title = {Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study},
      url = {https://doi.org/10.1137/16M1082330},
      volume = {39},
      year = {2017}
    }
    
  8. R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, J. B. Schroder, and S. Vandewalle, “Multigrid methods with space–time concurrency,” Computing and Visualization in Science, vol. 18, no. 4, pp. 123–143, 2017 [Online]. Available at: https://doi.org/10.1007/s00791-017-0283-9
    @article{FalgoutEtAl2017b,
      author = {Falgout, R.~D. and Friedhoff, S. and Kolev, Tz.~V. and MacLachlan, S. P. and Schroder, J.~B. and Vandewalle, S.},
      doi = {10.1007/s00791-017-0283-9},
      journal = {Computing and Visualization in Science},
      number = {4},
      pages = {123--143},
      title = {Multigrid methods with space--time concurrency},
      url = {https://doi.org/10.1007/s00791-017-0283-9},
      volume = {18},
      year = {2017}
    }
    
  9. M. J. Gander and L. Halpern, “Time Parallelization for Nonlinear Problems Based on Diagonalization,” in Domain Decomposition Methods in Science and Engineering XXIII, 2017, pp. 163–170 [Online]. Available at: https://doi.org/10.1007/978-3-319-52389-7_15
    @inproceedings{GanderHalpern2017,
      author = {Gander, Martin J. and Halpern, Laurence},
      booktitle = {Domain Decomposition Methods in Science and Engineering {XXIII}},
      doi = {10.1007/978-3-319-52389-7_15},
      editor = {Lee, Chang-Ock and Cai, Xiao-Chuan and Keyes, David E. and Kim, Hyea Hyun and Klawonn, Axel and Park, Eun-Jae and Widlund, Olof B.},
      pages = {163--170},
      publisher = {Springer International Publishing},
      title = {Time Parallelization for Nonlinear Problems Based on Diagonalization},
      url = {https://doi.org/10.1007/978-3-319-52389-7_15},
      year = {2017}
    }
    
  10. F. J. Gaspar and C. Rodrigo, “Multigrid Waveform Relaxation for the Time-Fractional Heat Equation,” SIAM Journal on Scientific Computing, vol. 39, no. 4, pp. A1201–A1224, 2017 [Online]. Available at: https://doi.org/10.1137/16M1090193
    @article{GasparRodrigo2017,
      author = {Gaspar, Francisco J. and Rodrigo, Carmen},
      doi = {10.1137/16M1090193},
      journal = {SIAM Journal on Scientific Computing},
      number = {4},
      pages = {A1201--A1224},
      title = {Multigrid Waveform Relaxation for the Time-Fractional Heat Equation},
      url = {https://doi.org/10.1137/16M1090193},
      volume = {39},
      year = {2017}
    }
    
  11. S. Han and O. A. Bauchau, “Parallel Time-Integration of Flexible Multibody Dynamics Based on Newton-Waveform Method,” in 13th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, 2017, vol. 6 [Online]. Available at: https://dx.doi.org/10.1115/DETC2017-68232
    @inproceedings{HanEtAl2017,
      author = {Han, Shilei and Bauchau, Olivier A.},
      booktitle = {13th International Conference on Multibody Systems, Nonlinear Dynamics, and Control},
      doi = {10.1115/DETC2017-68232},
      title = {Parallel Time-Integration of Flexible Multibody Dynamics Based on Newton-Waveform Method},
      url = {https://dx.doi.org/10.1115/DETC2017-68232},
      volume = {6},
      year = {2017}
    }
    
  12. A. J. M. Howse, “Nonlinear Preconditioning Methods for Optimization and Parallel-In-Time Methods for 1D Scalar Hyperbolic Partial Differential Equations,” PhD thesis, UWSpace, 2017 [Online]. Available at: http://hdl.handle.net/10012/12559
    @phdthesis{Howse2017,
      author = {Howse, Alexander James Maxwell},
      publisher = {UWSpace},
      title = {Nonlinear Preconditioning Methods for Optimization and Parallel-In-Time Methods for 1D Scalar Hyperbolic Partial Differential Equations},
      url = {http://hdl.handle.net/10012/12559},
      year = {2017}
    }
    
  13. J. Jansson and J. Hoffman, “Direct FEM parallel-in-time computation of turbulent flow,” 2017 [Online]. Available at: http://www.csc.kth.se/ jjan/publications/pit_preprint_2017-08-09.pdf
    @unpublished{JanssonEtAl2017,
      author = {Jansson, Johan and Hoffman, Johan},
      howpublished. = {KTH Preprint},
      title = {Direct FEM parallel-in-time computation of turbulent flow},
      url = {http://www.csc.kth.se/~jjan/publications/pit_preprint_2017-08-09.pdf},
      year = {2017}
    }
    
  14. G. L. Kooij, M. A. Botchev, and B. J. Geurts, “A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations,” Journal of Computational and Applied Mathematics, vol. 316, pp. 229–246, 2017 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2016.09.036
    @article{KooijEtAl2017,
      author = {Kooij, G.L. and Botchev, M.A. and Geurts, B.J.},
      doi = {10.1016/j.cam.2016.09.036},
      journal = {Journal of Computational and Applied Mathematics},
      note = {Selected Papers from NUMDIFF-14},
      pages = {229--246},
      title = {A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations},
      url = {http://dx.doi.org/10.1016/j.cam.2016.09.036},
      volume = {316},
      year = {2017}
    }
    
  15. A. Kreienbuehl, P. Benedusi, D. Ruprecht, and R. Krause, “Time-parallel gravitational collapse simulation,” Communications in Applied Mathematics and Computational Science, vol. 12, no. 1, pp. 109–128, 2017 [Online]. Available at: http://dx.doi.org/10.2140/camcos.2017.12.109
    @article{KreienbuehlEtAl2017,
      author = {Kreienbuehl, Andreas and Benedusi, Pietro and Ruprecht, Daniel and Krause, Rolf},
      doi = {10.2140/camcos.2017.12.109},
      issue = {1},
      journal = {Communications in Applied Mathematics and Computational Science},
      pages = {109--128},
      title = {Time-parallel gravitational collapse simulation},
      url = {http://dx.doi.org/10.2140/camcos.2017.12.109},
      volume = {12},
      year = {2017}
    }
    
  16. T. M. Masthay and S. Perugini, “Parareal Algorithm Implementation and Simulation in Julia,” arXiv:1706.08569v1 [cs.MS], 2017 [Online]. Available at: https://arxiv.org/pdf/1706.08569.pdf
    @unpublished{MasthayEtAl2017,
      author = {Masthay, Tyler M. and Perugini, Saverio},
      howpublished = {arXiv:1706.08569v1 [cs.MS]},
      title = {Parareal Algorithm Implementation and Simulation in Julia},
      url = {https://arxiv.org/pdf/1706.08569.pdf},
      year = {2017}
    }
    
  17. M. Merkel, I. Niyonzima, and S. Schöps, “ParaExp Using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations,” Radio Science, vol. 52, no. 12, pp. 1558–1569, 2017 [Online]. Available at: https://dx.doi.org/10.1002/2017RS006357
    @article{MerkelEtAl2017,
      author = {Merkel, Melina and Niyonzima, Innocent and Schöps, Sebastian},
      doi = {10.1002/2017RS006357},
      journal = {Radio Science},
      number = {12},
      pages = {1558--1569},
      title = {ParaExp Using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations},
      url = {https://dx.doi.org/10.1002/2017RS006357},
      volume = {52},
      year = {2017}
    }
    
  18. W. Pazner and P.-O. Persson, “Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations,” Journal of Computational Physics, vol. 335, pp. 700–717, 2017 [Online]. Available at: https://doi.org/10.1016/j.jcp.2017.01.050
    @article{Pazner2017700,
      author = {Pazner, Will and Persson, Per-Olof},
      doi = {10.1016/j.jcp.2017.01.050},
      journal = {Journal of Computational Physics},
      pages = {700--717},
      title = {{Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations}},
      url = {https://doi.org/10.1016/j.jcp.2017.01.050},
      volume = {335},
      year = {2017}
    }
    
  19. D. Perez, R. Huang, and A. F. Voter, “Long-time molecular dynamics simulations on massively parallel platforms: A comparison of parallel replica dynamics and parallel trajectory splicing,” Journal of Materials Research, pp. 1–10, 2017 [Online]. Available at: https://dx.doi.org/10.1557/jmr.2017.456
    @article{PerezEtAl2017,
      author = {Perez, Danny and Huang, Rao and Voter, Arthur F.},
      doi = {10.1557/jmr.2017.456},
      journal = {Journal of Materials Research},
      pages = {1-–10},
      title = {Long-time molecular dynamics simulations on massively parallel platforms: A comparison of parallel replica dynamics and parallel trajectory splicing},
      url = {https://dx.doi.org/10.1557/jmr.2017.456},
      year = {2017}
    }
    
  20. D. Ruprecht, “Shared Memory Pipelined Parareal,” in Euro-Par 2017: Parallel Processing: 23rd International Conference on Parallel and Distributed Computing, Santiago de Compostela, Spain, August 28 – September 1, 2017, Proceedings, F. F. Rivera, T. F. Pena, and J. C. Cabaleiro, Eds. Springer International Publishing, 2017, pp. 669–681 [Online]. Available at: https://doi.org/10.1007/978-3-319-64203-1_48
    @inbook{Ruprecht2017_lncs,
      author = {Ruprecht, Daniel},
      booktitle = {Euro-Par 2017: Parallel Processing: 23rd International Conference on Parallel and Distributed Computing, Santiago de Compostela, Spain, August 28 -- September 1, 2017, Proceedings},
      doi = {10.1007/978-3-319-64203-1_48},
      editor = {Rivera, Francisco F. and Pena, Tom{\'a}s F. and Cabaleiro, Jos{\'e} C.},
      pages = {669--681},
      publisher = {Springer International Publishing},
      title = {Shared Memory Pipelined Parareal},
      url = {https://doi.org/10.1007/978-3-319-64203-1_48},
      year = {2017}
    }
    
  21. R. Speck and D. Ruprecht, “Toward fault-tolerant parallel-in-time integration with PFASST ,” Parallel Computing, vol. 62, pp. 20–37, 2017 [Online]. Available at: http://dx.doi.org/10.1016/j.parco.2016.12.001
    @article{SpeckRuprecht2017,
      author = {Speck, Robert and Ruprecht, Daniel},
      doi = {10.1016/j.parco.2016.12.001},
      journal = {Parallel Computing},
      pages = {20--37},
      title = {Toward fault-tolerant parallel-in-time integration with {PFASST} },
      url = {http://dx.doi.org/10.1016/j.parco.2016.12.001},
      volume = {62},
      year = {2017}
    }
    
  22. S. Wang and Z. Peng, “Space-time parallel computation for time-domain Maxwell’s equations,” in 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), 2017, pp. 1680–1683 [Online]. Available at: http://ieeexplore.ieee.org/document/8065615/
    @inproceedings{WangPeng2017,
      author = {Wang, S. and Peng, Z.},
      booktitle = {2017 International Conference on Electromagnetics in Advanced Applications (ICEAA)},
      doi = {10.1109/ICEAA.2017.8065615},
      month = sep,
      number = {},
      pages = {1680--1683},
      title = {Space-time parallel computation for time-domain Maxwell's equations},
      url = {http://ieeexplore.ieee.org/document/8065615/},
      volume = {},
      year = {2017}
    }
    
  23. S.-L. Wu, “Three rapidly convergent parareal solvers with application to time-dependent PDEs with fractional Laplacian,” Mathematical Methods in the Applied Sciences, 2017 [Online]. Available at: http://dx.doi.org/10.1002/mma.4273
    @article{Wu2017,
      author = {Wu, Shu-Lin},
      doi = {10.1002/mma.4273},
      journal = {Mathematical Methods in the Applied Sciences},
      title = {Three rapidly convergent parareal solvers with application to time-dependent PDEs with fractional Laplacian},
      url = {http://dx.doi.org/10.1002/mma.4273},
      year = {2017}
    }
    
  24. S.-L. Wu, “An efficient parareal algorithm for a class of time-dependent problems with fractional Laplacian,” Applied Mathematics and Computation, vol. 307, pp. 329–341, 2017 [Online]. Available at: http://dx.doi.org/10.1016/j.amc.2017.02.012
    @article{Wu2017b,
      author = {Wu, Shu-Lin},
      doi = {10.1016/j.amc.2017.02.012},
      journal = {Applied Mathematics and Computation},
      pages = {329--341},
      title = {An efficient parareal algorithm for a class of time-dependent problems with fractional Laplacian},
      url = {http://dx.doi.org/10.1016/j.amc.2017.02.012},
      volume = {307},
      year = {2017}
    }
    
  25. S.-L. Wu and T.-Z. Huang, “A fast second-order parareal solver for fractional optimal control problems,” Journal of Vibration and Control, vol. 0, no. 0, p. 1077546317705557, 2017 [Online]. Available at: http://dx.doi.org/10.1177/1077546317705557
    @article{WuEtAl2017,
      author = {Wu, Shu-Lin and Huang, Ting-Zhu},
      doi = {10.1177/1077546317705557},
      journal = {Journal of Vibration and Control},
      number = {0},
      pages = {1077546317705557},
      title = {A fast second-order parareal solver for fractional optimal control problems},
      url = {http://dx.doi.org/10.1177/1077546317705557},
      volume = {0},
      year = {2017}
    }
    
top

2016

  1. M. Alhubail and Q. Wang, “The swept rule for breaking the latency barrier in time advancing PDEs,” Journal of Computational Physics, vol. 307, pp. 110–121, 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2015.11.026
    @article{AlhubailEtAl2016,
      author = {Alhubail, Maitham and Wang, Qiqi},
      doi = {10.1016/j.jcp.2015.11.026},
      journal = {Journal of Computational Physics},
      pages = {110--121},
      title = {The swept rule for breaking the latency barrier in time advancing {PDEs}},
      url = {http://dx.doi.org/10.1016/j.jcp.2015.11.026},
      volume = {307},
      year = {2016}
    }
    
  2. M. Astorino, F. Chouly, and A. Quarteroni, “A Time-Parallel Framework for Coupling Finite Element and Lattice Boltzmann Methods,” Applied Mathematics Research eXpress, vol. 2016, no. 1, pp. 24–67, 2016 [Online]. Available at: http://dx.doi.org/10.1093/amrx/abv009
    @article{Astorino2016,
      author = {Astorino, Matteo and Chouly, Franz and Quarteroni, Alfio},
      doi = {10.1093/amrx/abv009},
      journal = {Applied Mathematics Research eXpress},
      number = {1},
      pages = {24--67},
      title = {A Time-Parallel Framework for Coupling Finite Element and Lattice Boltzmann Methods},
      url = {http://dx.doi.org/10.1093/amrx/abv009},
      volume = {2016},
      year = {2016}
    }
    
  3. T. Beck, “In-Time Parallelization Of Atmospheric Chemical Kinetics,” PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2016 [Online]. Available at: http://archiv.ub.uni-heidelberg.de/volltextserver/20092/1/TBeck_Phd_a.pdf
    @phdthesis{Beck2016,
      author = {Beck, Teresa},
      school = {Ruprecht-Karls-Universit\"{a}t Heidelberg},
      title = {In-Time Parallelization Of Atmospheric Chemical Kinetics},
      url = {http://archiv.ub.uni-heidelberg.de/volltextserver/20092/1/TBeck_Phd_a.pdf},
      year = {2016}
    }
    
  4. P. Benedusi, D. Hupp, P. Arbenz, and R. Krause, “A Parallel Multigrid Solver for Time–periodic Incompressible Navier–Stokes Equations in 3D,” in Numerical Mathematics and Advanced Applications ENUMATH 2015, 2016, pp. 265–273 [Online]. Available at: https://doi.org/10.1007/978-3-319-39929-4_26
    @inproceedings{BenedusiEtAl2016,
      author = {Benedusi, P. and Hupp, D. and Arbenz, P. and Krause, R.},
      booktitle = {Numerical Mathematics and Advanced Applications ENUMATH 2015},
      doi = {10.1007/978-3-319-39929-4_26},
      organization = {Springer},
      pages = {265--273},
      title = {{A Parallel Multigrid Solver for Time--periodic Incompressible Navier--Stokes Equations in 3D}},
      url = {https://doi.org/10.1007/978-3-319-39929-4_26},
      year = {2016}
    }
    
  5. J. H. Chaudhry, D. Estep, S. Tavener, V. Carey, and J. Sandelin, “A Posteriori Error Analysis of Two-Stage Computation Methods with Application to Efficient Discretization and the Parareal Algorithm,” SIAM Journal on Numerical Analysis, vol. 54, no. 5, pp. 2974–3002, 2016 [Online]. Available at: http://dx.doi.org/10.1137/16M1079014
    @article{ChaudryEtAl2016,
      author = {Chaudhry, Jehanzeb Hameed and Estep, Don and Tavener, Simon and Carey, Varis and Sandelin, Jeff},
      doi = {10.1137/16M1079014},
      journal = {SIAM Journal on Numerical Analysis},
      number = {5},
      pages = {2974--3002},
      title = {A Posteriori Error Analysis of Two-Stage Computation Methods with Application to Efficient Discretization and the Parareal Algorithm},
      url = {http://dx.doi.org/10.1137/16M1079014},
      volume = {54},
      year = {2016}
    }
    
  6. F. De Vuyst, “Efficient solvers for time-dependent problems: a review of IMEX, LATIN, PARAEXP and PARAREAL algorithms for heat-type problems with potential use of approximate exponential integrators and reduced-order models,” Advanced Modeling and Simulation in Engineering Sciences, pp. 3–8, 2016 [Online]. Available at: http://dx.doi.org/10.1186/s40323-016-0063-y
    @article{DeVuyst2016,
      author = {De Vuyst, Florian},
      doi = {10.1186/s40323-016-0063-y},
      journal = {Advanced Modeling and Simulation in Engineering Sciences},
      pages = {3--8},
      title = {Efficient solvers for time-dependent problems: a review of {IMEX}, {LATIN}, {PARAEXP} and {PARAREAL} algorithms for heat-type problems with potential use of approximate exponential integrators and reduced-order models},
      url = {http://dx.doi.org/10.1186/s40323-016-0063-y},
      year = {2016}
    }
    
