References

This list of publications closely related to parallel-in-time integration is probably not complete. Please feel free to add any missing publications through a pull request on GitHub .

Statistics


top

2024

  1. M. Appel and J. Alexandersen, “One-shot Parareal Approach for Topology Optimisation of Transient Heat Flow,” arXiv:2411.19030v1 [cs.CE], 2024 [Online]. Available at: http://arxiv.org/abs/2411.19030v1
  2. T. Baumann, S. Götschel, T. Lunet, D. Ruprecht, and R. Speck, “Adaptive time step selection for spectral deferred correction,” Numerical Algorithms, Oct. 2024, doi: 10.1007/s11075-024-01964-z. [Online]. Available at: https://doi.org/10.1007/s11075-024-01964-z
  3. T. Baumann, S. Götschel, T. Lunet, D. Ruprecht, and R. Speck, “Resilience Against Soft Faults through Adaptivity in Spectral Deferred Correction.” 2024 [Online]. Available at: https://arxiv.org/abs/2412.00529
  4. M. M. Betcke, L. M. Kreusser, and D. Murari, “Parallel-in-Time Solutions with Random Projection Neural Networks,” arXiv:2408.09756v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2408.09756v1
  5. C. Bonte, A. Bouillon, G. Samaey, and K. Meerbergen, “Efficient parallel inversion of ParaOpt preconditioners,” arXiv:2412.02425v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2412.02425v1
  6. I. Bossuyt, S. Vandewalle, and G. Samaey, “Micro-macro Parareal, from ODEs to SDEs and back again,” arXiv:2401.01798v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2401.01798v1
  7. R. Cao, S. Hou, and L. Ma, “A Pipeline-Based ODE Solving Framework,” IEEE Access, vol. 12, pp. 37995–38004, 2024, doi: 10.1109/ACCESS.2024.3375305.
  8. P. Freese, S. Götschel, T. Lunet, D. Ruprecht, and M. Schreiber, “Parallel performance of shared memory parallel spectral deferred corrections,” arXiv:2403.20135v1 [cs.CE], 2024 [Online]. Available at: http://arxiv.org/abs/2403.20135v1
  9. P. Y. Fung and S. Hon, “Block ω-circulant preconditioners for parabolic optimal control problems,” arXiv:2406.00952v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2406.00952v1
  10. P. Y. Fung and S. Hon, “Block \(\boldsymbolω\)-Circulant Preconditioners for Parabolic Optimal Control Problems,” SIAM Journal on Matrix Analysis and Applications, vol. 45, no. 4, pp. 2263–2286, Dec. 2024, doi: 10.1137/23m1601432. [Online]. Available at: http://dx.doi.org/10.1137/23M1601432
  11. M. J. Gander, M. Ohlberger, and S. Rave, “A Parareal algorithm without Coarse Propagator?,” arXiv:2409.02673v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2409.02673v1
  12. G. Gattiglio, L. Grigoryeva, and M. Tamborrino, “Nearest Neighbors GParareal: Improving Scalability of Gaussian Processes for Parallel-in-Time Solvers,” arXiv:2405.12182v1 [stat.CO], 2024 [Online]. Available at: http://arxiv.org/abs/2405.12182v1
  13. G. Gattiglio, L. Grigoryeva, and M. Tamborrino, “RandNet-Parareal: a time-parallel PDE solver using Random Neural Networks,” arXiv:2411.06225v1 [stat.CO], 2024 [Online]. Available at: http://arxiv.org/abs/2411.06225v1
  14. X.-M. Gu, J. Liu, and C. W. Oosterlee, “Parallel-in-Time Iterative Methods for Pricing American Options,” arXiv:2405.08280v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2405.08280v1
  15. H. Gu, M. Cai, and J. Li, “Crank-Nicolson-type iterative decoupled algorithms for Biot’s consolidation model using total pressure,” arXiv:2409.18391v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2409.18391v1
  16. T. He, J. Lu, and M. Li, “The parareal algorithm for Caputo-Hadamard fractional differential equations,” Communications on Analysis and Computation, vol. 0, no. 0, pp. 0–0, 2024, doi: 10.3934/cac.2024021. [Online]. Available at: http://dx.doi.org/10.3934/cac.2024021