  7. A. Eghbal, A. G. Gerber, and E. Aubanel, “Acceleration of Unsteady Hydrodynamic Simulations Using the Parareal Algorithm,” Journal of Computational Science , vol. 19, pp. 57–76, 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.jocs.2016.12.006
    @article{EghbalEtAl2016,
      author = {Eghbal, Araz and Gerber, Andrew G. and Aubanel, Eric},
      doi = {10.1016/j.jocs.2016.12.006},
      journal = {Journal of Computational Science },
      pages = {57--76},
      title = {Acceleration of Unsteady Hydrodynamic Simulations Using the Parareal Algorithm},
      url = {http://dx.doi.org/10.1016/j.jocs.2016.12.006},
      volume = {19},
      year = {2016}
    }
    
  8. R. D. Falgout, T. A. Manteuffel, B. Southworth, and J. B. Schroder, “Parallel-In-Time For Moving Meshes,” Lawrence Livermore National Laboratory, 2016 [Online]. Available at: http://www.osti.gov/scitech/servlets/purl/1239230
    @techreport{FalgoutEtAl2016,
      author = {Falgout, R.~D. and Manteuffel, T.~A. and Southworth, B. and Schroder, J. B.},
      doi = {10.2172/1239230},
      institution = {Lawrence Livermore National Laboratory},
      title = {Parallel-In-Time For Moving Meshes},
      url = {http://www.osti.gov/scitech/servlets/purl/1239230},
      year = {2016}
    }
    
  9. H. Gahvari, V. A. Dobrev, R. D. Falgout, T. V. Kolev, J. B. Schroder, M. Schulz, and U. Meier Yang, “A Performance Model for Allocating the Parallelism in a Multigrid-in-Time Solver,” in 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems, 2016 [Online]. Available at: http://dx.doi.org/10.1109/PMBS.2016.8
    @inproceedings{GahvariEtAl2016,
      author = {Gahvari, Hormozd and Dobrev, Veselin A. and Falgout, Rob D. and Kolev, Tzanio V. and Schroder, Jacob B. and Schulz, Martin and {Meier Yang}, Ulrike},
      booktitle = {7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems},
      doi = {10.1109/PMBS.2016.8},
      title = {A Performance Model for Allocating the Parallelism in a Multigrid-in-Time Solver},
      url = {http://dx.doi.org/10.1109/PMBS.2016.8},
      year = {2016}
    }
    
  10. M. J. Gander, L. Halpern, J. Ryan, and T. T. B. Tran, “A Direct Solver for Time Parallelization,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, pp. 491–499 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-18827-0_50
    @inproceedings{GanderEtAl2016,
      author = {Gander, Martin J. and Halpern, Laurence and Ryan, Juliet and Tran, Thuy Thi Bich},
      booktitle = {Domain Decomposition Methods in Science and Engineering XXII},
      doi = {10.1007/978-3-319-18827-0_50},
      editor = {Dickopf, Thomas and Gander, Martin J. and Halpern, Laurence and Krause, Rolf and Pavarino, Luca F.},
      pages = {491--499},
      publisher = {Springer International Publishing},
      title = {{A Direct Solver for Time Parallelization}},
      url = {http://dx.doi.org/10.1007/978-3-319-18827-0_50},
      year = {2016}
    }
    
  11. R. GUETAT, “Coupling Parareal with Non-Overlapping Domain Decomposition Method,” Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, vol. Volume 23 - 2016 - Special..., Dec. 2016 [Online]. Available at: https://doi.org/10.46298/arima.1474
    @article{GUETAT2016,
      author = {GUETAT, Rim},
      doi = {10.46298/arima.1474},
      journal = {Revue Africaine de la Recherche en Informatique et Math{\'{e}}matiques Appliqu{\'{e}}es},
      month = dec,
      publisher = {Centre pour la Communication Scientifique Directe ({CCSD})},
      title = {Coupling Parareal with Non-Overlapping Domain Decomposition Method},
      url = {https://doi.org/10.46298/arima.1474},
      volume = {Volume 23 - 2016 - Special...},
      year = {2016}
    }
    
  12. G. Gurrala, A. Dimitrovski, S. Pannala, S. Simunovic, and M. Starke, “Parareal in Time for Fast Power System Dynamic Simulations,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 1820–1830, 2016 [Online]. Available at: http://dx.doi.org/10.1109/TPWRS.2015.2434833
    @article{GurralaEtAl2016,
      author = {{Gurrala}, G. and {Dimitrovski}, A. and {Pannala}, S. and {Simunovic}, S. and {Starke}, M.},
      doi = {10.1109/TPWRS.2015.2434833},
      journal = {IEEE Transactions on Power Systems},
      number = {3},
      pages = {1820--1830},
      title = {{Parareal in Time for Fast Power System Dynamic Simulations}},
      url = {http://dx.doi.org/10.1109/TPWRS.2015.2434833},
      volume = {31},
      year = {2016}
    }
    
  13. T. S. Haut, T. Babb, P. G. Martinsson, and B. A. Wingate, “A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator,” IMA Journal of Numerical Analysis, vol. 36, no. 2, pp. 688–716, 2016 [Online]. Available at: http://dx.doi.org/10.1093/imanum/drv021
    @article{Haut2016,
      author = {Haut, T.~S. and Babb, T. and Martinsson, P.~G. and Wingate, B.~A.},
      doi = {10.1093/imanum/drv021},
      journal = {IMA Journal of Numerical Analysis},
      number = {2},
      pages = {688--716},
      title = {A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator},
      url = {http://dx.doi.org/10.1093/imanum/drv021},
      volume = {36},
      year = {2016}
    }
    
  14. A. Lapin and A. Romanenko, “Udzawa-type iterative method with parareal preconditioner for a parabolic optimal control problem,” IOP Conference Series: Materials Science and Engineering, vol. 158, no. 1, p. 012059, 2016 [Online]. Available at: http://dx.doi.org/10.1088/1757-899X/158/1/012059
    @article{LapinEtAl2016,
      author = {Lapin, A and Romanenko, A},
      doi = {10.1088/1757-899X/158/1/012059},
      journal = {IOP Conference Series: Materials Science and Engineering},
      number = {1},
      pages = {012059},
      title = {Udzawa-type iterative method with parareal preconditioner for a parabolic optimal control problem},
      url = {http://dx.doi.org/10.1088/1757-899X/158/1/012059},
      volume = {158},
      year = {2016}
    }
    
  15. M. Lecouvez, R. D. Falgout, C. S. Woodward, and P. Top, “A parallel multigrid reduction in time method for power systems,” in 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016, pp. 1–5 [Online]. Available at: https://dx.doi.org/10.1109/PESGM.2016.7741520
    @inproceedings{Lecouvez2016,
      author = {{Lecouvez}, M. and {Falgout}, R.~D. and {Woodward}, C.~S. and {Top}, P.},
      booktitle = {2016 IEEE Power and Energy Society General Meeting (PESGM)},
      doi = {10.1109/PESGM.2016.7741520},
      pages = {1--5},
      title = {A parallel multigrid reduction in time method for power systems},
      url = {https://dx.doi.org/10.1109/PESGM.2016.7741520},
      year = {2016}
    }
    
  16. C. Lederman, R. Martin, and J.-L. Cambier, “Time-parallel solutions to differential equations via functional optimization,” Computational and Applied Mathematics, pp. 1–25, 2016 [Online]. Available at: http://dx.doi.org/10.1007/s40314-016-0319-7
    @article{Lederman2016,
      author = {Lederman, C. and Martin, R. and Cambier, J.-L.},
      doi = {10.1007/s40314-016-0319-7},
      journal = {Computational and Applied Mathematics},
      pages = {1--25},
      title = {Time-parallel solutions to differential equations via functional optimization},
      url = {http://dx.doi.org/10.1007/s40314-016-0319-7},
      year = {2016}
    }
    
  17. J. I. Leffell, J. Sitaraman, V. K. Lakshminarayan, and A. M. Wissink, “Towards Efficient Parallel-in-Time Simulation of Periodic Flows,” in 54th AIAA Aerospace Sciences Meeting, 2016 [Online]. Available at: http://dx.doi.org/10.2514/6.2016-0066
    @inproceedings{LeffellEtAl2016,
      author = {Leffell, Joshua I. and Sitaraman, Jayanarayanan and Lakshminarayan, Vinod K. and Wissink, Andrew M.},
      booktitle = {54th AIAA Aerospace Sciences Meeting},
      doi = {10.2514/6.2016-0066},
      publisher = {American Institute of Aeronautics and Astronautics},
      title = {Towards Efficient Parallel-in-Time Simulation of Periodic Flows},
      url = {http://dx.doi.org/10.2514/6.2016-0066},
      year = {2016}
    }
    
  18. S. Matsuoka, H. Amano, K. Nakajima, K. Inoue, T. Kudoh, N. Maruyama, K. Taura, T. Iwashita, T. Katagiri, T. Hanawa, and T. Endo, “From FLOPS to BYTES: Disruptive Change in High-performance Computing Towards the Post-moore Era,” in Proceedings of the ACM International Conference on Computing Frontiers, New York, NY, USA, 2016, pp. 274–281 [Online]. Available at: http://dx.doi.org/10.1145/2903150.2906830
    @inproceedings{MatsuokaEtAl2016,
      address = {New York, NY, USA},
      author = {Matsuoka, Satoshi and Amano, Hideharu and Nakajima, Kengo and Inoue, Koji and Kudoh, Tomohiro and Maruyama, Naoya and Taura, Kenjiro and Iwashita, Takeshi and Katagiri, Takahiro and Hanawa, Toshihiro and Endo, Toshio},
      booktitle = {Proceedings of the ACM International Conference on Computing Frontiers},
      doi = {10.1145/2903150.2906830},
      location = {Como, Italy},
      numpages = {8},
      pages = {274--281},
      publisher = {ACM},
      series = {CF '16},
      title = {From FLOPS to BYTES: Disruptive Change in High-performance Computing Towards the Post-moore Era},
      url = {http://dx.doi.org/10.1145/2903150.2906830},
      year = {2016}
    }
    
  19. M. Merkel, I. Niyonzima, and S. Schöps, “An Application of ParaExp to Electromagnetic Wave Problems,” in Proceedings of 2016 URSI International Symposium on Electromagnetic Theory (EMTS), 2016 [Online]. Available at: https://doi.org/10.1109/URSI-EMTS.2016.7571330
    @inproceedings{MerkelEtAl2016,
      author = {Merkel, Melina and Niyonzima, Innocent and Schöps, Sebastian},
      booktitle = {Proceedings of 2016 URSI International Symposium on Electromagnetic Theory (EMTS)},
      doi = {10.1109/URSI-EMTS.2016.7571330},
      editor = {Sihvola, Ari},
      note = {arXiv:1607.00368 [math.NA]},
      publisher = {IEEE},
      title = {An Application of ParaExp to Electromagnetic Wave Problems},
      url = {https://doi.org/10.1109/URSI-EMTS.2016.7571330},
      year = {2016}
    }
    
  20. M. J. Gander and M. Neumüller, “Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems,” SIAM Journal on Scientific Computing, vol. 38, no. 4, pp. A2173–A2208, 2016 [Online]. Available at: http://dx.doi.org/10.1137/15M1046605
    @article{NeumuellerGander2016,
      author = {Gander, Martin J. and Neum\"uller, Martin},
      doi = {10.1137/15M1046605},
      journal = {SIAM Journal on Scientific Computing},
      number = {4},
      pages = {A2173--A2208},
      title = {Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems},
      url = {http://dx.doi.org/10.1137/15M1046605},
      volume = {38},
      year = {2016}
    }
    
  21. A. S. Nielsen and J. S. Hesthaven, “Fault Tolerance in the Parareal Method,” in Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale, New York, NY, USA, 2016, pp. 1–8 [Online]. Available at: http://dx.doi.org/10.1145/2909428.2909431
    @inproceedings{NielsenHesthaven2016,
      acmid = {2909431},
      address = {New York, NY, USA},
      author = {Nielsen, Allan S. and Hesthaven, Jan S.},
      booktitle = {Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale},
      doi = {10.1145/2909428.2909431},
      isbn = {978-1-4503-4349-7},
      location = {Kyoto, Japan},
      numpages = {8},
      pages = {1--8},
      publisher = {ACM},
      series = {FTXS '16},
      title = {Fault Tolerance in the Parareal Method},
      url = {http://dx.doi.org/10.1145/2909428.2909431},
      year = {2016}
    }
    
  22. B. W. Ong, R. D. Haynes, and K. Ladd, “Algorithm 965: RIDC Methods: A Family of Parallel Time Integrators,” ACM Trans. Math. Softw., vol. 43, no. 1, pp. 8:1–8:13, 2016 [Online]. Available at: http://dx.doi.org/10.1145/2964377
    @article{OngEtAl2016,
      articleno = {8},
      author = {Ong, Benjamin W. and Haynes, Ronald D. and Ladd, Kyle},
      doi = {10.1145/2964377},
      journal = {ACM Trans. Math. Softw.},
      number = {1},
      numpages = {13},
      pages = {8:1--8:13},
      title = {Algorithm 965: {RIDC} Methods: A Family of Parallel Time Integrators},
      url = {http://dx.doi.org/10.1145/2964377},
      volume = {43},
      year = {2016}
    }
    
  23. D. Ruprecht, R. Speck, and R. Krause, “Parareal for Diffusion Problems with Space- and Time-Dependent Coefficients,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, pp. 371–378 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-18827-0_37
    @inproceedings{RuprechtEtAl2016,
      author = {Ruprecht, Daniel and Speck, Robert and Krause, Rolf},
      booktitle = {Domain Decomposition Methods in Science and Engineering {XXII}},
      doi = {10.1007/978-3-319-18827-0_37},
      editor = {Dickopf, Thomas and Gander, J. Martin and Halpern, Laurence and Krause, Rolf and Pavarino, F. Luca},
      pages = {371--378},
      publisher = {Springer International Publishing},
      title = {Parareal for Diffusion Problems with Space- and Time-Dependent Coefficients},
      url = {http://dx.doi.org/10.1007/978-3-319-18827-0_37},
      year = {2016}
    }
    
  24. T. Sekine, T. Tsuji, T. Oyama, F. Magoulès, and K. Uchida, “Speedup of parallel computing by parareal method in transient stability analysis of Japanese power system,” in 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), 2016, pp. 1177–1182 [Online]. Available at: http://dx.doi.org/10.1109/ISGT-Asia.2016.7796552
    @inproceedings{SekineEtAl2016,
      author = {Sekine, T. and Tsuji, T. and Oyama, T. and Magoulès, F. and Uchida, K.},
      booktitle = {2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia)},
      doi = {10.1109/ISGT-Asia.2016.7796552},
      pages = {1177--1182},
      title = {Speedup of parallel computing by parareal method in transient stability analysis of Japanese power system},
      url = {http://dx.doi.org/10.1109/ISGT-Asia.2016.7796552},
      year = {2016}
    }
    
  25. S.-L. Wu, “A second-order parareal algorithm for fractional PDEs,” Journal of Computational Physics, vol. 307, pp. 280–290, 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2015.12.007
    @article{Wu2016,
      author = {Wu, Shu-Lin},
      doi = {10.1016/j.jcp.2015.12.007},
      journal = {Journal of Computational Physics},
      pages = {280--290},
      title = {A second-order parareal algorithm for fractional {PDEs}},
      url = {http://dx.doi.org/10.1016/j.jcp.2015.12.007},
      volume = {307},
      year = {2016}
    }
    
  26. S.-L. Wu, “Towards essential improvement for the Parareal-TR and Parareal-Gauss4 algorithms,” Journal of Computational and Applied Mathematics, vol. 308, pp. 391–407, 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2016.05.036
    @article{Wu2016_JCAM,
      author = {Wu, Shu-Lin},
      doi = {10.1016/j.cam.2016.05.036},
      journal = {Journal of Computational and Applied Mathematics},
      pages = {391--407},
      title = {Towards essential improvement for the Parareal-TR and Parareal-Gauss4 algorithms},
      url = {http://dx.doi.org/10.1016/j.cam.2016.05.036},
      volume = {308},
      year = {2016}
    }
    
  27. S.-L. Wu, “Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues,” Journal of Scientific Computing, vol. 67, no. 2, pp. 644–668, 2016 [Online]. Available at: http://dx.doi.org/10.1007/s10915-015-0100-x
    @article{Wu2016_JSC,
      author = {Wu, Shu-Lin},
      doi = {10.1007/s10915-015-0100-x},
      journal = {Journal of Scientific Computing},
      number = {2},
      pages = {644--668},
      title = {Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues},
      url = {http://dx.doi.org/10.1007/s10915-015-0100-x},
      volume = {67},
      year = {2016}
    }
    
  28. S.-L. Wu and T. Zhou, “Fast parareal iterations for fractional diffusion equations,” Journal of Computational Physics, vol. 329, pp. 210–226, 2016 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2016.10.046
    @article{WuZhou2016_JCP,
      author = {Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1016/j.jcp.2016.10.046},
      journal = {Journal of Computational Physics},
      pages = {210--226},
      title = {Fast parareal iterations for fractional diffusion equations},
      url = {http://dx.doi.org/10.1016/j.jcp.2016.10.046},
      volume = {329},
      year = {2016}
    }
    
top

2015

  1. G. Ariel, S. J. Kim, and R. Tsai, “Parareal methods for highly oscillatory ordinary differential equations.” arXiv:1503.02094 [math.NA], 2015 [Online]. Available at: http://arxiv.org/abs/1503.02094v1
    @misc{Ariel2015,
      author = {Ariel, G. and Kim, Seong Jun and Tsai, Richard},
      howpublished = {arXiv:1503.02094 [math.NA]},
      title = {{Parareal methods for highly oscillatory ordinary differential equations}},
      url = {http://arxiv.org/abs/1503.02094v1},
      year = {2015}
    }
    
  2. A. Arteaga, D. Ruprecht, and R. Krause, “A stencil-based implementation of Parareal in the C++ domain specific embedded language STELLA,” Applied Mathematics and Computation, vol. 267, pp. 727–741, 2015 [Online]. Available at: http://dx.doi.org/10.1016/j.amc.2014.12.055
    @article{ArteagaEtAl2015,
      author = {Arteaga, A. and Ruprecht, Daniel and Krause, Rolf},
      doi = {10.1016/j.amc.2014.12.055},
      journal = {Applied Mathematics and Computation},
      pages = {727--741},
      title = {{A stencil-based implementation of Parareal in the {C++} domain specific embedded language {STELLA}}},
      url = {http://dx.doi.org/10.1016/j.amc.2014.12.055},
      volume = {267},
      year = {2015}
    }
    
  3. M. Bedez, Z. Belhachmi, O. Haeberlé, R. Greget, S. Moussaoui, J.-M. Bouteiller, and S. Bischoff, “A fully parallel in time and space algorithm for simulating the electrical activity of a neural tissue,” Journal of Neuroscience Methods, vol. 257, pp. 17–25, 2015 [Online]. Available at: http://dx.doi.org/10.1016/j.jneumeth.2015.09.017
    @article{Bedez2015,
      author = {Bedez, Mathieu and Belhachmi, Zakaria and Haeberl\'e, Olivier and Greget, Renaud and Moussaoui, Saliha and Bouteiller, Jean-Marie and Bischoff, Serge},
      doi = {10.1016/j.jneumeth.2015.09.017},
      journal = {{Journal of Neuroscience Methods}},
      note = {in press},
      pages = {17--25},
      title = {A fully parallel in time and space algorithm for simulating the electrical activity of a neural tissue},
      url = {http://dx.doi.org/10.1016/j.jneumeth.2015.09.017},
      volume = {257},
      year = {2015}
    }
    
  4. L. Carracciuolo, L. D’Amore, and V. Mele, “Toward a fully parallel multigrid in time algorithm in PETSc environment: A case study in ocean models,” in High Performance Computing Simulation (HPCS), 2015 International Conference on, 2015, pp. 595–598 [Online]. Available at: http://dx.doi.org/10.1109/HPCSim.2015.7237098
    @inproceedings{CarracciuoloEtAl2015,
      author = {Carracciuolo, L. and D'Amore, L. and Mele, V.},
      booktitle = {High Performance Computing Simulation (HPCS), 2015 International Conference on},
      doi = {10.1109/HPCSim.2015.7237098},
      pages = {595--598},
      title = {Toward a fully parallel multigrid in time algorithm in PETSc environment: A case study in ocean models},
      url = {http://dx.doi.org/10.1109/HPCSim.2015.7237098},
      year = {2015}
    }
    
  5. A. J. Christlieb, C. B. MacDonald, B. W. Ong, and R. J. Spiteri, “Revisionist integral deferred correction with adaptive step-size control,” Communications in Applied Mathematics and Computational Science, vol. 10, no. 1, pp. 1–25, 2015 [Online]. Available at: http://dx.doi.org/10.2140/camcos.2015.10.1
    @article{ChristliebEtAl2015,
      author = {Christlieb, Andrew J. and MacDonald, Colin B. and Ong, Benjamin W. and Spiteri, Raymond J.},
      doi = {10.2140/camcos.2015.10.1},
      issue = {1},
      journal = {Communications in Applied Mathematics and Computational Science},
      pages = {1--25},
      title = {Revisionist integral deferred correction with adaptive step-size control},
      url = {http://dx.doi.org/10.2140/camcos.2015.10.1},
      volume = {10},
      year = {2015}
    }
    
  6. F. Chen, J. S. Hesthaven, Y. Maday, and A. S. Nielsen, “An Adjoint Approach for Stabilizing the Parareal Method,” EPFL-ARTICLE-211097, 2015 [Online]. Available at: http://infoscience.epfl.ch/record/211097
    @unpublished{FengEtAl2015,
      author = {Chen, Feng and Hesthaven, Jan S. and Maday, Yvon and Nielsen, Allan S.},
      howpublished = {EPFL-ARTICLE-211097},
      title = {An Adjoint Approach for Stabilizing the Parareal Method},
      url = {http://infoscience.epfl.ch/record/211097},
      year = {2015}
    }
    
  7. M. J. Gander, “50 years of Time Parallel Time Integration,” in Multiple Shooting and Time Domain Decomposition, Springer, 2015 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-23321-5_3
    @incollection{Gander2015_Review,
      author = {Gander, Martin J.},
      booktitle = {Multiple Shooting and Time Domain Decomposition},
      doi = {10.1007/978-3-319-23321-5_3},
      editors = {Carraro, T. and Geiger, M. and K\"orkel, S. and Rannacher, R.},
      publisher = {Springer},
      title = {{50 years of Time Parallel Time Integration}},
      url = {http://dx.doi.org/10.1007/978-3-319-23321-5_3},
      year = {2015}
    }
    
  8. G. Gurrala, A. Dimitrovski, P. Sreekanth, S. Simunovic, and M. Starke, “Parareal in Time for Dynamic Simulations of Power Systems,” in Proceedings of the International Conference on Power Systems Transients (IPST2015) in Cavtat, Croatia June 15-18, 2015, 2015 [Online]. Available at: http://www.ipstconf.org/papers/Proc_IPST2015/15IPST073.pdf
    @inproceedings{GurralaEtAl2015,
      author = {Gurrala, Gurunath and Dimitrovski, Aleksandar and Sreekanth, Pannala and Simunovic, Srdjan and Starke, Michael},
      booktitle = {{Proceedings of the International Conference on Power Systems Transients (IPST2015) in Cavtat, Croatia June 15-18, 2015}},
      title = {{Parareal in Time for Dynamic Simulations of Power Systems}},
      url = {http://www.ipstconf.org/papers/Proc_IPST2015/15IPST073.pdf},
      year = {2015}
    }
    
  9. T. S. Haut, T. Babb, P. G. Martinsson, and B. A. Wingate, “A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator,” IMA Journal of Numerical Analysis, 2015 [Online]. Available at: http://dx.doi.org/10.1093/imanum/drv021
    @article{HautEtAl2015,
      author = {Haut, T.~S. and Babb, T. and Martinsson, P.~G. and Wingate, B.~A.},
      doi = {10.1093/imanum/drv021},
      journal = {IMA Journal of Numerical Analysis},
      title = {A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator},
      url = {http://dx.doi.org/10.1093/imanum/drv021},
      year = {2015}
    }
    
  10. A. Kreienbuehl, A. Naegel, D. Ruprecht, R. Speck, G. Wittum, and R. Krause, “Numerical simulation of skin transport using Parareal,” Computing and Visualization in Science, vol. 17, no. 2, pp. 99–108, 2015 [Online]. Available at: http://dx.doi.org/10.1007/s00791-015-0246-y
    @article{KreienbuehlEtAl2015,
      author = {Kreienbuehl, Andreas and Naegel, Arne and Ruprecht, Daniel and Speck, Robert and Wittum, Gabriel and Krause, Rolf},
      doi = {10.1007/s00791-015-0246-y},
      issue = {2},
      journal = {Computing and Visualization in Science},
      pages = {99--108},
      title = {{Numerical simulation of skin transport using Parareal}},
      url = {http://dx.doi.org/10.1007/s00791-015-0246-y},
      volume = {17},
      year = {2015}
    }
    
  11. M. L. Minion, R. Speck, M. Bolten, M. Emmett, and D. Ruprecht, “Interweaving PFASST and parallel multigrid,” SIAM Journal on Scientific Computing, vol. 37, no. 5, pp. S244–S263, 2015 [Online]. Available at: http://dx.doi.org/10.1137/14097536X
    @article{MinionEtAl2015,
      author = {Minion, Michael L. and Speck, Robert and Bolten, Matthias and Emmett, Matthew and Ruprecht, Daniel},
      doi = {10.1137/14097536X},
      issue = {5},
      journal = {{SIAM} Journal on Scientific Computing},
      pages = {S244--S263},
      title = {{Interweaving {PFASST} and parallel multigrid}},
      url = {http://dx.doi.org/10.1137/14097536X},
      volume = {37},
      year = {2015}
    }
    
  12. B. Ong, F. Kwok, and S. High, “Pipeline Schwarz Waveform Relaxation,” in Methods in Science and Engineering XXII, 2015.
    @inproceedings{OngEtAl2015,
      author = {Ong, Benjamin and Kwok, Felix and High, Scott},
      booktitle = {Methods in Science and Engineering XXII},
      publisher = {Spring--Verlag},
      series = {Lecture Notes in Computational Science and Engineering},
      title = {Pipeline Schwarz Waveform Relaxation},
      year = {2015}
    }
    
  13. D. Perez, E. D. Cubuk, A. Waterland, E. Kaxiras, and A. F. Voter, “Long-time dynamics through parallel trajectory splicing,” Journal of Chemical Theory and Computation, 2015 [Online]. Available at: http://dx.doi.org/10.1021/acs.jctc.5b00916
    @article{PerezEtAl2015,
      author = {Perez, Danny and Cubuk, Ekin Dogus and Waterland, Amos and Kaxiras, Efthimios and Voter, Arthur F.},
      doi = {10.1021/acs.jctc.5b00916},
      journal = {Journal of Chemical Theory and Computation},
      title = {Long-time dynamics through parallel trajectory splicing},
      url = {http://dx.doi.org/10.1021/acs.jctc.5b00916},
      year = {2015}
    }
    
  14. T. D. Scheibe, E. M. Murphy, X. Chen, A. K. Rice, K. C. Carroll, B. J. Palmer, A. M. Tartakovsky, I. Battiato, and B. D. Wood, “An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods,” Groundwater, vol. 53, no. 1, pp. 38–56, 2015 [Online]. Available at: http://dx.doi.org/10.1111/gwat.12179
    @article{Scheibe2015,
      author = {Scheibe, Timothy D. and Murphy, Ellyn M. and Chen, Xingyuan and Rice, Amy K. and Carroll, Kenneth C. and Palmer, Bruce J. and Tartakovsky, Alexandre M. and Battiato, Ilenia and Wood, Brian D.},
      doi = {10.1111/gwat.12179},
      journal = {Groundwater},
      number = {1},
      pages = {38--56},
      title = {{An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods}},
      url = {http://dx.doi.org/10.1111/gwat.12179},
      volume = {53},
      year = {2015}
    }
    
  15. M. Schreiber, A. Peddle, T. Haut, and B. Wingate, “A Decentralized Parallelization-in-Time Approach with Parareal,” arXiv:1506.05157 [cs.DC], 2015 [Online]. Available at: http://arxiv.org/abs/1506.05157
    @unpublished{SchreiberEtAl2015,
      author = {Schreiber, Martin and Peddle, Adam and Haut, Terry and Wingate, Beth},
      howpublished = {arXiv:1506.05157 [cs.DC]},
      title = {A Decentralized Parallelization-in-Time Approach with Parareal},
      url = {http://arxiv.org/abs/1506.05157},
      year = {2015}
    }
    
  16. B. Song and Y.-L. Jiang, “A new parareal waveform relaxation algorithm for time-periodic problems,” International Journal of Computer Mathematics, vol. 92, no. 2, pp. 377–393, 2015 [Online]. Available at: http://dx.doi.org/10.1080/00207160.2014.891734
    @article{Song2015,
      author = {Song, Bo and Jiang, Yao-Lin},
      doi = {10.1080/00207160.2014.891734},
      journal = {International Journal of Computer Mathematics},
      number = {2},
      pages = {377--393},
      title = {{A new parareal waveform relaxation algorithm for time-periodic problems}},
      url = {http://dx.doi.org/10.1080/00207160.2014.891734},
      volume = {92},
      year = {2015}
    }
    
  17. R. Speck, D. Ruprecht, M. Emmett, M. L. Minion, M. Bolten, and R. Krause, “A multi-level spectral deferred correction method,” BIT Numerical Mathematics, vol. 55, no. 3, pp. 843–867, 2015 [Online]. Available at: http://dx.doi.org/10.1007/s10543-014-0517-x
    @article{SpeckEtAl2015_BIT,
      author = {Speck, Robert and Ruprecht, Daniel and Emmett, Matthew and Minion, Michael L. and Bolten, Matthias and Krause, Rolf},
      doi = {10.1007/s10543-014-0517-x},
      issue = {3},
      journal = {{BIT} Numerical Mathematics},
      pages = {843--867},
      title = {{A multi-level spectral deferred correction method}},
      url = {http://dx.doi.org/10.1007/s10543-014-0517-x},
      volume = {55},
      year = {2015}
    }
    
  18. J. Steiner, D. Ruprecht, R. Speck, and R. Krause, “Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number,” in Numerical Mathematics and Advanced Applications - ENUMATH 2013, vol. 103, A. Abdulle, S. Deparis, D. Kressner, F. Nobile, and M. Picasso, Eds. Springer International Publishing, 2015, pp. 195–202 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-10705-9_19
    @incollection{SteinerEtAl2015,
      author = {Steiner, J. and Ruprecht, Daniel and Speck, Robert and Krause, Rolf},
      booktitle = {Numerical Mathematics and Advanced Applications - {ENUMATH} 2013},
      doi = {10.1007/978-3-319-10705-9_19},
      editor = {Abdulle, Assyr and Deparis, Simone and Kressner, Daniel and Nobile, Fabio and Picasso, Marco},
      pages = {195--202},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Convergence of {P}arareal for the {N}avier-{S}tokes equations depending on the {R}eynolds number}},
      url = {http://dx.doi.org/10.1007/978-3-319-10705-9_19},
      volume = {103},
      year = {2015}
    }
    
  19. S. Ulbrich, “Preconditioners Based on ‘Parareal’ Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization,” in Multiple Shooting and Time Domain Decomposition Methods: MuS-TDD, Heidelberg, May 6-8, 2013, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, Eds. Cham: Springer International Publishing, 2015, pp. 203–232 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-23321-5_8
    @inbook{Ulbrich2015,
      address = {Cham},
      author = {Ulbrich, Stefan},
      booktitle = {{Multiple Shooting and Time Domain Decomposition Methods: MuS-TDD, Heidelberg, May 6-8, 2013}},
      doi = {10.1007/978-3-319-23321-5_8},
      editor = {Carraro, Thomas and Geiger, Michael and K{\"o}rkel, Stefan and Rannacher, Rolf},
      pages = {203--232},
      publisher = {Springer International Publishing},
      title = {{Preconditioners Based on ``Parareal'' Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization}},
      url = {http://dx.doi.org/10.1007/978-3-319-23321-5_8},
      year = {2015}
    }
    
  20. Z. Wang and S.-L. Wu, “Parareal Algorithms Implemented with IMEX Runge-Kutta Methods,” Mathematical Problems in Engineering, vol. 2015, 2015 [Online]. Available at: http://dx.doi.org/10.1155/2015/395340
    @article{Wang2015,
      author = {Wang, Zhiyong and Wu, Shu-Lin},
      doi = {10.1155/2015/395340},
      journal = {Mathematical Problems in Engineering},
      title = {Parareal Algorithms Implemented with {IMEX} Runge-Kutta Methods},
      url = {http://dx.doi.org/10.1155/2015/395340},
      volume = {2015},
      year = {2015}
    }
    
  21. S.-L. Wu and T. Zhou, “Convergence Analysis for Three Parareal Solvers,” SIAM Journal on Scientific Computing, vol. 37, no. 2, pp. A970–A992, 2015 [Online]. Available at: http://dx.doi.org/10.1137/140970756
    @article{Wu2015,
      author = {Wu, Shu-Lin and Zhou, Tao},
      doi = {10.1137/140970756},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {A970--A992},
      title = {Convergence Analysis for Three Parareal Solvers},
      url = {http://dx.doi.org/10.1137/140970756},
      volume = {37},
      year = {2015}
    }
    
  22. S.-L. Wu, “Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues,” Journal of Scientific Computing, pp. 1–25, 2015 [Online]. Available at: http://dx.doi.org/10.1007/s10915-015-0100-x
    @article{Wu2015b,
      author = {Wu, Shu-Lin},
      doi = {10.1007/s10915-015-0100-x},
      journal = {Journal of Scientific Computing},
      pages = {1--25},
      title = {Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues},
      url = {http://dx.doi.org/10.1007/s10915-015-0100-x},
      year = {2015}
    }
    
top

2014

  1. P. Arbenz, D. Hupp, and D. Obrist, “A Parallel Solver for the Time-Periodic Navier-Stokes Equations,” in Parallel Processing and Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Eds. Springer Berlin Heidelberg, 2014, pp. 291–300 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-55195-6_27
    @incollection{ArbenzEtAl2014,
      author = {Arbenz, Peter and Hupp, Daniel and Obrist, Dominik},
      booktitle = {{Parallel Processing and Applied Mathematics}},
      doi = {10.1007/978-3-642-55195-6_27},
      editor = {Wyrzykowski, Roman and Dongarra, Jack and Karczewski, Konrad and Waśniewski, Jerzy},
      pages = {291--300},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computer Science}},
      title = {{A Parallel Solver for the Time-Periodic {N}avier-{S}tokes Equations}},
      url = {http://dx.doi.org/10.1007/978-3-642-55195-6_27},
      year = {2014}
    }
    
  2. A. T. Barker, “A minimal communication approach to parallel time integration,” International Journal of Computer Mathematics, vol. 91, no. 3, pp. 601–615, 2014 [Online]. Available at: http://dx.doi.org/10.1080/00207160.2013.800193
    @article{Barker2014,
      author = {Barker, Andrew T.},
      doi = {10.1080/00207160.2013.800193},
      issue = {3},
      journal = {International Journal of Computer Mathematics},
      pages = {601--615},
      title = {{A minimal communication approach to parallel time integration}},
      url = {http://dx.doi.org/10.1080/00207160.2013.800193},
      volume = {91},
      year = {2014}
    }
    
  3. A.-M. Baudron, J.-J. Lautard, Y. Maday, M. K. Riahi, and J. Salomon, “Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model,” Journal of Computational Physics, vol. 279, no. 0, pp. 67–79, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2014.08.037
    @article{Baudron2014,
      author = {Baudron, Anne-Marie and Lautard, Jean-Jacques and Maday, Yvon and Riahi, Mohamed Kamel and Salomon, Julien},
      doi = {10.1016/j.jcp.2014.08.037},
      journal = {Journal of Computational Physics},
      number = {0},
      pages = {67--79},
      title = {{Parareal in time 3D numerical solver for the {LWR} Benchmark neutron diffusion transient model}},
      url = {http://dx.doi.org/10.1016/j.jcp.2014.08.037},
      volume = {279},
      year = {2014}
    }
    
  4. A.-M. Baudron, J.-J. Lautard, Y. Maday, and O. Mula, “The parareal in time algorithm applied to the kinetic neutron diffusion equation,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, pp. 437–445 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_41
    @inproceedings{BaudronEtAl2014_DDM,
      author = {Baudron, Anne-Marie and Lautard, Jean-Jacques and Maday, Yvon and Mula, Olga},
      booktitle = {{Domain Decomposition Methods in Science and Engineering XXI}},
      doi = {10.1007/978-3-319-05789-7_41},
      editors = {Erhel, J. and Gander, M. J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {437--445},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{The parareal in time algorithm applied to the kinetic neutron diffusion equation}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_41},
      year = {2014}
    }
    