  17. M. Heinkenschloss and N. J. Kroeger, “A new diagonalization based method for parallel-in-time solution of linear-quadratic optimal control problems,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 30, p. 62, 2024, doi: 10.1051/cocv/2024051. [Online]. Available at: http://dx.doi.org/10.1051/cocv/2024051
  18. B. Heinzelreiter and J. W. Pearson, “Diagonalization-Based Parallel-in-Time Preconditioners for Instationary Fluid Flow Control Problems,” arXiv:2405.18964v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2405.18964v1
  19. S. Y. Hon, P. Y. Fung, and X.-lei Lin, “An optimal parallel-in-time preconditioner for parabolic optimal control problems,” arXiv:2410.22686v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2410.22686v1
  20. J. Hope-Collins, A. Hamdan, W. Bauer, L. Mitchell, and C. Cotter, “asQ: parallel-in-time finite element simulations using ParaDiag for geoscientific models and beyond,” arXiv:2409.18792v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2409.18792v1
  21. J. Huang, L. Ju, and Y. Xu, “A parareal exponential integrator finite element method for semilinear parabolic equations,” Numerical Methods for Partial Differential Equations, May 2024, doi: 10.1002/num.23116. [Online]. Available at: http://dx.doi.org/10.1002/num.23116
  22. Y.-Y. Huang, P. Y. Fung, S. Y. Hon, and X.-L. Lin, “An efficient preconditioner for evolutionary partial differential equations with θ-method in time discretization,” arXiv:2408.03535v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2408.03535v1
  23. Y.-Y. Huang, S. Y. Hon, L.-K. Chou, and S.-L. Lei, “Optimal preconditioners for nonsymmetric multilevel Toeplitz systems with application to solving non-local evolutionary partial differential equations,” arXiv:2409.15770v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2409.15770v1
  24. C. Iacob, H. Abdulsamad, and S. Särkkä, “A Parallel-in-Time Newton’s Method for Nonlinear Model Predictive Control,” arXiv:2409.20027v2 [math.OC], 2024 [Online]. Available at: http://arxiv.org/abs/2409.20027v2
  25. A. Q. Ibrahim, S. Götschel, and D. Ruprecht, “Space-time parallel scaling of Parareal with a Fourier Neural Operator as coarse propagator,” arXiv:2404.02521v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2404.02521v1
  26. S. Iqbal, H. Abdulsamad, T. Cator, U. Braga-Neto, and S. Särkkä, “Parallel-in-Time Probabilistic Solutions for Time-Dependent Nonlinear Partial Differential Equations,” in 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP), 2024, pp. 1–6, doi: 10.1109/mlsp58920.2024.10734739 [Online]. Available at: http://dx.doi.org/10.1109/MLSP58920.2024.10734739
  27. J. Jackaman and S. MacLachlan, “Space-time waveform relaxation multigrid for Navier-Stokes,” arXiv:2407.13997v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2407.13997v1
  28. N. Janssens and J. Meyers, “Parallel-in-time multiple shooting for optimal control problems governed by the Navier–Stokes equations,” Computer Physics Communications, vol. 296, p. 109019, Mar. 2024, doi: 10.1016/j.cpc.2023.109019. [Online]. Available at: http://dx.doi.org/10.1016/j.cpc.2023.109019
  29. F. C. Joseph and G. Gurrala, “Adaptive Homotopy Based Coarse Solver for Parareal-in-Time Transient Stability Simulations,” IEEE Transactions on Power Systems, pp. 1–12, 2024, doi: 10.1109/tpwrs.2024.3424555. [Online]. Available at: http://dx.doi.org/10.1109/TPWRS.2024.3424555
  30. L. Kaiser, R. Tsai, and C. Klingenberg, “Efficient Numerical Wave Propagation Enhanced By An End-to-End Deep Learning Model,” arXiv:2402.02304v4 [math.AP], 2024 [Online]. Available at: http://arxiv.org/abs/2402.02304v4
  31. A. Kumar, “Investigation of Second Order Taylor Series in the Coarse Operator of Parareal Algorithm for Power System Simulation,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2024, doi: 10.1109/tcsii.2024.3381372. [Online]. Available at: http://dx.doi.org/10.1109/TCSII.2024.3381372
  32. F. Kwok and D. N. Tognon, “A parallel in time algorithm based ParaExp for optimal control problems,” arXiv:2406.11478v1 [cs.DC], 2024 [Online]. Available at: http://arxiv.org/abs/2406.11478v1
  33. F. Li and Y. Xu, “A Diagonalization-Based Parallel-in-Time Algorithm for Crank-Nicolson’s Discretization of the Viscoelastic Equation,” East Asian Journal on Applied Mathematics, vol. 14, no. 1, pp. 47–78, Jun. 2024, doi: 10.4208/eajam.2022-304.070323. [Online]. Available at: http://dx.doi.org/10.4208/eajam.2022-304.070323
  34. K.-A. Mardal, J. Sogn, and S. Takacs, “A robust and time-parallel preconditioner for parabolic reconstruction problems using Isogeometric Analysis,” arXiv:2407.17964v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2407.17964v1
  35. N. Margenberg and P. Munch, “A Space-Time Multigrid Method for Space-Time Finite Element Discretizations of Parabolic and Hyperbolic PDEs,” arXiv:2408.04372v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2408.04372v1
  36. Z. Miao, B. W. null, and Y. Jiang, “Energy-Preserving Parareal-RKN Algorithms for Hamiltonian Systems,” Numerical Mathematics: Theory, Methods and Applications, vol. 17, no. 1, pp. 121–144, Jun. 2024, doi: 10.4208/nmtma.oa-2023-0081. [Online]. Available at: http://dx.doi.org/10.4208/nmtma.oa-2023-0081
  37. Z. Miao, R.-H. Zhang, W.-W. Han, and Y.-L. Jiang, “Analysis of a fractional-step parareal algorithm for the incompressible Navier-Stokes equations,” Computers & Mathematics with Applications, vol. 161, pp. 78–89, May 2024, doi: 10.1016/j.camwa.2024.02.035. [Online]. Available at: http://dx.doi.org/10.1016/j.camwa.2024.02.035
  38. S. Muralikrishnan and R. Speck, “ParaPIF: A Parareal Approach for Parallel-in-Time Integration of Particle-in-Fourier schemes,” arXiv:2407.00485v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2407.00485v1
  39. S. J. P. Pamela et al., “Neural-Parareal: Dynamically Training Neural Operators as Coarse Solvers for Time-Parallelisation of Fusion MHD Simulations,” arXiv:2405.01355v1 [physics.plasm-ph], 2024 [Online]. Available at: http://arxiv.org/abs/2405.01355v1
  40. B. Park, “Stochastic Power System Dynamic Simulation Using Parallel-in-Time Algorithm,” IEEE Access, vol. 12, pp. 28500–28510, 2024, doi: 10.1109/access.2024.3367358. [Online]. Available at: http://dx.doi.org/10.1109/ACCESS.2024.3367358
  41. N. A. Petersson, S. Günther, and S. W. Chung, “A time-parallel multiple-shooting method for large-scale quantum optimal control,” arXiv:2407.13950v1 [quant-ph], 2024 [Online]. Available at: http://arxiv.org/abs/2407.13950v1
  42. Y. Poirier, J. Salomon, A. Babarit, P. Ferrant, and G. Ducrozet, “Acceleration of a wave-structure interaction solver by the Parareal method,” Engineering Analysis with Boundary Elements, vol. 167, p. 105870, Oct. 2024, doi: 10.1016/j.enganabound.2024.105870. [Online]. Available at: http://dx.doi.org/10.1016/j.enganabound.2024.105870
  43. J. Sarpe, A. Klaedtke, and H. D. Gersem, “Periodic Adjoint Sensitivity Analysis,” arXiv:2405.19048v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2405.19048v1