  5. S. Bu and J.-Y. Lee, “An enhanced parareal algorithm based on the deferred correction methods for a stiff system,” Journal of Computational and Applied Mathematics, vol. 255, no. 0, pp. 297–305, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2013.05.001
    @article{BuLee2014,
      author = {Bu, Sunyoung and Lee, June-Yub},
      doi = {10.1016/j.cam.2013.05.001},
      journal = {Journal of Computational and Applied Mathematics},
      number = {0},
      pages = {297--305},
      title = {{An enhanced parareal algorithm based on the deferred correction methods for a stiff system}},
      url = {http://dx.doi.org/10.1016/j.cam.2013.05.001},
      volume = {255},
      year = {2014}
    }
    
  6. J. J. Caceres Silva, B. Baran, and C. E. Schaerer, “Implementation of a distributed parallel in time scheme using PETSc for a parabolic optimal control problem,” in Computer Science and Information Systems (FedCSIS), 2014 Federated Conference on, 2014, pp. 577–586 [Online]. Available at: http://dx.doi.org/10.15439/2014F340
    @inproceedings{Caceres2014,
      author = {{Caceres Silva}, J.~J. and Baran, B. and Schaerer, Christian E.},
      booktitle = {{Computer Science and Information Systems (FedCSIS), 2014 Federated Conference on}},
      doi = {10.15439/2014F340},
      pages = {577--586},
      title = {{Implementation of a distributed parallel in time scheme using {PETSc} for a parabolic optimal control problem}},
      url = {http://dx.doi.org/10.15439/2014F340},
      year = {2014}
    }
    
  7. F. Chen, J. S. Hesthaven, and X. Zhu, “On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method,” in Reduced Order Methods for Modeling and Computational Reduction, vol. 9, A. Quarteroni and G. Rozza, Eds. Springer International Publishing, 2014, pp. 187–214 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-02090-7_7
    @incollection{ChenEtAl2014,
      author = {Chen, Feng and Hesthaven, Jan S. and Zhu, Xueyu},
      booktitle = {{Reduced Order Methods for Modeling and Computational Reduction}},
      doi = {10.1007/978-3-319-02090-7_7},
      editor = {Quarteroni, Alfio and Rozza, Gianluigi},
      pages = {187--214},
      publisher = {Springer International Publishing},
      series = {{MS\&A - Modeling, Simulation and Applications}},
      title = {{On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method}},
      url = {http://dx.doi.org/10.1007/978-3-319-02090-7_7},
      volume = {9},
      year = {2014}
    }
    
  8. F. Chouly and A. Lozinski, “Parareal multi-model numerical zoom for parabolic multiscale problems,” Comptes Rendus Mathematique, vol. 352, no. 6, pp. 535–540, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.crma.2014.03.018
    @article{Chouly2014,
      author = {Chouly, Franz and Lozinski, Alexei},
      doi = {10.1016/j.crma.2014.03.018},
      journal = {Comptes Rendus Mathematique},
      number = {6},
      pages = {535--540},
      title = {{Parareal multi-model numerical zoom for parabolic multiscale problems}},
      url = {http://dx.doi.org/10.1016/j.crma.2014.03.018},
      volume = {352},
      year = {2014}
    }
    
  9. R. Croce, D. Ruprecht, and R. Krause, “Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady Navier-Stokes Equations for Incompressible Flow,” in Modeling, Simulation and Optimization of Complex Processes – HPSC 2012, H. G. Bock, X. P. Hoang, R. Rannacher, and J. P. Schlöder, Eds. Springer International Publishing, 2014, pp. 13–23 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-09063-4_2
    @incollection{CroceEtAl2014,
      author = {Croce, Roberto and Ruprecht, Daniel and Krause, Rolf},
      booktitle = {Modeling, Simulation and Optimization of Complex Processes -- {HPSC} 2012},
      doi = {10.1007/978-3-319-09063-4_2},
      editor = {Bock, Hans Georg and Hoang, Xuan Phu and Rannacher, Rolf and Schlöder, Johannes P.},
      pages = {13--23},
      publisher = {Springer International Publishing},
      title = {{Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady {N}avier-{S}tokes Equations for Incompressible Flow}},
      url = {http://dx.doi.org/10.1007/978-3-319-09063-4_2},
      year = {2014}
    }
    
  10. J. Dongarra and al., “Applied Mathematics Research for Exascale Computing,” Lawrence Livermore National Laboratory, LLNL-TR-651000, 2014 [Online]. Available at: http://science.energy.gov/ /media/ascr/pdf/research/am/docs/EMWGreport.pdf
    @techreport{DongarraEtAl2014,
      author = {Dongarra, J. and al.},
      institution = {Lawrence Livermore National Laboratory},
      number = {LLNL-TR-651000},
      title = {{Applied Mathematics Research for Exascale Computing}},
      url = {{http://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf}},
      year = {2014}
    }
    
  11. M. Emmett and M. L. Minion, “Efficient implementation of a multi-level parallel in time algorithm,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 359–366 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_33
    @inproceedings{EmmettMinion2014_DDM,
      author = {Emmett, Matthew and Minion, Michael L.},
      booktitle = {{Domain Decomposition Methods in Science and Engineering XXI}},
      doi = {10.1007/978-3-319-05789-7_33},
      editors = {Erhel, J. and Gander, M. J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {359--366},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Efficient implementation of a multi-level parallel in time algorithm}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_33},
      volume = {98},
      year = {2014}
    }
    
  12. R. D. Falgout, A. Katz, T. V. Kolev, J. B. Schroder, A. M. Wissink, and U. M. Yang, “Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application,” Lawrence Livermore National Laboratory, 2014 [Online]. Available at: https://computation.llnl.gov/project/parallel-time-integration/pubs/strand2d-pit.pdf
    @techreport{FalgoutEtAl2014,
      author = {Falgout, R. D. and Katz, A. and Kolev, T.~V. and Schroder, Jacob B. and Wissink, A.~M. and Yang, U.~M.},
      institution = {Lawrence Livermore National Laboratory},
      title = {{Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application}},
      url = {https://computation.llnl.gov/project/parallel-time-integration/pubs/strand2d-pit.pdf},
      year = {2014}
    }
    
  13. R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, “Parallel time integration with multigrid,” SIAM Journal on Scientific Computing, vol. 36, no. 6, pp. C635–C661, 2014 [Online]. Available at: http://dx.doi.org/10.1137/130944230
    @article{FalgoutEtAl2014_MGRIT,
      author = {Falgout, R.~D. and Friedhoff, S. and Kolev, T.~V. and MacLachlan, Scott P. and Schroder, Jacob B.},
      doi = {10.1137/130944230},
      issue = {6},
      journal = {SIAM Journal on Scientific Computing},
      pages = {C635--C661},
      title = {{Parallel time integration with multigrid}},
      url = {http://dx.doi.org/10.1137/130944230},
      volume = {36},
      year = {2014}
    }
    
  14. M. J. Gander and E. Hairer, “Analysis for parareal algorithms applied to Hamiltonian differential equations,” Journal of Computational and Applied Mathematics, vol. 259, Part A, no. 0, pp. 2–13, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2013.01.011
    @article{GanderHairer2014,
      author = {Gander, Martin J. and Hairer, Ernst},
      doi = {10.1016/j.cam.2013.01.011},
      journal = {Journal of Computational and Applied Mathematics},
      note = {Proceedings of the Sixteenth International Congress on Computational and Applied Mathematics (ICCAM-2012), Ghent, Belgium, 9-13 July, 2012},
      number = {0},
      pages = {2--13},
      title = {{Analysis for parareal algorithms applied to {H}amiltonian differential equations}},
      url = {http://dx.doi.org/10.1016/j.cam.2013.01.011},
      volume = {259, Part A},
      year = {2014}
    }
    
  15. T. Haut and B. Wingate, “An asymptotic parallel-in-time method for highly oscillatory PDEs,” SIAM Journal on Scientific Computing, vol. 36, no. 2, pp. A693–A713, 2014 [Online]. Available at: http://dx.doi.org/10.1137/130914577
    @article{HautWingate2014,
      author = {Haut, T. and Wingate, B.},
      doi = {10.1137/130914577},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {A693--A713},
      title = {{An asymptotic parallel-in-time method for highly oscillatory {PDE}s}},
      url = {http://dx.doi.org/10.1137/130914577},
      volume = {36},
      year = {2014}
    }
    
  16. R. D. Haynes and B. W. Ong, “MPI-OpenMP algorithms for the parallel space-time solution of time dependent PDEs,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 179–187 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_14
    @inproceedings{HaynesOng2014,
      author = {Haynes, Ronald D. and Ong, Benjamin W.},
      booktitle = {{Domain Decomposition Methods in Science and Engineering XXI}},
      doi = {10.1007/978-3-319-05789-7_14},
      editors = {Erhel, J. and Gander, M. J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {179--187},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{{MPI}-{O}pen{MP} algorithms for the parallel space-time solution of time dependent {PDE}s}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_14},
      volume = {98},
      year = {2014}
    }
    
  17. T. Loderer, V. Heuveline, and R. Lohner, “The parareal algorithm as a new approach for numerical integration of ODEs in real-time simulations in automotive industry,” PAMM, vol. 14, no. 1, pp. 1027–1030, 2014 [Online]. Available at: http://dx.doi.org/10.1002/pamm.201410489
    @article{Loderer2014,
      author = {Loderer, Thomas and Heuveline, Vincent and Lohner, Rudolf},
      doi = {10.1002/pamm.201410489},
      journal = {PAMM},
      number = {1},
      pages = {1027--1030},
      title = {{The parareal algorithm as a new approach for numerical integration of {ODE}s in real-time simulations in automotive industry}},
      url = {http://dx.doi.org/10.1002/pamm.201410489},
      volume = {14},
      year = {2014}
    }
    
  18. N. Makhoul-Karam, N. R. Nassif, and J. Erhel, “An Adaptive Parallel-in-Time Method with application to a membrane problem,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 707–717 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_68
    @inproceedings{MakhoulEtAl2014_DDM,
      author = {Makhoul-Karam, Noha and Nassif, Nabil R. and Erhel, Jocelyne},
      booktitle = {{Domain Decomposition Methods in Science and Engineering XXI}},
      doi = {10.1007/978-3-319-05789-7_68},
      editors = {Erhel, J. and Gander, M. J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {707--717},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{An Adaptive Parallel-in-Time Method with application to a membrane problem}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_68},
      volume = {98},
      year = {2014}
    }
    
  19. O. Mula, “Some contributions towards the parallel simulation of time dependent neutron transport and the integration of observed data in real time,” PhD thesis, Université Pierre et Marie Curie - Paris VI, 2014 [Online]. Available at: https://tel.archives-ouvertes.fr/tel-01081601
    @phdthesis{Mula2014,
      author = {Mula, Olga},
      school = {Universit\'{e} Pierre et Marie Curie - Paris VI},
      title = {Some  contributions  towards  the  parallel  simulation  of  time  dependent  neutron transport and the integration of observed data in real time},
      url = {https://tel.archives-ouvertes.fr/tel-01081601},
      year = {2014}
    }
    
  20. M. J. Gander and M. Neumueller, “Analysis of a Time Multigrid Algorithm for DG-Discretizations in Time,” 2014 [Online]. Available at: http://arxiv.org/abs/1409.5254
    @unpublished{Neumueller2014,
      author = {Gander, Martin J. and Neumueller, M.},
      title = {{Analysis of a Time Multigrid Algorithm for {DG}-Discretizations in Time}},
      url = {http://arxiv.org/abs/1409.5254},
      year = {2014}
    }
    
  21. A. Randles and E. Kaxiras, “Parallel in time approximation of the lattice Boltzmann method for laminar flows,” Journal of Computational Physics, vol. 270, pp. 577–586, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2014.04.006
    @article{Randles2014,
      author = {Randles, Amanda and Kaxiras, Efthimios},
      doi = {10.1016/j.jcp.2014.04.006},
      journal = {Journal of Computational Physics},
      pages = {577--586},
      title = {{Parallel in time approximation of the lattice {B}oltzmann method for laminar flows}},
      url = {http://dx.doi.org/10.1016/j.jcp.2014.04.006},
      volume = {270},
      year = {2014}
    }
    
  22. A. Randles and E. Kaxiras, “A Spatio-temporal Coupling Method to Reduce the Time-to-Solution of Cardiovascular Simulations,” in Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, 2014, pp. 593–602 [Online]. Available at: http://dx.doi.org/10.1109/IPDPS.2014.68
    @inproceedings{Randles2014_b,
      author = {Randles, A. and Kaxiras, Efthimios},
      booktitle = {{Parallel and Distributed Processing Symposium, 2014 IEEE 28th International}},
      doi = {10.1109/IPDPS.2014.68},
      month = may,
      pages = {593--602},
      title = {{A Spatio-temporal Coupling Method to Reduce the Time-to-Solution of Cardiovascular Simulations}},
      url = {http://dx.doi.org/10.1109/IPDPS.2014.68},
      year = {2014}
    }
    
  23. V. Rao and A. Sandu, “An adjoint-based scalable algorithm for time-parallel integration,” Journal of Computational Science, vol. 5, no. 2, pp. 76–84, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.jocs.2013.03.004
    @article{Rao2014,
      author = {Rao, Vishwas and Sandu, Adrian},
      doi = {10.1016/j.jocs.2013.03.004},
      journal = {Journal of Computational Science},
      number = {2},
      pages = {76--84},
      title = {{An adjoint-based scalable algorithm for time-parallel integration}},
      url = {http://dx.doi.org/10.1016/j.jocs.2013.03.004},
      volume = {5},
      year = {2014}
    }
    
  24. D. Ruprecht, “Convergence of Parareal with spatial coarsening,” PAMM, vol. 14, no. 1, pp. 1031–1034, 2014 [Online]. Available at: http://dx.doi.org/10.1002/pamm.201410490
    @article{Ruprecht2014_GAMM,
      author = {Ruprecht, Daniel},
      doi = {10.1002/pamm.201410490},
      journal = {PAMM},
      number = {1},
      pages = {1031--1034},
      title = {{Convergence of Parareal with spatial coarsening}},
      url = {http://dx.doi.org/10.1002/pamm.201410490},
      volume = {14},
      year = {2014}
    }
    
  25. R. Krause and D. Ruprecht, “Hybrid Space-Time Parallel Solution of Burgers’ Equation,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 647–655 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_62
    @inproceedings{RuprechtKrause2014_DDM,
      author = {Krause, Rolf and Ruprecht, Daniel},
      booktitle = {Domain Decomposition Methods in Science and Engineering {XXI}},
      doi = {10.1007/978-3-319-05789-7_62},
      editors = {Erhel, J. and Gander, M.~J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {647--655},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Hybrid Space-Time Parallel Solution of {B}urgers' Equation}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_62},
      volume = {98},
      year = {2014}
    }
    
  26. D. Samaddar, D. P. Coster, X. Bonnin, C. Bergmeister, Havlíc̆ková E., L. A. Berry, W. R. Elwasif, and D. B. Batchelor, “Poster: Greater than 10x Acceleration of fusion plasma edge simulations using the Parareal algorithm,” in Proceedings of the 2014 Conference on High Performance Computing Networking, Storage and Analysis Companion, 2014 [Online]. Available at: http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/poster_files/post163s2-file3.pdf
    @inproceedings{Samaddar2014,
      author = {Samaddar, Debasmita and Coster, D.~P. and Bonnin, X. and Bergmeister, C. and Havl{\'i}\u{c}kov{\'a}, E. and Berry, Lee A. and Elwasif, Wael R. and Batchelor, D.~B.},
      booktitle = {{Proceedings of the 2014 Conference on High Performance Computing Networking, Storage and Analysis Companion}},
      location = {New Orleans, Louisiana, USA},
      series = {{SC '14 Companion}},
      title = {{Poster: Greater than 10x Acceleration of fusion plasma edge simulations using the Parareal algorithm}},
      url = {http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/poster_files/post163s2-file3.pdf},
      year = {2014}
    }
    
  27. B. Song and Y.-L. Jiang, “Analysis of a new parareal algorithm based on waveform relaxation method for time-periodic problems,” Numerical Algorithms, vol. 67, no. 3, pp. 599–622, 2014 [Online]. Available at: http://dx.doi.org/10.1007/s11075-013-9810-z
    @article{Song2014,
      author = {Song, Bo and Jiang, Yao-Lin},
      doi = {10.1007/s11075-013-9810-z},
      journal = {Numerical Algorithms},
      number = {3},
      pages = {599--622},
      title = {{Analysis of a new parareal algorithm based on waveform relaxation method for time-periodic problems}},
      url = {http://dx.doi.org/10.1007/s11075-013-9810-z},
      volume = {67},
      year = {2014}
    }
    
  28. R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. L. Minion, M. Winkel, and P. Gibbon, “Integrating an N-body problem with SDC and PFASST,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 637–645 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_61
    @inproceedings{SpeckEtAl2014_DDM2012,
      author = {Speck, Robert and Ruprecht, Daniel and Krause, Rolf and Emmett, Matthew and Minion, Michael L. and Winkel, Mathias and Gibbon, Paul},
      booktitle = {Domain Decomposition Methods in Science and Engineering {XXI}},
      doi = {10.1007/978-3-319-05789-7_61},
      editors = {Erhel, J. and Gander, M.~J. and Halpern, L. and Pichot, G. and Sassi, T. and Widlund, O.},
      pages = {637--645},
      publisher = {Springer International Publishing},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Integrating an {N}-body problem with {SDC} and {PFASST}}},
      url = {http://dx.doi.org/10.1007/978-3-319-05789-7_61},
      volume = {98},
      year = {2014}
    }
    
  29. R. Speck, D. Ruprecht, M. Emmett, M. Bolten, and R. Krause, “A space-time parallel solver for the three-dimensional heat equation,” in Parallel Computing: Accelerating Computational Science and Engineering (CSE), 2014, vol. 25, pp. 263–272 [Online]. Available at: http://dx.doi.org/10.3233/978-1-61499-381-0-263
    @inproceedings{SpeckEtAl2014_Parco,
      author = {Speck, Robert and Ruprecht, Daniel and Emmett, Matthew and Bolten, Matthias and Krause, Rolf},
      booktitle = {Parallel Computing: Accelerating Computational Science and Engineering ({CSE})},
      doi = {10.3233/978-1-61499-381-0-263},
      editors = {Bader, M. and Bode, A. and Bungartz, H.-J. and Gerndt, M. and Joubert, G.R. and Peters, F.},
      pages = {263--272},
      publisher = {IOS Press},
      series = {{Advances in Parallel Computing}},
      title = {{A space-time parallel solver for the three-dimensional heat equation}},
      url = {http://dx.doi.org/10.3233/978-1-61499-381-0-263},
      volume = {25},
      year = {2014}
    }
    