  44. E. Scheiber, “A Convergence Theorem for the Parareal Algorithm Revisited,” arXiv:2405.06954v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2405.06954v1
  45. E. Schnaubelt, M. Wozniak, J. Dular, I. C. Garcia, A. Verweij, and S. Schöps, “Parallel-in-Time Integration of Transient Phenomena in No-Insulation Superconducting Coils Using Parareal,” arXiv:2404.13333v1 [cs.CE], 2024 [Online]. Available at: http://arxiv.org/abs/2404.13333v1
  46. N. R. Selvam, A. Merchant, and S. Ermon, “Self-Refining Diffusion Samplers: Enabling Parallelization via Parareal Iterations,” arXiv:2412.08292v1 [cs.LG], 2024 [Online]. Available at: http://arxiv.org/abs/2412.08292v1
  47. G. R. de Souza, S. Pezzuto, and R. Krause, “High-order parallel-in-time method for the monodomain equation in cardiac electrophysiology,” arXiv:2405.19994v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2405.19994v1
  48. H. D. Sterck, R. D. Falgout, O. A. Krzysik, and J. B. Schroder, “Parallel-in-time solution of scalar nonlinear conservation laws,” arXiv:2401.04936v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2401.04936v1
  49. H. D. Sterck, R. D. Falgout, O. A. Krzysik, and J. B. Schroder, “Parallel-in-time solution of hyperbolic PDE systems via characteristic-variable block preconditioning,” arXiv:2407.03873v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2407.03873v1
  50. S.-L. Wu and T. Zhou, “Convergence Analysis of the Parareal Algorithm with Nonuniform Fine Time Grid,” SIAM Journal on Numerical Analysis, vol. 62, no. 5, pp. 2308–2330, Oct. 2024, doi: 10.1137/23m1592481. [Online]. Available at: http://dx.doi.org/10.1137/23M1592481
  51. N. K. Yamaleev and S. Paudel, “A New Parallel-in-time Direct Inverse Method for Nonlinear Differential Equations,” arXiv:2406.00878v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2406.00878v1
  52. Z. Yang, Y. Wang, and W. T. Leung, “Parallel in time partially explicit splitting scheme for high contrast multiscale problems,” arXiv:2411.09244v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2411.09244v1
  53. R. Yoda, M. Bolten, K. Nakajima, and A. Fujii, “Coarse-grid operator optimization in multigrid reduction in time for time-dependent Stokes and Oseen problems,” Japan Journal of Industrial and Applied Mathematics, Apr. 2024, doi: 10.1007/s13160-024-00652-8. [Online]. Available at: http://dx.doi.org/10.1007/s13160-024-00652-8
  54. L. Zhang and Q. Zhang, “Convergence analysis of the parareal algorithms for stochastic Maxwell equations driven by additive noise,” arXiv:2407.10907v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2407.10907v1
  55. Y.-L. Zhao, X.-M. Gu, and C. W. Oosterlee, “A parallel preconditioner for the all-at-once linear system from evolutionary PDEs with Crank-Nicolson discretization,” arXiv:2401.16113v1 [math.NA], 2024 [Online]. Available at: http://arxiv.org/abs/2401.16113v1
  56. M. Zhen, X. Liu, X. Ding, and J. Cai, “High-order space–time parallel computing of the Navier–Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 423, p. 116880, Apr. 2024, doi: 10.1016/j.cma.2024.116880. [Online]. Available at: http://dx.doi.org/10.1016/j.cma.2024.116880
  57. M. Zhen, X. Ding, K. Qu, J. Cai, and S. Pan, “Enhancing the Convergence of the Multigrid-Reduction-in-Time Method for the Euler and Navier–Stokes Equations,” Journal of Scientific Computing, vol. 100, no. 2, Jun. 2024, doi: 10.1007/s10915-024-02596-0. [Online]. Available at: http://dx.doi.org/10.1007/s10915-024-02596-0
top

2023