  30. T. Takami and D. Fukudome, “An Identity Parareal Method for Temporal Parallel Computations,” in Parallel Processing and Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Eds. Springer Berlin Heidelberg, 2014, pp. 67–75 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-55224-3_7
    @incollection{Takami2014,
      author = {Takami, Toshiya and Fukudome, Daiki},
      booktitle = {{Parallel Processing and Applied Mathematics}},
      doi = {10.1007/978-3-642-55224-3_7},
      editor = {Wyrzykowski, Roman and Dongarra, Jack and Karczewski, Konrad and Waśniewski, Jerzy},
      pages = {67--75},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computer Science}},
      title = {{An Identity Parareal Method for Temporal Parallel Computations}},
      url = {http://dx.doi.org/10.1007/978-3-642-55224-3_7},
      year = {2014}
    }
    
  31. T. Takami and D. Fukudome, “An Efficient Pipelined Implementation of Space-Time Parallel Applications,” in Parallel Computing: Accelerating Computational Science and Engineering (CSE), vol. 25, M. Bader, A. Bode, H.-J. Bungartz, M. Gerndt, G. R. Joubert, and F. Peters, Eds. 2014, pp. 273–281 [Online]. Available at: http://dx.doi.org/10.3233/978-1-61499-381-0-273
    @incollection{Takami2014_b,
      author = {Takami, Toshiya and Fukudome, Daiki},
      booktitle = {{Parallel Computing: Accelerating Computational Science and Engineering (CSE)}},
      doi = {10.3233/978-1-61499-381-0-273},
      editor = {Bader, Michael and Bode, Arndt and Bungartz, Hans-Joachim and Gerndt, Michael and Joubert, Gerhard R. and Peters, Frans},
      pages = {273--281},
      series = {{Advances in Parallel Computing}},
      title = {{An Efficient Pipelined Implementation of Space-Time Parallel Applications}},
      url = {http://dx.doi.org/10.3233/978-1-61499-381-0-273},
      volume = {25},
      year = {2014}
    }
    
  32. P. L. C. van der Valk and D. J. Rixen, “Towards a Parallel Time Integration Method for Nonlinear Systems,” in Dynamics of Coupled Structures, Volume 1: Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, 2014, M. Allen, R. Mayes, and D. Rixen, Eds. Cham: Springer International Publishing, 2014, pp. 135–145 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-04501-6_12
    @inbook{VanDerValkEtAl2014,
      address = {Cham},
      author = {van der Valk, Paul L. C. and Rixen, Daniel J.},
      booktitle = {Dynamics of Coupled Structures, Volume 1: Proceedings of the 32nd IMAC,  A Conference and Exposition on Structural Dynamics, 2014},
      doi = {10.1007/978-3-319-04501-6_12},
      editor = {Allen, Matt and Mayes, Randy and Rixen, Daniel},
      pages = {135--145},
      publisher = {Springer International Publishing},
      title = {Towards a Parallel Time Integration Method for Nonlinear Systems},
      url = {http://dx.doi.org/10.1007/978-3-319-04501-6_12},
      year = {2014}
    }
    
  33. S.-L. Wu, “Convergence analysis of some second-order parareal algorithms,” IMA Journal of Numerical Analysis, 2014 [Online]. Available at: http://dx.doi.org/10.1093/imanum/dru031
    @article{Wu2014,
      author = {Wu, Shu-Lin},
      doi = {10.1093/imanum/dru031},
      journal = {IMA Journal of Numerical Analysis},
      title = {{Convergence analysis of some second-order parareal algorithms}},
      url = {http://dx.doi.org/10.1093/imanum/dru031},
      year = {2014}
    }
    
  34. Q. Xu, J. S. Hesthaven, and F. Chen, “A parareal method for time-fractional differential equations,” Journal of Computational Physics, 2014 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2014.11.034
    @article{Xu2014,
      author = {Xu, Qinwu and Hesthaven, Jan S. and Chen, Feng},
      doi = {10.1016/j.jcp.2014.11.034},
      journal = {Journal of Computational Physics},
      title = {{A parareal method for time-fractional differential equations}},
      url = {http://dx.doi.org/10.1016/j.jcp.2014.11.034},
      year = {2014}
    }
    
top

2013

  1. E. J. Bylaska, J. Q. Weare, and J. H. Weare, “Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations,” The Journal of Chemical Physics, vol. 139, no. 7, p. 074114, 2013 [Online]. Available at: http://dx.doi.org/10.1063/1.4818328
    @article{BylaskaEtAl2013,
      author = {Bylaska, Eric J. and Weare, Jonathan Q. and Weare, John H.},
      doi = {10.1063/1.4818328},
      journal = {The Journal of Chemical Physics},
      number = {7},
      pages = {074114},
      title = {{Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations}},
      url = {http://dx.doi.org/10.1063/1.4818328},
      volume = {139},
      year = {2013}
    }
    
  2. X. Dai and Y. Maday, “Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems,” SIAM Journal on Scientific Computing, vol. 35, no. 1, pp. A52–A78, 2013 [Online]. Available at: http://dx.doi.org/10.1137/110861002
    @article{DaiEtAl2013,
      author = {Dai, X. and Maday, Yvon},
      doi = {10.1137/110861002},
      journal = {SIAM Journal on Scientific Computing},
      number = {1},
      pages = {A52--A78},
      title = {{Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems}},
      url = {http://dx.doi.org/10.1137/110861002},
      volume = {35},
      year = {2013}
    }
    
  3. X. Dai, C. Le Bris, F. Legoll, and Y. Maday, “Symmetric parareal algorithms for Hamiltonian systems,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 47, no. 03, pp. 717–742, Apr. 2013 [Online]. Available at: http://dx.doi.org/10.1051/m2an/2012046
    @article{DaiEtAl2013_ESAIM,
      author = {Dai, X. and {Le Bris}, C. and Legoll, F. and Maday, Yvon},
      doi = {10.1051/m2an/2012046},
      issue = {03},
      journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
      month = apr,
      pages = {717--742},
      title = {{Symmetric parareal algorithms for {H}amiltonian systems}},
      url = {http://dx.doi.org/10.1051/m2an/2012046},
      volume = {47},
      year = {2013}
    }
    
  4. X. Du, M. Sarkis, C. E. Schaerer, and D. B. Szyld, “Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems,” Electrontic Transactions on Numerical Analysis, vol. 40, pp. 36–57, 2013 [Online]. Available at: http://etna.mcs.kent.edu/vol.40.2013/pp36-57.dir/pp36-57.pdf
    @article{DuEtAl2013,
      author = {Du, X. and Sarkis, Marcus and Schaerer, Christian E. and Szyld, D. B.},
      journal = {Electrontic Transactions on Numerical Analysis},
      pages = {36--57},
      title = {{Inexact and truncated parareal-in-time {K}rylov subspace methods for parabolic optimal control problems}},
      url = {http://etna.mcs.kent.edu/vol.40.2013/pp36-57.dir/pp36-57.pdf},
      volume = {40},
      year = {2013}
    }
    
  5. S. Friedhoff, R. D. Falgout, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, “A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel,” in Presented at: Sixteenth Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, United States, Mar 17 - Mar 22, 2013, 2013 [Online]. Available at: http://www.osti.gov/scitech/servlets/purl/1073108
    @inproceedings{FriedhoffEtAl2013,
      author = {Friedhoff, S. and Falgout, R.~D. and Kolev, T.~V. and MacLachlan, Scott P. and Schroder, Jacob B.},
      booktitle = {{Presented at: Sixteenth Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, United States, Mar 17 - Mar 22, 2013}},
      title = {{A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel}},
      url = {http://www.osti.gov/scitech/servlets/purl/1073108},
      year = {2013}
    }
    
  6. D. Fukudome and T. Takami, “Parallel bucket-brigade communication interface for scientific applications,” in Proceedings of the 20th European MPI Users’ Group Meeting, New York, NY, USA, 2013, pp. 135–136 [Online]. Available at: http://dx.doi.org/10.1145/2488551.2488595
    @inproceedings{FukudomeTakami2013,
      address = {New York, NY, USA},
      author = {Fukudome, Daiki and Takami, Toshiya},
      booktitle = {{Proceedings of the 20th European MPI Users' Group Meeting}},
      doi = {10.1145/2488551.2488595},
      isbn = {978-1-4503-1903-4},
      location = {Madrid, Spain},
      numpages = {2},
      pages = {135--136},
      publisher = {ACM},
      series = {{EuroMPI '13}},
      title = {{Parallel bucket-brigade communication interface for scientific applications}},
      url = {http://dx.doi.org/10.1145/2488551.2488595},
      year = {2013}
    }
    
  7. M. J. Gander, Y.-L. Jiang, and R.-J. Li, “Parareal Schwarz Waveform Relaxation Methods,” in Domain Decomposition Methods in Science and Engineering XX, vol. 91, R. Bank, M. Holst, O. Widlund, and J. Xu, Eds. Springer Berlin Heidelberg, 2013, pp. 451–458 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-35275-1_53
    @incollection{GanderEtAl2013_DDM,
      author = {Gander, Martin J. and Jiang, Yao-Lin and Li, Rong-Jian},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XX}}},
      doi = {10.1007/978-3-642-35275-1_53},
      editor = {Bank, Randolph and Holst, Michael and Widlund, Olof and Xu, Jinchao},
      pages = {451--458},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Parareal Schwarz Waveform Relaxation Methods}},
      url = {http://dx.doi.org/10.1007/978-3-642-35275-1_53},
      volume = {91},
      year = {2013}
    }
    
  8. M. J. Gander and S. Güttel, “PARAEXP: A Parallel Integrator for Linear Initial-Value Problems,” SIAM Journal on Scientific Computing, vol. 35, no. 2, pp. C123–C142, 2013 [Online]. Available at: http://dx.doi.org/10.1137/110856137
    @article{GuttelGander2013,
      author = {Gander, Martin J. and G{\"u}ttel, Stefan},
      doi = {10.1137/110856137},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {C123--C142},
      title = {{PARAEXP: A Parallel Integrator for Linear Initial-Value Problems}},
      url = {http://dx.doi.org/10.1137/110856137},
      volume = {35},
      year = {2013}
    }
    
  9. F. Legoll, T. Lelièvre, and G. Samaey, “A Micro-Macro Parareal Algorithm: Application to Singularly Perturbed Ordinary Differential Equations,” SIAM Journal on Scientific Computing, vol. 35, no. 4, pp. A1951–A1986, 2013 [Online]. Available at: http://dx.doi.org/10.1137/120872681
    @article{LegollEtAl2013,
      author = {Legoll, F. and Lelièvre, T. and Samaey, G.},
      doi = {10.1137/120872681},
      journal = {SIAM Journal on Scientific Computing},
      number = {4},
      pages = {A1951--A1986},
      title = {{A Micro-Macro Parareal Algorithm: Application to Singularly Perturbed Ordinary Differential Equations}},
      url = {http://dx.doi.org/10.1137/120872681},
      volume = {35},
      year = {2013}
    }
    
  10. J. R. McClean, J. A. Parkhill, and A. Aspuru-Guzik, “Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics,” Proceedings of the National Academy of Sciences, vol. 110, no. 41, pp. E3901–E3909, 2013 [Online]. Available at: http://dx.doi.org/10.1073/pnas.1308069110
    @article{McCleanEtAl2013,
      author = {McClean, Jarrod R. and Parkhill, John A. and Aspuru-Guzik, Alán},
      doi = {10.1073/pnas.1308069110},
      journal = {Proceedings of the National Academy of Sciences},
      number = {41},
      pages = {E3901--E3909},
      title = {{Feynman's clock, a new variational principle, and parallel-in-time quantum dynamics}},
      url = {http://dx.doi.org/10.1073/pnas.1308069110},
      volume = {110},
      year = {2013}
    }
    
  11. D. Ruprecht, R. Speck, M. Emmett, M. Bolten, and R. Krause, “Poster: Extreme-scale space-time parallelism,” in Proceedings of the 2013 Conference on High Performance Computing Networking, Storage and Analysis Companion, 2013 [Online]. Available at: http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf
    @inproceedings{RuprechtEtAl2013_SC,
      author = {Ruprecht, Daniel and Speck, Robert and Emmett, Matthew and Bolten, Matthias and Krause, Rolf},
      booktitle = {Proceedings of the 2013 Conference on High Performance Computing Networking, Storage and Analysis Companion},
      location = {Denver, Colorado, USA},
      series = {{SC '13 Companion}},
      title = {Poster: Extreme-scale space-time parallelism},
      url = {http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf},
      year = {2013}
    }
    
  12. D. Samaddar, T. A. Casper, S. H. Kim, L. A. Berry, W. R. Elwasif, D. B. Batchelor, and W. A. Houlberg, “Time parallelization of advanced operation scenario simulations of ITER plasma,” Journal of Physics: Conference Series, vol. 410, no. 1, p. 012032, 2013 [Online]. Available at: http://dx.doi.org/10.1088/1742-6596/410/1/012032
    @article{SamaddarEtAl2013,
      author = {Samaddar, Debasmita and Casper, T.~A. and Kim, S.~H. and Berry, Lee A. and Elwasif, Wael R. and Batchelor, D.~B. and Houlberg, W.~A.},
      doi = {10.1088/1742-6596/410/1/012032},
      journal = {Journal of Physics: Conference Series},
      number = {1},
      pages = {012032},
      title = {{Time parallelization of advanced operation scenario simulations of {ITER} plasma}},
      url = {http://dx.doi.org/10.1088/1742-6596/410/1/012032},
      volume = {410},
      year = {2013}
    }
    
  13. Q. Wang, S. A. Gomez, P. J. Blonigan, A. L. Gregory, and E. Y. Qian, “Towards scalable parallel-in-time turbulent flow simulations,” Physics of Fluids (1994-present), vol. 25, no. 11, p. 110818, 2013 [Online]. Available at: https://doi.org/10.1063/1.4819390
    @article{WangEtAl2013,
      author = {Wang, Qiqi and Gomez, Steven A and Blonigan, Patrick J and Gregory, Alastair L and Qian, Elizabeth Y},
      doi = {10.1063/1.4819390},
      journal = {Physics of Fluids (1994-present)},
      number = {11},
      pages = {110818},
      title = {Towards scalable parallel-in-time turbulent flow simulations},
      url = {https://doi.org/10.1063/1.4819390},
      volume = {25},
      year = {2013}
    }
    
top

2012

  1. P. Arbenz, A. Hiltebrand, and D. Obrist, “A Parallel Space-Time Finite Difference Solver for Periodic Solutions of the Shallow-Water Equation,” in Parallel Processing and Applied Mathematics, vol. 7204, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Eds. Springer Berlin Heidelberg, 2012, pp. 302–312 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-31500-8_31
    @incollection{ArbenzEtAl2012,
      author = {Arbenz, Peter and Hiltebrand, Andreas and Obrist, Dominik},
      booktitle = {{Parallel Processing and Applied Mathematics}},
      doi = {10.1007/978-3-642-31500-8_31},
      editor = {Wyrzykowski, Roman and Dongarra, Jack and Karczewski, Konrad and Waśniewski, Jerzy},
      pages = {302--312},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computer Science}},
      title = {{A Parallel Space-Time Finite Difference Solver for Periodic Solutions of the Shallow-Water Equation}},
      url = {http://dx.doi.org/10.1007/978-3-642-31500-8_31},
      volume = {7204},
      year = {2012}
    }
    
  2. L. A. Berry, W. R. Elwasif, J. M. Reynolds-Barredo, D. Samaddar, R. S. Sánchez, and D. E. Newman, “Event-based parareal: A data-flow based implementation of parareal,” Journal of Computational Physics, vol. 231, no. 17, pp. 5945–5954, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2012.05.016
    @article{BerryEtAl2012,
      author = {Berry, Lee A. and Elwasif, Wael R. and Reynolds-Barredo, J.~M. and Samaddar, Debasmita and Sánchez, Raul S. and Newman, David E.},
      doi = {10.1016/j.jcp.2012.05.016},
      journal = {Journal of Computational Physics},
      number = {17},
      pages = {5945--5954},
      title = {{Event-based parareal: A data-flow based implementation of parareal}},
      url = {http://dx.doi.org/10.1016/j.jcp.2012.05.016},
      volume = {231},
      year = {2012}
    }
    
  3. A. J. Christlieb, R. D. Haynes, and B. W. Ong, “A Parallel Space-Time Algorithm,” SIAM Journal on Scientific Computing, vol. 34, no. 5, pp. C233–C248, 2012 [Online]. Available at: http://dx.doi.org/10.1137/110843484
    @article{ChristliebEtAl2012,
      author = {Christlieb, Andrew J. and Haynes, Ronald D. and Ong, Benjamin W.},
      doi = {10.1137/110843484},
      journal = {SIAM Journal on Scientific Computing},
      number = {5},
      pages = {C233--C248},
      title = {{A Parallel Space-Time Algorithm}},
      url = {http://dx.doi.org/10.1137/110843484},
      volume = {34},
      year = {2012}
    }
    
  4. M. Emmett and M. L. Minion, “Toward an Efficient Parallel in Time Method for Partial Differential Equations,” Communications in Applied Mathematics and Computational Science, vol. 7, pp. 105–132, 2012 [Online]. Available at: http://dx.doi.org/10.2140/camcos.2012.7.105
    @article{EmmettMinion2012,
      author = {Emmett, Matthew and Minion, Michael L.},
      doi = {10.2140/camcos.2012.7.105},
      journal = {Communications in Applied Mathematics and Computational Science},
      pages = {105--132},
      title = {{Toward an Efficient Parallel in Time Method for Partial Differential Equations}},
      url = {http://dx.doi.org/10.2140/camcos.2012.7.105},
      volume = {7},
      year = {2012}
    }
    
  5. S. S. Foley, W. R. Elwasif, and D. E. Bernholdt, “The integrated plasma simulator: A flexible python framework for coupled multiphysics simulation,” Oak Ridge National Laboratory, ORNL/TM-2012/57, 2012 [Online]. Available at: http://info.ornl.gov/sites/publications/files/Pub34832.pdf
    @techreport{FoleyEtAl2012,
      author = {Foley, Samantha S. and Elwasif, Wael R. and Bernholdt, David E.},
      institution = {Oak Ridge National Laboratory},
      number = {ORNL/TM-2012/57},
      title = {{The integrated plasma simulator: A flexible python framework for coupled multiphysics simulation}},
      url = {http://info.ornl.gov/sites/publications/files/Pub34832.pdf},
      year = {2012}
    }
    