  1. A. Barman and A. Sharma, “A Space-Time framework for compressible flow simulations using Finite Volume Method,” in AIAA AVIATION 2023 Forum, 2023, doi: 10.2514/6.2023-3431 [Online]. Available at: https://doi.org/10.2514/6.2023-3431
  2. M. Bolten, S. Friedhoff, and J. Hahne, “Task graph-based performance analysis of parallel-in-time methods,” Parallel Computing, vol. 118, p. 103050, Nov. 2023, doi: 10.1016/j.parco.2023.103050. [Online]. Available at: https://doi.org/10.1016/j.parco.2023.103050
  3. N. Bosch, A. Corenflos, F. Yaghoobi, F. Tronarp, P. Hennig, and S. Särkkä, “Parallel-in-Time Probabilistic Numerical ODE Solvers,” arXiv:2310.01145v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2310.01145v1
  4. I. Bossuyt, S. Vandewalle, and G. Samaey, “Monte-Carlo/Moments micro-macro Parareal method for unimodal and bimodal scalar McKean-Vlasov SDEs,” arXiv:2310.11365v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2310.11365v1
  5. A. Bouillon, G. Samaey, and K. Meerbergen, “On generalized preconditioners for time-parallel parabolic optimal control,” arXiv:2302.06406v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2302.06406v1
  6. A. Bouillon, G. Samaey, and K. Meerbergen, “Diagonalization-based preconditioners and generalized convergence bounds for ParaOpt,” arXiv:2304.09235v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2304.09235v1
  7. L. D’Amore and R. Cacciapuoti, “Space-Time Decomposition of Kalman Filter,” Numerical Mathematics: Theory, Methods and Applications, vol. 0, no. 0, pp. 0–0, Sep. 2023, doi: 10.4208/nmtma.oa-2022-0203. [Online]. Available at: https://doi.org/10.4208/nmtma.oa-2022-0203
  8. R. Cacciapuoti and L. D’Amore, “Scalability analysis of a two level domain decomposition approach in space and time solving data assimilation models,” Concurrency and Computation: Practice and Experience, Nov. 2023, doi: 10.1002/cpe.7937. [Online]. Available at: https://doi.org/10.1002/cpe.7937
  9. J. G. Caldas Steinstraesser, P. da Silva Peixoto, and M. Schreiber, “Parallel-in-time integration of the shallow water equations on the rotating sphere using Parareal and MGRIT,” arXiv:2306.09497v1 [math.NA], 2023 [Online]. Available at: https://arxiv.org/abs/2306.09497v1
  10. B. Carrel, M. J. Gander, and B. Vandereycken, “Low-rank Parareal: a low-rank parallel-in-time integrator,” BIT Numerical Mathematics, vol. 63, no. 1, Feb. 2023, doi: 10.1007/s10543-023-00953-3. [Online]. Available at: https://doi.org/10.1007%2Fs10543-023-00953-3
  11. Z. Chen and Y. Liu, “Efficient and Parallel Solution of High-order Continuous Time Galerkin for Dissipative and Wave Propagation Problems,” arXiv:2303.05008v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2303.05008v1
  12. T. Cheng, H. Yang, J. Huang, and C. Yang, “Nonlinear parallel-in-time simulations of multiphase flow in porous media,” Journal of Computational Physics, p. 112515, Sep. 2023, doi: 10.1016/j.jcp.2023.112515. [Online]. Available at: https://doi.org/10.1016/j.jcp.2023.112515
  13. E. C. Cyr, “A 2-Level Domain Decomposition Preconditioner for KKT Systems with Heat-Equation Constraints,” arXiv:2305.04421v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2305.04421v1
  14. C. Dajana, C. Eduardo, and V. Carmine, “Non-stationary wave relaxation methods for general linear systems of Volterra equations: convergence and parallel GPU implementation,” Numerical Algorithms, Jun. 2023, doi: 10.1007/s11075-023-01567-0. [Online]. Available at: https://doi.org/10.1007/s11075-023-01567-0
  15. F. Danieli, B. S. Southworth, and J. B. Schroder, “Space-Time Block Preconditioning for Incompressible Resistive Magnetohydrodynamics,” arXiv:2309.00768v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2309.00768v1
  16. Y. A. Erlangga, “Parallel-in-time Multilevel Krylov Methods: A Prototype,” arXiv:2401.00228v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2401.00228v1
  17. L. Fang, S. Vandewalle, and J. Meyers, “An SQP-based multiple shooting algorithm for large-scale PDE-constrained optimal control problems,” Journal of Computational Physics, vol. 477, p. 111927, Mar. 2023, doi: 10.1016/j.jcp.2023.111927. [Online]. Available at: https://doi.org/10.1016/j.jcp.2023.111927
  18. R. Fang and R. Tsai, “Stabilization of parareal algorithms for long time computation of a class of highly oscillatory Hamiltonian flows using data,” arXiv:2309.01225v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2309.01225v1
  19. S. Frei and A. Heinlein, “Towards parallel time-stepping for the numerical simulation of atherosclerotic plaque growth,” Journal of Computational Physics, vol. 491, p. 112347, Oct. 2023, doi: 10.1016/j.jcp.2023.112347. [Online]. Available at: https://doi.org/10.1016%2Fj.jcp.2023.112347
  20. M. J. Gander and D. Palitta, “A new ParaDiag time-parallel time integration method,” arXiv:2304.12597v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2304.12597v1
  21. M. J. Gander, T. Lunet, D. Ruprecht, and R. Speck, “A Unified Analysis Framework for Iterative Parallel-in-Time Algorithms,” SIAM Journal on Scientific Computing, vol. 45, no. 5, pp. A2275–A2303, 2023, doi: 10.1137/22M1487163. [Online]. Available at: https://doi.org/10.1137/22M1487163
  22. P. Gangl, M. Gobrial, and O. Steinbach, “A space-time finite element method for the eddy current approximation of rotating electric machines,” arXiv:2307.00278v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2307.00278v1
  23. G. Garai and B. C. Mandal, “Linear and Nonlinear Parareal Methods for the Cahn-Hilliard Equation,” arXiv:2304.14074v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2304.14074v1
  24. G. Garai and B. C. Mandal, “Diagonalization based Parallel-in-Time method for a class of fourth order time dependent PDEs,” Mathematics and Computers in Simulation, Aug. 2023, doi: 10.1016/j.matcom.2023.07.028. [Online]. Available at: https://doi.org/10.1016%2Fj.matcom.2023.07.028
  25. J. Hahne, B. Polenz, I. Kulchytska-Ruchka, S. Friedhoff, S. Ulbrich, and S. Schöps, “Parallel-in-time optimization of induction motors,” Journal of Mathematics in Industry, vol. 13, no. 1, Jun. 2023, doi: 10.1186/s13362-023-00134-5. [Online]. Available at: https://doi.org/10.1186/s13362-023-00134-5
  26. S. Hon and S. Serra-Capizzano, “A block Toeplitz preconditioner for all-at-once systems from linear wave equations,” ETNA - Electronic Transactions on Numerical Analysis, vol. 58, pp. 177–195, 2023, doi: 10.1553/etna_vol58s177. [Online]. Available at: https://doi.org/10.1553/etna_vol58s177
  27. S. Hon, J. Dong, and S. Serra-Capizzano, “A preconditioned MINRES method for optimal control of wave equations and its asymptotic spectral distribution theory,” arXiv:2307.12850v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2307.12850v1
  28. A. Q. Ibrahim, S. Götschel, and D. Ruprecht, “Parareal with a Physics-Informed Neural Network as Coarse Propagator,” in Euro-Par 2023: Parallel Processing, Springer Nature Switzerland, 2023, pp. 649–663 [Online]. Available at: https://doi.org/10.1007/978-3-031-39698-4_44
  29. Y. Jiang and J. Liu, “Fast parallel-in-time quasi-boundary value methods for backward heat conduction problems,” Applied Numerical Mathematics, vol. 184, pp. 325–339, Feb. 2023, doi: 10.1016/j.apnum.2022.10.006. [Online]. Available at: https://doi.org/10.1016%2Fj.apnum.2022.10.006