  6. J. Geiser and S. Güttel, “Coupling methods for heat transfer and heat flow: Operator splitting and the parareal algorithm,” Journal of Mathematical Analysis and Applications, vol. 388, no. 2, pp. 873–887, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.jmaa.2011.10.030
    @article{GeiserGuettel2012,
      author = {Geiser, Jürgen and G{\"u}ttel, Stefan},
      doi = {10.1016/j.jmaa.2011.10.030},
      journal = {Journal of Mathematical Analysis and Applications},
      number = {2},
      pages = {873--887},
      title = {{Coupling methods for heat transfer and heat flow: Operator splitting and the parareal algorithm}},
      url = {http://dx.doi.org/10.1016/j.jmaa.2011.10.030},
      volume = {388},
      year = {2012}
    }
    
  7. L.-P. He and M. He, “Parareal in Time Simulation Of Morphological Transformation in Cubic Alloys with Spatially Dependent Composition,” Communications in Computational Physics, vol. 11, no. 5, pp. 1697–1717, 2012 [Online]. Available at: http://dx.doi.org/10.4208/cicp.110310.090911a
    @article{He2012,
      author = {He, Li-Ping and He, Minxin},
      doi = {10.4208/cicp.110310.090911a},
      issue = {5},
      journal = {Communications in Computational Physics},
      pages = {1697--1717},
      title = {Parareal in Time Simulation Of Morphological Transformation in Cubic Alloys with Spatially Dependent Composition},
      url = {http://dx.doi.org/10.4208/cicp.110310.090911a},
      volume = {11},
      year = {2012}
    }
    
  8. J. Liu and Y.-L. Jiang, “A parareal algorithm based on waveform relaxation,” Mathematics and Computers in Simulation, vol. 82, no. 11, pp. 2167–2181, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.matcom.2012.05.017
    @article{LiuJiang2012,
      author = {Liu, Jun and Jiang, Yao-Lin},
      doi = {10.1016/j.matcom.2012.05.017},
      journal = {Mathematics and Computers in Simulation},
      number = {11},
      pages = {2167--2181},
      title = {{A parareal algorithm based on waveform relaxation}},
      url = {http://dx.doi.org/10.1016/j.matcom.2012.05.017},
      volume = {82},
      year = {2012}
    }
    
  9. J. Liu and Y.-L. Jiang, “A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations,” Journal of Computational and Applied Mathematics, vol. 236, no. 17, pp. 4245–4263, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2012.05.014
    @article{LiuJiang2012_JCAM,
      author = {Liu, Jun and Jiang, Yao-Lin},
      doi = {10.1016/j.cam.2012.05.014},
      journal = {Journal of Computational and Applied Mathematics},
      number = {17},
      pages = {4245--4263},
      title = {{A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations}},
      url = {http://dx.doi.org/10.1016/j.cam.2012.05.014},
      volume = {236},
      year = {2012}
    }
    
  10. M. Loïc, “Semi-explicit Parareal method based on convergence acceleration technique,” arXiv:1212.4703 [cs.SY], 2012 [Online]. Available at: https://arxiv.org/abs/1212.4703
    @unpublished{Loic2012,
      author = {Lo{\"i}c, Michel},
      howpublished = {arXiv:1212.4703 [cs.SY]},
      title = {Semi-explicit Parareal method based on convergence acceleration technique},
      url = {https://arxiv.org/abs/1212.4703},
      year = {2012}
    }
    
  11. B. W. Ong, A. Melfi, and A. J. Christlieb, “Parallel Semi-Implicit Time Integrators,” 2012 [Online]. Available at: http://arxiv.org/abs/1209.4297
    @unpublished{OngEtAl2012,
      author = {Ong, Benjamin W. and Melfi, Andrew and Christlieb, Andrew J.},
      note = {arXiv:1209.4297 [cs.DC]},
      title = {{Parallel Semi-Implicit Time Integrators}},
      url = {http://arxiv.org/abs/1209.4297},
      year = {2012}
    }
    
  12. V. Rao, A. Cioaca, and A. Sandu, “A Highly Scalable Approach for Time Parallelization of Long Range Forecasts,” in High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion: 2012, pp. 609–616 [Online]. Available at: http://dx.doi.org/10.1109/SC.Companion.2012.85
    @inproceedings{RaoEtAl2012,
      author = {Rao, Vishwas and Cioaca, Alexandru and Sandu, Adrian},
      booktitle = {{High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:}},
      doi = {10.1109/SC.Companion.2012.85},
      pages = {609--616},
      title = {{A Highly Scalable Approach for Time Parallelization of Long Range Forecasts}},
      url = {http://dx.doi.org/10.1109/SC.Companion.2012.85},
      year = {2012}
    }
    
  13. J. M. Reynolds-Barredo, D. E. Newman, R. S. Sánchez, D. Samaddar, L. A. Berry, and W. R. Elwasif, “Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations,” Journal of Computational Physics, vol. 231, no. 23, pp. 7851–7867, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2012.07.028
    @article{ReynoldsEtAl2012,
      author = {Reynolds-Barredo, J.~M. and Newman, David E. and Sánchez, Raul S. and Samaddar, Debasmita and Berry, Lee A. and Elwasif, Wael R.},
      doi = {10.1016/j.jcp.2012.07.028},
      journal = {Journal of Computational Physics},
      number = {23},
      pages = {7851--7867},
      title = {{Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations}},
      url = {http://dx.doi.org/10.1016/j.jcp.2012.07.028},
      volume = {231},
      year = {2012}
    }
    
  14. J. M. Reynolds-Barredo, D. E. Newman, R. S. Sánchez, and L. A. Berry, “Modelling parareal convergence in 2D drift wave plasma turbulence,” in High Performance Computing and Simulation (HPCS), 2012 International Conference on, 2012, pp. 726–727 [Online]. Available at: http://dx.doi.org/10.1109/HPCSim.2012.6267004
    @inproceedings{ReynoldsEtAl2012_HPCS,
      author = {Reynolds-Barredo, J. M. and Newman, David E. and Sánchez, Raul S. and Berry, Lee A.},
      booktitle = {{High Performance Computing and Simulation (HPCS), 2012 International Conference on}},
      doi = {10.1109/HPCSim.2012.6267004},
      pages = {726--727},
      title = {{Modelling parareal convergence in 2D drift wave plasma turbulence}},
      url = {http://dx.doi.org/10.1109/HPCSim.2012.6267004},
      year = {2012}
    }
    
  15. D. Ruprecht and R. Krause, “Explicit parallel-in-time integration of a linear acoustic-advection system,” Computers & Fluids, vol. 59, no. 0, pp. 72–83, 2012 [Online]. Available at: http://dx.doi.org/10.1016/j.compfluid.2012.02.015
    @article{RuprechtKrause2012,
      author = {Ruprecht, Daniel and Krause, Rolf},
      doi = {10.1016/j.compfluid.2012.02.015},
      journal = {Computers \& Fluids},
      number = {0},
      pages = {72--83},
      title = {{Explicit parallel-in-time integration of a linear acoustic-advection system}},
      url = {http://dx.doi.org/10.1016/j.compfluid.2012.02.015},
      volume = {59},
      year = {2012}
    }
    
  16. H. Samuel, “Time domain parallelization for computational geodynamics,” Geochemistry, Geophysics, Geosystems, vol. 13, no. 1, 2012 [Online]. Available at: http://dx.doi.org/10.1029/2011GC003905
    @article{Samuel2012,
      author = {Samuel, H.},
      doi = {10.1029/2011GC003905},
      journal = {Geochemistry, Geophysics, Geosystems},
      number = {1},
      title = {{Time domain parallelization for computational geodynamics}},
      url = {http://dx.doi.org/10.1029/2011GC003905},
      volume = {13},
      year = {2012}
    }
    
  17. R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. L. Minion, M. Winkel, and P. Gibbon, “A massively space-time parallel N-body solver,” in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, Los Alamitos, CA, USA, 2012, pp. 92:1–92:11 [Online]. Available at: http://dx.doi.org/10.1109/SC.2012.6
    @inproceedings{SpeckEtAl2012,
      address = {Los Alamitos, CA, USA},
      articleno = {92},
      author = {Speck, Robert and Ruprecht, Daniel and Krause, Rolf and Emmett, Matthew and Minion, Michael L. and Winkel, Mathias and Gibbon, Paul},
      booktitle = {Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis},
      doi = {10.1109/SC.2012.6},
      location = {Salt Lake City, Utah},
      numpages = {11},
      pages = {92:1--92:11},
      publisher = {IEEE Computer Society Press},
      series = {{SC '12}},
      title = {{A massively space-time parallel {N}-body solver}},
      url = {http://dx.doi.org/10.1109/SC.2012.6},
      year = {2012}
    }
    
  18. T. Takami and A. Nishida, “Parareal Acceleration of Matrix Multiplication,” in Applications, Tools and Techniques on the Road to Exascale Computing, 2012, vol. 22, pp. 437–444 [Online]. Available at: http://dx.doi.org/10.3233/978-1-61499-041-3-437
    @inproceedings{Takami2012,
      author = {Takami, Toshiya and Nishida, A.},
      booktitle = {{Applications, Tools and Techniques on the Road to Exascale Computing}},
      doi = {10.3233/978-1-61499-041-3-437},
      pages = {437--444},
      series = {{Advances in Parallel Computing}},
      title = {{Parareal Acceleration of Matrix Multiplication}},
      url = {http://dx.doi.org/10.3233/978-1-61499-041-3-437},
      volume = {22},
      year = {2012}
    }
    
  19. H. Xiao and E. Aubanel, “Scheduling of Tasks in the Parareal Algorithm for Heterogeneous Cloud Platforms,” in Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International, 2012, pp. 1440–1448 [Online]. Available at: http://dx.doi.org/10.1109/IPDPSW.2012.181
    @inproceedings{XiaoAubanel2012,
      author = {Xiao, Hongtao and Aubanel, E.},
      booktitle = {{Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International}},
      doi = {10.1109/IPDPSW.2012.181},
      pages = {1440--1448},
      title = {{Scheduling of Tasks in the Parareal Algorithm for Heterogeneous Cloud Platforms}},
      url = {http://dx.doi.org/10.1109/IPDPSW.2012.181},
      year = {2012}
    }
    
top

2011

  1. E. Aubanel, “Scheduling of Tasks in the Parareal Algorithm,” Parallel Computing, vol. 37, pp. 172–182, 2011 [Online]. Available at: http://dx.doi.org/10.1016/j.parco.2010.10.004
    @article{Aubanel2011,
      author = {Aubanel, E.},
      doi = {10.1016/j.parco.2010.10.004},
      journal = {Parallel Computing},
      pages = {172--182},
      title = {{Scheduling of Tasks in the Parareal Algorithm}},
      url = {http://dx.doi.org/10.1016/j.parco.2010.10.004},
      volume = {37},
      year = {2011}
    }
    
  2. T. Cadeau and F. Magoules, “Coupling the Parareal Algorithm with the Waveform Relaxation Method for the Solution of Differential Algebraic Equations,” in Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2011 Tenth International Symposium on, 2011, pp. 15–19 [Online]. Available at: http://dx.doi.org/10.1109/DCABES.2011.34
    @inproceedings{Cadeau2011,
      author = {Cadeau, T. and Magoules, F.},
      booktitle = {{Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2011 Tenth International Symposium on}},
      doi = {10.1109/DCABES.2011.34},
      pages = {15--19},
      title = {{Coupling the Parareal Algorithm with the Waveform Relaxation Method for the Solution of Differential Algebraic Equations}},
      url = {http://dx.doi.org/10.1109/DCABES.2011.34},
      year = {2011}
    }
    
  3. A. J. Christlieb and B. W. Ong, “Implicit parallel time integrators,” Journal of Scientific Computing, vol. 49, no. 2, pp. 167–179, 2011 [Online]. Available at: http://dx.doi.org/10.1007/s10915-010-9452-4
    @article{ChristliebEtAl2011,
      author = {Christlieb, Andrew J. and Ong, Benjamin W.},
      doi = {10.1007/s10915-010-9452-4},
      journal = {Journal of Scientific Computing},
      number = {2},
      pages = {167--179},
      title = {{Implicit parallel time integrators}},
      url = {http://dx.doi.org/10.1007/s10915-010-9452-4},
      volume = {49},
      year = {2011}
    }
    
  4. C. Douglas, I. Kim, H. Lee, and D. Sheen, “Higher-order schemes for the Laplace transformation method for parabolic problems,” Computing and Visualization in Science, vol. 14, no. 1, pp. 39–47, 2011 [Online]. Available at: https://doi.org/10.1007/s00791-011-0156-6
    @article{DouglasEtAl2011,
      author = {Douglas, C. and Kim, I. and Lee, H. and Sheen, D.},
      doi = {10.1007/s00791-011-0156-6},
      journal = {Computing and Visualization in Science},
      number = {1},
      pages = {39--47},
      title = {{Higher-order schemes for the {L}aplace transformation method for parabolic problems}},
      url = {https://doi.org/10.1007/s00791-011-0156-6},
      volume = {14},
      year = {2011}
    }
    
  5. M. Duarte, M. Massot, and S. Descombes, “Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 45, no. 05, pp. 825–852, Aug. 2011 [Online]. Available at: http://dx.doi.org/10.1051/m2an/2010104
    @article{DuarteEtAl2011,
      author = {Duarte, Max and Massot, Marc and Descombes, Stéphane},
      doi = {10.1051/m2an/2010104},
      issue = {05},
      journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
      month = aug,
      pages = {825--852},
      title = {{Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies}},
      url = {http://dx.doi.org/10.1051/m2an/2010104},
      volume = {45},
      year = {2011}
    }
    
  6. W. R. Elwasif, S. S. Foley, D. E. Bernholdt, L. A. Berry, D. Samaddar, D. E. Newman, and R. S. Sánchez, “A dependency-driven formulation of parareal: parallel-in-time solution of PDEs as a many-task application,” in Proceedings of the 2011 ACM international workshop on many task computing on grids and supercomputers, 2011, pp. 15–24 [Online]. Available at: http://dx.doi.org/10.1145/2132876.2132883
    @inproceedings{ElwasifEtAl2011,
      author = {Elwasif, Wael R. and Foley, Samantha S. and Bernholdt, David E. and Berry, Lee A. and Samaddar, Debasmita and Newman, David E. and Sánchez, Raul S.},
      booktitle = {{Proceedings of the 2011 ACM international workshop on many task computing on grids and supercomputers}},
      doi = {10.1145/2132876.2132883},
      pages = {15--24},
      title = {{A dependency-driven formulation of parareal: parallel-in-time solution of {PDE}s as a many-task application}},
      url = {http://dx.doi.org/10.1145/2132876.2132883},
      year = {2011}
    }
    
top

2010

  1. A. Blouza, B. Laurent, and S. M. Kaber, “Parallel in time algorithms with reduction methods for solving chemical kinetics,” Communications in Applied Mathematics and Computational Science, vol. 5, no. 2, pp. 241–263, 2010 [Online]. Available at: http://dx.doi.org/10.2140/camcos.2010.5.241
    @article{BlouzaEtAl2010,
      author = {Blouza, A. and Laurent, B. and Kaber, S.~M.},
      doi = {10.2140/camcos.2010.5.241},
      journal = {Communications in Applied Mathematics and Computational Science},
      number = {2},
      pages = {241--263},
      title = {{Parallel in time algorithms with reduction methods for solving chemical kinetics}},
      url = {http://dx.doi.org/10.2140/camcos.2010.5.241},
      volume = {5},
      year = {2010}
    }
    
  2. A. J. Christlieb, C. B. Macdonald, and B. W. Ong, “Parallel high-order integrators,” SIAM Journal on Scientific Computing, vol. 32, no. 2, pp. 818–835, 2010 [Online]. Available at: http://dx.doi.org/10.1137/09075740X
    @article{ChristliebEtAl2010,
      author = {Christlieb, Andrew J. and Macdonald, Colin B and Ong, Benjamin W.},
      doi = {10.1137/09075740X},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {818--835},
      title = {{Parallel high-order integrators}},
      url = {http://dx.doi.org/10.1137/09075740X},
      volume = {32},
      year = {2010}
    }
    
  3. N. K. Fu and N. H. M. Ali, “Improving Pipelined Time Stepping Algorithm for Distributed Memory Multicomputers,” Sains Malaysiana, vol. 39, no. 6, pp. 1041–1048, 2010 [Online]. Available at: http://www.ukm.my/jsm/pdf_files/SM-PDF-39-6-2010/25 Ng Kok Fu.pdf
    @article{FuEtAl2010,
      author = {Fu, Ng Kok and Ali, Norhashidah Hj. Mohd},
      journal = {Sains Malaysiana},
      number = {6},
      pages = {1041--1048},
      title = {Improving Pipelined Time Stepping Algorithm for Distributed Memory Multicomputers},
      url = {http://www.ukm.my/jsm/pdf_files/SM-PDF-39-6-2010/25 Ng Kok Fu.pdf},
      volume = {39},
      year = {2010}
    }
    
  4. C. H. Lai, “On Transformation Methods and the Induced Parallel Properties for the Temporal Domain,” in Substructing Techniques and Domain Decomposition Methods, 2010, pp. 45–70 [Online]. Available at: http://dx.doi.org/10.4203/csets.24.3
    @inproceedings{Lai2010,
      author = {Lai, C.~H.},
      booktitle = {{Substructing Techniques and Domain Decomposition Methods}},
      doi = {10.4203/csets.24.3},
      pages = {45--70},
      series = {Computational Science, Engineering \& Technology Series},
      title = {{On Transformation Methods and the Induced Parallel Properties for the Temporal Domain}},
      url = {http://dx.doi.org/10.4203/csets.24.3},
      year = {2010}
    }
    
  5. B. Lepsa and A. Sandu, “An efficient error control mechanism for the adaptive ’parareal’ time discretization algorithm,” in Proceedings of the 2010 Spring Simulation Multiconference, San Diego, CA, USA, 2010, pp. 87:1–87:7 [Online]. Available at: http://dx.doi.org/10.1145/1878537.1878628
    @inproceedings{LepsaSandu2010,
      acmid = {1878628},
      address = {San Diego, CA, USA},
      articleno = {87},
      author = {Lepsa, Bianca and Sandu, Adrian},
      booktitle = {{Proceedings of the 2010 Spring Simulation Multiconference}},
      doi = {10.1145/1878537.1878628},
      location = {Orlando, Florida},
      numpages = {7},
      pages = {87:1--87:7},
      publisher = {Society for Computer Simulation International},
      series = {{SpringSim '10}},
      title = {{An efficient error control mechanism for the adaptive 'parareal' time discretization algorithm}},
      url = {http://dx.doi.org/10.1145/1878537.1878628},
      year = {2010}
    }
    
  6. T. Mathew, M. Sarkis, and C. E. Schaerer, “Analysis of Block Parareal Preconditioners for Parabolic Optimal Control Problems,” SIAM Journal on Scientific Computing, vol. 32, no. 3, pp. 1180–1200, 2010 [Online]. Available at: http://dx.doi.org/10.1137/080717481
    @article{MathewEtAl2010,
      author = {Mathew, Tarek and Sarkis, Marcus and Schaerer, Christian E.},
      doi = {10.1137/080717481},
      journal = {SIAM Journal on Scientific Computing},
      number = {3},
      pages = {1180--1200},
      title = {{Analysis of Block Parareal Preconditioners for Parabolic Optimal Control Problems}},
      url = {http://dx.doi.org/10.1137/080717481},
      volume = {32},
      year = {2010}
    }
    
  7. M. L. Minion, “A Hybrid Parareal Spectral Deferred Corrections Method,” Communications in Applied Mathematics and Computational Science, vol. 5, no. 2, pp. 265–301, 2010 [Online]. Available at: http://dx.doi.org/10.2140/camcos.2010.5.265
    @article{Minion2010,
      author = {Minion, Michael L.},
      doi = {10.2140/camcos.2010.5.265},
      journal = {Communications in Applied Mathematics and Computational Science},
      number = {2},
      pages = {265--301},
      title = {{A Hybrid Parareal Spectral Deferred Corrections Method}},
      url = {http://dx.doi.org/10.2140/camcos.2010.5.265},
      volume = {5},
      year = {2010}
    }
    
  8. S. Mitran, “Time parallel kinetic-molecular interaction algorithm for CPU/GPU computers,” Procedia Computer Science, vol. 1, no. 1, pp. 745–752, 2010 [Online]. Available at: http://dx.doi.org/10.1016/j.procs.2010.04.080
    @article{Mitran2010,
      author = {Mitran, Sorin},
      doi = {10.1016/j.procs.2010.04.080},
      journal = {Procedia Computer Science},
      number = {1},
      pages = {745--752},
      title = {{Time parallel kinetic-molecular interaction algorithm for {CPU}/{GPU} computers}},
      url = {http://dx.doi.org/10.1016/j.procs.2010.04.080},
      volume = {1},
      year = {2010}
    }
    
  9. D. Samaddar, D. E. Newman, and R. S. Sánchez, “Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm,” Journal of Computational Physics, vol. 229, no. 18, pp. 6558–6573, 2010 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2010.05.012
    @article{SamaddarEtAl2010,
      author = {Samaddar, Debasmita and Newman, David E. and S\'{a}nchez, Raul S.},
      doi = {10.1016/j.jcp.2010.05.012},
      issue = {18},
      journal = {Journal of Computational Physics},
      pages = {6558--6573},
      title = {{Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm}},
      url = {http://dx.doi.org/10.1016/j.jcp.2010.05.012},
      volume = {229},
      year = {2010}
    }
    
top

2009

  1. P. Amodio and L. Brugnano, “Parallel solution in time of ODEs: some achievements and perspectives,” Applied Numerical Mathematics, vol. 59, no. 3–4, pp. 424–435, 2009 [Online]. Available at: http://dx.doi.org/10.1016/j.apnum.2008.03.024
    @article{AmodioBrugnano2009,
      author = {Amodio, Pierluigi and Brugnano, Luigi},
      doi = {10.1016/j.apnum.2008.03.024},
      journal = {Applied Numerical Mathematics},
      number = {3--4},
      pages = {424--435},
      title = {{Parallel solution in time of {ODE}s: some achievements and perspectives}},
      url = {http://dx.doi.org/10.1016/j.apnum.2008.03.024},
      volume = {59},
      year = {2009}
    }
    
  2. A. Borzì and G. von Winckel, “Multigrid Methods and Sparse-Grid Collocation Techniques for Parabolic Optimal Control Problems with Random Coefficients,” SIAM Journal on Scientific Computing, vol. 31, no. 3, pp. 2172–2192, 2009 [Online]. Available at: http://dx.doi.org/10.1137/070711311
    @article{BorziWinckel2009,
      author = {Borzì, Alfio and von Winckel, G.},
      doi = {{10.1137/070711311}},
      journal = {SIAM Journal on Scientific Computing},
      number = {3},
      pages = {2172--2192},
      title = {{Multigrid Methods and Sparse-Grid Collocation Techniques for Parabolic Optimal Control Problems with Random Coefficients}},
      url = {{http://dx.doi.org/10.1137/070711311}},
      volume = {31},
      year = {2009}
    }
    
  3. E. Celledoni and T. Kvamsdal, “Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium,” International Journal for Numerical Methods in Engineering, vol. 79, no. 5, pp. 576–598, 2009 [Online]. Available at: http://dx.doi.org/10.1002/nme.2585
    @article{Celledoni2009,
      author = {Celledoni, E. and Kvamsdal, T.},
      doi = {10.1002/nme.2585},
      journal = {International Journal for Numerical Methods in Engineering},
      number = {5},
      pages = {576--598},
      title = {{Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium}},
      url = {http://dx.doi.org/10.1002/nme.2585},
      volume = {79},
      year = {2009}
    }
    
  4. J. Cortial and C. Farhat, “A time-parallel implicit method for accelerating the solution of non-linear structural dynamics problems,” International Journal for Numerical Methods in Engineering, vol. 77, no. 4, pp. 451–470, 2009 [Online]. Available at: http://dx.doi.org/10.1002/nme.2418
    @article{CortialFarhat2009,
      author = {Cortial, Julien and Farhat, Charbel},
      doi = {10.1002/nme.2418},
      journal = {International Journal for Numerical Methods in Engineering},
      number = {4},
      pages = {451--470},
      title = {{A time-parallel implicit method for accelerating the solution of non-linear structural dynamics problems}},
      url = {http://dx.doi.org/10.1002/nme.2418},
      volume = {77},
      year = {2009}
    }
    
  5. S. Engblom, “Parallel in Time Simulation of Multiscale Stochastic Chemical Kinetics,” Multiscale Modeling & Simulation, vol. 8, no. 1, pp. 46–68, 2009 [Online]. Available at: http://dx.doi.org/10.1137/080733723
    @article{Engblom2009,
      author = {Engblom, S.},
      doi = {{10.1137/080733723}},
      journal = {Multiscale Modeling \& Simulation},
      number = {1},
      pages = {46--68},
      title = {{Parallel in Time Simulation of Multiscale Stochastic Chemical Kinetics}},
      url = {{http://dx.doi.org/10.1137/080733723}},
      volume = {8},
      year = {2009}
    }
    
  6. G. Frantziskonis, K. Muralidharan, P. Deymier, S. Simunovic, P. Nukala, and S. Pannala, “Time-parallel multiscale/multiphysics framework,” Journal of Computational Physics, vol. 228, no. 21, pp. 8085–8092, 2009 [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2009.07.035
    @article{FrantziskonisEtAl2009,
      author = {Frantziskonis, G. and Muralidharan, K. and Deymier, P. and Simunovic, S. and Nukala, P. and Pannala, S.},
      doi = {{10.1016/j.jcp.2009.07.035}},
      journal = {Journal of Computational Physics},
      number = {21},
      pages = {8085--8092},
      title = {{Time-parallel multiscale/multiphysics framework}},
      url = {{http://dx.doi.org/10.1016/j.jcp.2009.07.035}},
      volume = {228},
      year = {2009}
    }
    
  7. Y. Maday, “Symposium: Recent Advances on the Parareal in Time Algorithms,” AIP Conference Proceedings, vol. 1168, no. 1, pp. 1515–1516, 2009 [Online]. Available at: http://dx.doi.org/10.1063/1.3241386
    @article{Maday2009,
      author = {Maday, Yvon},
      doi = {{10.1063/1.3241386}},
      editor = {Simos, Theodore E. and Psihoyios, George and Tsitouras, Ch.},
      journal = {AIP Conference Proceedings},
      number = {1},
      pages = {1515--1516},
      title = {{Symposium: Recent Advances on the Parareal in Time Algorithms}},
      url = {{http://dx.doi.org/10.1063/1.3241386}},
      volume = {1168},
      year = {2009}
    }
    
  8. D. Mercerat, L. Guillot, and J.-P. Vilotte, “Application of the parareal algorithm for acoustic wave propagation,” in AIP Conference Proceedings, 2009, vol. 1168, pp. 1521–1524 [Online]. Available at: http://dx.doi.org/10.1063/1.3241388
    @inproceedings{Mercerat2009,
      author = {Mercerat, Diego and Guillot, Laurent and Vilotte, Jean-Pierre},
      booktitle = {{AIP Conference Proceedings}},
      doi = {{10.1063/1.3241388}},
      pages = {1521--1524},
      title = {{Application of the parareal algorithm for acoustic wave propagation}},
      url = {{http://dx.doi.org/10.1063/1.3241388}},
      volume = {1168},
      year = {2009}
    }
    
  9. N. R. Nassif, N. Makhoul-Karam, and Y. Soukiassian, “Computation of blowing-up solutions for second-order differential equations using re-scaling techniques,” Journal of Computational and Applied Mathematics, vol. 227, no. 1, pp. 185–195, 2009 [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2008.07.020
    @article{NassifEtAl2009,
      author = {Nassif, Nabil R. and Makhoul-Karam, Noha and Soukiassian, Yeran},
      doi = {10.1016/j.cam.2008.07.020},
      journal = {Journal of Computational and Applied Mathematics},
      number = {1},
      pages = {185--195},
      title = {{Computation of blowing-up solutions for second-order differential equations using re-scaling techniques}},
      url = {http://dx.doi.org/10.1016/j.cam.2008.07.020},
      volume = {227},
      year = {2009}
    }
    
  10. S. Wu, B. Shi, and C. Huang, “Parareal-Richardson Algorithm for Solving Nonlinear ODEs and PDEs,” Communications in Computational Physics, vol. 6, no. 4, pp. 883–902, 2009 [Online]. Available at: http://dx.doi.org/10.4208/cicp.2009.v6.p883
    @article{Wu2009,
      author = {Wu, Shulin and Shi, Baochang and Huang, Chengming},
      doi = {10.4208/cicp.2009.v6.p883},
      issue = {4},
      journal = {Communications in Computational Physics},
      pages = {883--902},
      title = {Parareal-Richardson Algorithm for Solving Nonlinear ODEs and PDEs},
      url = {http://dx.doi.org/10.4208/cicp.2009.v6.p883},
      volume = {6},
      year = {2009}
    }
    
top

2008

  1. P. Amodio and L. Brugnano, “Recent Advances in the Parallel Solution in Time of ODEs,” AIP Conference Proceedings, vol. 1048, no. 1, pp. 867–870, 2008 [Online]. Available at: http://dx.doi.org/10.1063/1.2991069
    @article{AmodioBrugnano2008,
      author = {Amodio, Pierluigi and Brugnano, Luigi},
      doi = {{10.1063/1.2991069}},
      editor = {Simos, Theodore E. and Psihoyios, George and Tsitouras, Ch.},
      journal = {AIP Conference Proceedings},
      number = {1},
      pages = {867--870},
      title = {{Recent Advances in the Parallel Solution in Time of {ODE}s}},
      url = {{http://dx.doi.org/10.1063/1.2991069}},
      volume = {1048},
      year = {2008}
    }
    
  2. G. Bal and Q. Wu, “Symplectic Parareal,” in Domain Decomposition Methods in Science and Engineering XVII, vol. 60, U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, and W. Zulehner, Eds. Springer Berlin Heidelberg, 2008, pp. 401–408 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-75199-1_51
    @incollection{BalEtAl2008,
      author = {Bal, Guillaume and Wu, Qi},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XVII}}},
      doi = {10.1007/978-3-540-75199-1_51},
      editor = {Langer, Ulrich and Discacciati, Marco and Keyes, DavidE. and Widlund, OlofB. and Zulehner, Walter},
      pages = {401--408},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Symplectic Parareal}},
      url = {http://dx.doi.org/10.1007/978-3-540-75199-1_51},
      volume = {60},
      year = {2008}
    }
    
  3. M. J. Gander, “Analysis of the Parareal Algorithm Applied to Hyperbolic Problems using Characteristics,” Bol. Soc. Esp. Mat. Apl., vol. 42, pp. 21–35, 2008.
    @article{Gander2008,
      author = {Gander, Martin J.},
      journal = {Bol. Soc. Esp. Mat. Apl.},
      pages = {21--35},
      title = {{Analysis of the Parareal Algorithm Applied to Hyperbolic Problems using Characteristics}},
      volume = {42},
      year = {2008}
    }
    
  4. M. J. Gander and E. Hairer, “Nonlinear Convergence Analysis for the Parareal Algorithm,” in Domain Decomposition Methods in Science and Engineering, 2008, vol. 60, pp. 45–56 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-75199-1_4
    @inproceedings{GanderHairer2008,
      author = {Gander, Martin J. and Hairer, Ernst},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      doi = {10.1007/978-3-540-75199-1_4},
      editor = {Langer, U. and Widlund, O. and Keyes, D.},
      pages = {45--56},
      publisher = {Springer},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Nonlinear Convergence Analysis for the Parareal Algorithm}},
      url = {http://dx.doi.org/10.1007/978-3-540-75199-1_4},
      volume = {60},
      year = {2008}
    }
    
  5. M. J. Gander and M. Petcu, “Analysis of a Krylov Subspace Enhanced Parareal Algorithm for Linear Problem,” ESAIM: Proc., vol. 25, pp. 114–129, 2008 [Online]. Available at: http://dx.doi.org/10.1051/proc:082508
    @article{GanderPetcu2008,
      author = {Gander, Martin J. and Petcu, M.},
      doi = {10.1051/proc:082508},
      journal = {ESAIM: Proc.},
      pages = {114--129},
      title = {{Analysis of a {K}rylov Subspace Enhanced Parareal Algorithm for Linear Problem}},
      url = {http://dx.doi.org/10.1051/proc:082508},
      volume = {25},
      year = {2008}
    }
    
  6. Y. Liu and J. Hu, “Modified propagators of parareal in time algorithm and application to Princeton Ocean model,” Int. J. for Numerical Methods in Fluids, vol. 57, no. 12, pp. 1793–1804, 2008 [Online]. Available at: http://dx.doi.org/10.1002/fld.1703
    @article{Liu2008,
      author = {Liu, Y. and Hu, J.},
      doi = {10.1002/fld.1703},
      journal = {Int. J. for Numerical Methods in Fluids},
      number = {12},
      pages = {1793--1804},
      title = {{Modified propagators of parareal in time algorithm and application to {P}rinceton Ocean model}},
      url = {http://dx.doi.org/10.1002/fld.1703},
      volume = {57},
      year = {2008}
    }
    
  7. Y. Maday and E. M. Rønquist, “Parallelization in time through tensor-product space-time solvers,” Comptes Rendus Mathematique, vol. 346, no. 1–2, pp. 113–118, 2008 [Online]. Available at: http://dx.doi.org/10.1016/j.crma.2007.09.012
    @article{MadayRonquist2008,
      author = {Maday, Yvon and Rønquist, Einar M.},
      doi = {{10.1016/j.crma.2007.09.012}},
      journal = {Comptes Rendus Mathematique},
      number = {1--2},
      pages = {113--118},
      title = {{Parallelization in time through tensor-product space-time solvers}},
      url = {{http://dx.doi.org/10.1016/j.crma.2007.09.012}},
      volume = {346},
      year = {2008}
    }
    
  8. M. L. Minion and S. A. Williams, “Parareal and spectral deferred corrections,” in AIP Conference Proceedings, 2008, vol. 1048, p. 388 [Online]. Available at: http://dx.doi.org/10.1063/1.2990941
    @inproceedings{MinionEtAl2008,
      author = {Minion, Michael L. and Williams, Sarah A.},
      booktitle = {{AIP Conference Proceedings}},
      doi = {10.1063/1.2990941},
      pages = {388},
      title = {{Parareal and spectral deferred corrections}},
      url = {http://dx.doi.org/10.1063/1.2990941},
      volume = {1048},
      year = {2008}
    }
    
  9. M. Sarkis, C. E. Schaerer, and T. Mathew, “Block Diagonal Parareal Preconditioner for Parabolic Optimal Control Problems,” in Domain Decomposition Methods in Science and Engineering XVII, vol. 60, U. Langer and al., Eds. Springer Berlin Heidelberg, 2008, pp. 409–416 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-75199-1_52
    @incollection{SarkisEtAl2008,
      author = {Sarkis, Marcus and Schaerer, Christian E. and Mathew, Tarek},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XVII}}},
      doi = {{10.1007/978-3-540-75199-1_52}},
      editor = {Langer, Ulrich and {al.}},
      pages = {409--416},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Block Diagonal Parareal Preconditioner for Parabolic Optimal Control Problems}},
      url = {{http://dx.doi.org/10.1007/978-3-540-75199-1_52}},
      volume = {60},
      year = {2008}
    }
    
top

2007

  1. D. S. Daoud, “Stability of the Parareal Time Discretization for Parabolic Inverse Problems,” in Domain Decomposition Methods in Science and Engineering XVI, vol. 55, O. B. Widlund and D. E. Keyes, Eds. Springer Berlin Heidelberg, 2007, pp. 275–282 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-34469-8_32
    @incollection{Daoud2007,
      author = {Daoud, Daoud S.},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XVI}}},
      doi = {{10.1007/978-3-540-34469-8_32}},
      editor = {Widlund, Olof B. and Keyes, David E.},
      pages = {275--282},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Stability of the Parareal Time Discretization for Parabolic Inverse Problems}},
      url = {{http://dx.doi.org/10.1007/978-3-540-34469-8_32}},
      volume = {55},
      year = {2007}
    }
    
  2. M. J. Gander and M. Petcu, “Analysis of a Modified Parareal Algorithm for Second-Order Ordinary Differential Equations,” in AIP Conference Proceedings, 2007, vol. 936, p. 233 [Online]. Available at: http://dx.doi.org/10.1063/1.2790116
    @inproceedings{GanderPetcu2007,
      author = {Gander, Martin J. and Petcu, M.},
      booktitle = {{AIP Conference Proceedings}},
      doi = {{10.1063/1.2790116}},
      pages = {233},
      title = {{Analysis of a Modified Parareal Algorithm for Second-Order Ordinary Differential Equations}},
      url = {{http://dx.doi.org/10.1063/1.2790116}},
      volume = {936},
      year = {2007}
    }
    
  3. M. J. Gander and S. Vandewalle, “On the Superlinear and Linear Convergence of the Parareal Algorithm,” in Domain Decomposition Methods in Science and Engineering, vol. 55, O. B. Widlund and D. E. Keyes, Eds. Springer Berlin Heidelberg, 2007, pp. 291–298 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-34469-8_34
    @incollection{GanderVandewalle2007,
      author = {Gander, Martin J. and Vandewalle, Stefan},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      doi = {10.1007/978-3-540-34469-8_34},
      editor = {Widlund, Olof B. and Keyes, David E.},
      pages = {291--298},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{On the Superlinear and Linear Convergence of the Parareal Algorithm}},
      url = {http://dx.doi.org/10.1007/978-3-540-34469-8_34},
      volume = {55},
      year = {2007}
    }
    
  4. M. J. Gander and S. Vandewalle, “Analysis of the Parareal Time-Parallel Time-Integration Method,” SIAM Journal on Scientific Computing, vol. 29, no. 2, pp. 556–578, 2007 [Online]. Available at: http://dx.doi.org/10.1137/05064607X
    @article{GanderVandewalle2007_SISC,
      author = {Gander, Martin J. and Vandewalle, Stefan},
      doi = {10.1137/05064607X},
      journal = {SIAM Journal on Scientific Computing},
      number = {2},
      pages = {556--578},
      title = {{Analysis of the Parareal Time-Parallel Time-Integration Method}},
      url = {http://dx.doi.org/10.1137/05064607X},
      volume = {29},
      year = {2007}
    }
    
  5. D. Guibert and D. Tromeur-Dervout, “Adaptive Parareal for Systems of ODEs,” in Domain Decomposition Methods in Science and Engineering XVI, vol. 55, O. B. Widlund and D. E. Keyes, Eds. Springer Berlin Heidelberg, 2007, pp. 587–594 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-34469-8_73
    @incollection{GuibertTromeur2007,
      author = {Guibert, David and Tromeur-Dervout, Damien},
      booktitle = {{Domain Decomposition Methods in Science and Engineering {XVI}}},
      doi = {10.1007/978-3-540-34469-8_73},
      editor = {Widlund, OlofB. and Keyes, DavidE.},
      pages = {587--594},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Adaptive Parareal for Systems of {ODE}s}},
      url = {http://dx.doi.org/10.1007/978-3-540-34469-8_73},
      volume = {55},
      year = {2007}
    }
    
  6. D. Guibert and D. Tromeur-Dervout, “Parallel adaptive time domain decomposition for stiff systems of ODEs/DAEs,” Computers & Structures, vol. 85, no. 9, pp. 553–562, 2007 [Online]. Available at: http://dx.doi.org/10.1016/j.compstruc.2006.08.040
    @article{GuibertTromeur2007_CAS,
      author = {Guibert, David and Tromeur-Dervout, Damien},
      doi = {10.1016/j.compstruc.2006.08.040},
      journal = {Computers \& Structures},
      number = {9},
      pages = {553--562},
      title = {{Parallel adaptive time domain decomposition for stiff systems of {ODE}s/{DAE}s}},
      url = {http://dx.doi.org/10.1016/j.compstruc.2006.08.040},
      volume = {85},
      year = {2007}
    }
    
  7. D. Guibert and D. Tromeur-Dervout, “Parallel deferred correction method for CFD problems,” in Parallel Computational Fluid Dynamics 2006, J. H. Kwon, A. Ecer, N. Satofuka, J. Periaux, and P. Fox, Eds. Amsterdam: Elsevier, 2007, pp. 131–138 [Online]. Available at: http://dx.doi.org/10.1016/B978-044453035-6/50019-5
    @incollection{GuibertTromeur2007_PCFD,
      address = {Amsterdam},
      author = {Guibert, David and Tromeur-Dervout, Damien},
      booktitle = {{Parallel Computational Fluid Dynamics 2006}},
      doi = {10.1016/B978-044453035-6/50019-5},
      editor = {Kwon, J.H. and Ecer, A. and Satofuka, N. and Periaux, J. and Fox, P.},
      pages = {131--138},
      publisher = {Elsevier},
      title = {{Parallel deferred correction method for {CFD} problems}},
      url = {http://dx.doi.org/10.1016/B978-044453035-6/50019-5},
      year = {2007}
    }
    
  8. S. M. Kaber and Y. Maday, “Parareal in time approximation of the Korteveg-deVries-Burgers’ equations,” PAMM, vol. 7, no. 1, pp. 1026403–1026404, 2007 [Online]. Available at: http://dx.doi.org/10.1002/pamm.200700574
    @article{KaberMaday2007,
      author = {Kaber, S. M. and Maday, Yvon},
      doi = {{10.1002/pamm.200700574}},
      issue = {1},
      journal = {PAMM},
      pages = {1026403--1026404},
      title = {{Parareal in time approximation of the {Korteveg-deVries-Burgers}' equations}},
      url = {{http://dx.doi.org/10.1002/pamm.200700574}},
      volume = {7},
      year = {2007}
    }
    
  9. Y. Maday, J. Salomon, and G. Turinici, “Monotonic parareal control for quantum systems,” SIAM Journal on Numerical Analysis, vol. 45, no. 6, pp. 2468–2482, 2007 [Online]. Available at: http://dx.doi.org/10.1137/050647086
    @article{MadayEtAl2007,
      author = {Maday, Yvon and Salomon, Julien and Turinici, Gabriel},
      doi = {10.1137/050647086},
      journal = {SIAM Journal on Numerical Analysis},
      number = {6},
      pages = {2468--2482},
      title = {{Monotonic parareal control for quantum systems}},
      url = {http://dx.doi.org/10.1137/050647086},
      volume = {45},
      year = {2007}
    }
    
  10. S. Ulbrich, “7. Generalized SQP Methods with ‘Parareal’ Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization,” in Real-Time PDE-Constrained Optimization, SIAM, 2007, pp. 145–168 [Online]. Available at: https://dx.doi.org/10.1137/1.9780898718935.ch7
    @inbook{Ulbrich2007,
      author = {Ulbrich, Stefan},
      booktitle = {Real-Time PDE-Constrained Optimization},
      chapter = {},
      doi = {10.1137/1.9780898718935.ch7},
      pages = {145--168},
      publisher = {SIAM},
      title = {7. Generalized SQP Methods with ``Parareal'' Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization},
      url = {https://dx.doi.org/10.1137/1.9780898718935.ch7},
      year = {2007}
    }
    
top

2006

  1. C. Farhat, J. Cortial, C. Dastillung, and H. Bavestrello, “Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses,” International Journal for Numerical Methods in Engineering, vol. 67, no. 5, pp. 697–724, 2006 [Online]. Available at: http://dx.doi.org/10.1002/nme.1653
    @article{FarhatEtAl2006,
      author = {Farhat, Charbel and Cortial, Julien and Dastillung, C. and Bavestrello, H.},
      doi = {10.1002/nme.1653},
      issue = {5},
      journal = {International Journal for Numerical Methods in Engineering},
      pages = {697--724},
      title = {{Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses}},
      url = {http://dx.doi.org/10.1002/nme.1653},
      volume = {67},
      year = {2006}
    }
    
  2. I. Garrido, B. Lee, G. E. Fladmark, and M. S. Espedal, “Convergent iterative schemes for time parallelization,” Mathematics of Computation, vol. 75, no. 255, pp. 1403–1429, Feb. 2006 [Online]. Available at: https://doi.org/10.1090/s0025-5718-06-01832-1
    @article{GarridoEtAl2006,
      author = {Garrido, Izaskun and Lee, Barry and Fladmark, Gunnar E. and Espedal, Magne S.},
      doi = {10.1090/s0025-5718-06-01832-1},
      journal = {Mathematics of Computation},
      month = feb,
      number = {255},
      pages = {1403--1429},
      publisher = {American Mathematical Society ({AMS})},
      title = {Convergent iterative schemes for time parallelization},
      url = {https://doi.org/10.1090/s0025-5718-06-01832-1},
      volume = {75},
      year = {2006}
    }
    
  3. N. R. Nassif, N. M. Karam, and Y. Soukiassian, “A New Approach for Solving Evolution Problems in Time-Parallel Way,” in Computational Science – ICCS 2006, vol. 3991, V. N. Alexandrov, G. D. Albada, P. M. A. Sloot, and J. Dongarra, Eds. Springer Berlin Heidelberg, 2006, pp. 148–155 [Online]. Available at: http://dx.doi.org/10.1007/11758501_24
    @incollection{NassifEtAl2006,
      author = {Nassif, Nabil R. and Karam, Noha Makhoul and Soukiassian, Yeran},
      booktitle = {{Computational Science -- ICCS 2006}},
      doi = {{10.1007/11758501_24}},
      editor = {Alexandrov, Vassil N. and Albada, Geert Dick and Sloot, Peter M.A. and Dongarra, Jack},
      pages = {148--155},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computer Science}},
      title = {{A New Approach for Solving Evolution Problems in Time-Parallel Way}},
      url = {{http://dx.doi.org/10.1007/11758501_24}},
      volume = {3991},
      year = {2006}
    }
    
  4. J. M. F. Trindade and J. C. F. Pereira, “Parallel-in-Time Simulation of Two-Dimensional, Unsteady, Incompressible Laminar Flows,” Numerical Heat Transfer, Part B: Fundamentals, vol. 50, no. 1, pp. 25–40, 2006 [Online]. Available at: http://dx.doi.org/10.1080/10407790500459379
    @article{Trindade2006,
      author = {Trindade, J.~M.~F. and Pereira, J.~C.~F.},
      doi = {10.1080/10407790500459379},
      journal = {Numerical Heat Transfer, Part B: Fundamentals},
      number = {1},
      pages = {25--40},
      title = {{Parallel-in-Time Simulation of Two-Dimensional, Unsteady, Incompressible Laminar Flows}},
      url = {http://dx.doi.org/10.1080/10407790500459379},
      volume = {50},
      year = {2006}
    }
    
  5. Y. Yu, A. Srinivasan, and N. Chandra, “Scalable Time-Parallelization of Molecular Dynamics Simulations in Nano Mechanics,” in Parallel Processing, 2006. ICPP 2006. International Conference on, 2006, pp. 119–126 [Online]. Available at: http://dx.doi.org/10.1109/ICPP.2006.64
    @inproceedings{Yu2006,
      author = {Yu, Yanan and Srinivasan, Ashok and Chandra, Namas},
      booktitle = {{Parallel Processing, 2006. ICPP 2006. International Conference on}},
      doi = {10.1109/ICPP.2006.64},
      pages = {119--126},
      title = {{Scalable Time-Parallelization of Molecular Dynamics Simulations in Nano Mechanics}},
      url = {http://dx.doi.org/10.1109/ICPP.2006.64},
      year = {2006}
    }
    
top

2005

  1. G. Bal, “On the convergence and the stability of the parareal algorithm to solve partial differential equations,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 426–432 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_43
    @inproceedings{Bal2005,
      address = {Berlin},
      author = {Bal, Guillaume},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      doi = {10.1007/3-540-26825-1_43},
      editor = {Kornhuber, Ralf and {et al.}},
      pages = {426--432},
      publisher = {Springer},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{On the convergence and the stability of the parareal algorithm to solve partial differential equations}},
      url = {http://dx.doi.org/10.1007/3-540-26825-1_43},
      volume = {40},
      year = {2005}
    }
    
  2. A. Borzì and R. Griesse, “Experiences with a space–time multigrid method for the optimal control of a chemical turbulence model,” International Journal for Numerical Methods in Fluids, vol. 47, no. 8-9, pp. 879–885, 2005 [Online]. Available at: http://dx.doi.org/10.1002/fld.904
    @article{Borzi2005,
      author = {Borzì, Alfio and Griesse, R.},
      doi = {10.1002/fld.904},
      journal = {International Journal for Numerical Methods in Fluids},
      number = {8-9},
      pages = {879--885},
      title = {{Experiences with a space--time multigrid method for the optimal control of a chemical turbulence model}},
      url = {http://dx.doi.org/10.1002/fld.904},
      volume = {47},
      year = {2005}
    }
    
  3. P. F. Fischer, F. Hecht, and Y. Maday, “A parareal in time semi-implicit approximation of the Navier-Stokes equations,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 433–440 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_44
    @inproceedings{FischerEtAl2005,
      address = {Berlin},
      author = {Fischer, P.~F. and Hecht, F. and Maday, Yvon},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      doi = {{10.1007/3-540-26825-1_44}},
      editor = {Kornhuber, Ralf and {et al.}},
      pages = {433--440},
      publisher = {Springer},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{A parareal in time semi-implicit approximation of the {N}avier-{S}tokes equations}},
      url = {{http://dx.doi.org/10.1007/3-540-26825-1_44}},
      volume = {40},
      year = {2005}
    }
    
  4. I. Garrido, M. S. Espedal, and G. E. Fladmark, “A Convergent Algorithm for Time Parallelization Applied to Reservoir Simulation,” in Domain Decomposition Methods in Science and Engineering, vol. 40, T. J. Barth and al., Eds. Springer Berlin Heidelberg, 2005, pp. 469–476 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_48
    @incollection{GarridoEtAl2005,
      author = {Garrido, Izaskun and Espedal, Magne S. and Fladmark, Gunnar E.},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      doi = {10.1007/3-540-26825-1_48},
      editor = {Barth, Timothy J. and {al.}},
      pages = {469--476},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{A Convergent Algorithm for Time Parallelization Applied to Reservoir Simulation}},
      url = {http://dx.doi.org/10.1007/3-540-26825-1_48},
      volume = {40},
      year = {2005}
    }
    
  5. Y. Maday and G. Turinici, “The parareal in time iterative solver: A further direction to parallel implementation,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 441–448 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_45
    @inproceedings{MadayTurinici2005,
      address = {Berlin},
      author = {Maday, Yvon and Turinici, Gabriel},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      doi = {{10.1007/3-540-26825-1_45}},
      editor = {Kornhuber, Ralf and {et al.}},
      pages = {441--448},
      publisher = {Springer},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{The parareal in time iterative solver: A further direction to parallel implementation}},
      url = {{http://dx.doi.org/10.1007/3-540-26825-1_45}},
      volume = {40},
      year = {2005}
    }
    
  6. B. A. Schmitt, R. Weiner, and H. Podhaisky, “Multi-Implicit Peer Two-Step W-Methods for Parallel Time Integration,” BIT Numerical Mathematics, vol. 45, no. 1, pp. 197–217, 2005 [Online]. Available at: http://dx.doi.org/10.1007/s10543-005-2635-y
    @article{SchmittEtAl2005,
      author = {Schmitt, Bernhard A. and Weiner, Ruediger and Podhaisky, Helmut},
      doi = {10.1007/s10543-005-2635-y},
      journal = {BIT Numerical Mathematics},
      number = {1},
      pages = {197--217},
      title = {Multi-Implicit Peer Two-Step W-Methods for Parallel Time Integration},
      url = {http://dx.doi.org/10.1007/s10543-005-2635-y},
      volume = {45},
      year = {2005}
    }
    
  7. A. Srinivasan and N. Chandra, “Latency tolerance through parallelization of time in scientific applications,” Parallel Computing, vol. 31, no. 7, pp. 777–796, 2005 [Online]. Available at: http://dx.doi.org/10.1016/j.parco.2005.04.008
    @article{SrinivasanChandra2005,
      author = {Srinivasan, Ashok and Chandra, Namas},
      doi = {10.1016/j.parco.2005.04.008},
      journal = {Parallel Computing},
      number = {7},
      pages = {777--796},
      title = {{Latency tolerance through parallelization of time in scientific applications}},
      url = {http://dx.doi.org/10.1016/j.parco.2005.04.008},
      volume = {31},
      year = {2005}
    }
    
  8. A. Srinivasan, Y. Yu, and N. Chandra, “Application of Reduce Order Modeling to Time Parallelization,” in High Performance Computing – HiPC 2005, vol. 3769, D. A. Bader, M. Parashar, V. Sridhar, and V. K. Prasanna, Eds. Springer Berlin Heidelberg, 2005, pp. 106–117 [Online]. Available at: http://dx.doi.org/10.1007/11602569_15
    @incollection{SrinivasanEtAl2005,
      author = {Srinivasan, Ashok and Yu, Yanan and Chandra, Namas},
      booktitle = {{High Performance Computing -- HiPC 2005}},
      doi = {10.1007/11602569_15},
      editor = {Bader, David A. and Parashar, Manish and Sridhar, Varadarajan and Prasanna, Viktor K.},
      isbn = {978-3-540-30936-9},
      pages = {106--117},
      publisher = {Springer Berlin Heidelberg},
      series = {{Lecture Notes in Computer Science}},
      title = {{Application of Reduce Order Modeling to Time Parallelization}},
      url = {http://dx.doi.org/10.1007/11602569_15},
      volume = {3769},
      year = {2005}
    }
    
  9. G. A. Staff and E. M. Rønquist, “Stability of the parareal algorithm,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 449–456 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_46
    @inproceedings{StaffRonquist2005,
      address = {Berlin},
      author = {Staff, G.~A. and Rønquist, Einar M.},
      booktitle = {{Domain Decomposition Methods in Science and Engineering}},
      doi = {10.1007/3-540-26825-1_46},
      editor = {Kornhuber, Ralf and {et al.}},
      pages = {449--456},
      publisher = {Springer},
      series = {{Lecture Notes in Computational Science and Engineering}},
      title = {{Stability of the parareal algorithm}},
      url = {http://dx.doi.org/10.1007/3-540-26825-1_46},
      volume = {40},
      year = {2005}
    }
    
  10. V. Thomée, “A high order parallel method for time discretization of parabolic type equations based on Laplace transformation and quadrature,” International Journal of Numerical Analysis and Modeling, vol. 2, no. 1, pp. 85–96, 2005.
    @article{Thome2005,
      author = {Thom\'{e}e, Vidar},
      journal = {International Journal of Numerical Analysis and Modeling},
      number = {1},
      pages = {85--96},
      title = {A high order parallel method for time discretization of parabolic type equations based on {L}aplace transformation and quadrature},
      volume = {2},
      year = {2005}
    }
    
top

2000 - 2004

  1. D. Sheen, I. H. Sloan, and V. Thomée, “A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature,” Mathematics of Computation, vol. 69, no. 229, pp. 177–195, 2000 [Online]. Available at: https://doi.org/10.1090/S0025-5718-99-01098-4
    @article{SheenEtAl2000,
      author = {Sheen, Dongwoo and Sloan, Ian H. and Thom\'{e}e, Vidar},
      doi = {10.1090/S0025-5718-99-01098-4},
      journal = {Mathematics of Computation},
      number = {229},
      pages = {177--195},
      title = {{A parallel method for time-discretizati