  30. Y. Jiang, J. Liu, and X.-S. Wang, “A direct parallel-in-time quasi-boundary value method for inverse space-dependent source problems,” Journal of Computational and Applied Mathematics, vol. 423, p. 114958, May 2023, doi: 10.1016/j.cam.2022.114958. [Online]. Available at: https://doi.org/10.1016%2Fj.cam.2022.114958
  31. B. Jin, Q. Lin, and Z. Zhou, “Learning Coarse Propagators in Parareal Algorithm,” arXiv:2311.15320v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2311.15320v1
  32. R. Kraft, S. Koraltan, M. Gattringer, F. Bruckner, D. Suess, and C. Abert, “Parallel-in-Time Integration of the Landau-Lifshitz-Gilbert Equation with the Parallel Full Approximation Scheme in Space and Time,” arXiv:2310.11819v1 [physics.comp-ph], 2023 [Online]. Available at: http://arxiv.org/abs/2310.11819v1
  33. S. Leveque, L. Bergamaschi, Á. Martínez, and J. W. Pearson, “Fast Iterative Solver for the All-at-Once Runge–Kutta Discretization,” arXiv:2303.02090v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2303.02090v1
  34. G. Li, “Wavelet-based Edge Multiscale Parareal Algorithm for subdiffusion equations with heterogeneous coefficients in a large time domain,” arXiv:2307.06529v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2307.06529v1
  35. J. Li and Y. Jiang, “Analysis of a New Accelerated Waveform Relaxation Method Based on the Time-Parallel Algorithm,” Journal of Scientific Computing, vol. 96, no. 3, Jul. 2023, doi: 10.1007/s10915-023-02285-4. [Online]. Available at: https://doi.org/10.1007/s10915-023-02285-4
  36. X.-lei Lin and S. Hon, “A block α-circulant based preconditioned MINRES method for wave equations,” arXiv:2306.03574v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2306.03574v1
  37. Z. Miao and Y.-L. Jiang, “A Fast Simulation Approach to Switched Systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2023, doi: 10.1109/tcsii.2023.3332694. [Online]. Available at: http://dx.doi.org/10.1109/TCSII.2023.3332694
  38. P. Munch, I. Dravins, M. Kronbichler, and M. Neytcheva, “Stage-Parallel Fully Implicit Runge–Kutta Implementations with Optimal Multilevel Preconditioners at the Scaling Limit,” SIAM Journal on Scientific Computing, pp. S71–S96, Jul. 2023, doi: 10.1137/22m1503270. [Online]. Available at: https://doi.org/10.1137%2F22m1503270
  39. V.-T. Nguyen and L. Grigori, “Interpretation of parareal as a two-level additive Schwarz in time preconditioner and its acceleration with GMRES,” Numerical Algorithms, Mar. 2023, doi: 10.1007/s11075-022-01492-8. [Online]. Available at: https://doi.org/10.1007/s11075-022-01492-8
  40. H. Nguyen and R. Tsai, “Numerical wave propagation aided by deep learning,” Journal of Computational Physics, vol. 475, p. 111828, Feb. 2023, doi: 10.1016/j.jcp.2022.111828. [Online]. Available at: https://doi.org/10.1016%2Fj.jcp.2022.111828
  41. B. Philippi and T. Slawig, “A Micro-Macro Parareal Implementation for the Ocean-Circulation Model FESOM2,” arXiv:2306.17269v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2306.17269v1
  42. B. Philippi, M. S. Miraz, and T. Slawig, “A Micor-Macro parallel-in-time Implementation for the 2D Navier-Stokes Equations,” arXiv:2309.03037v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2309.03037v1
  43. J. Sarpe, A. Klaedtke, and H. D. Gersem, “A Parallel-In-Time Adjoint Sensitivity Analysis for a B6 Bridge-Motor Supply Circuit,” arXiv:2307.00802v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2307.00802v1
  44. J. Schleuß, K. Smetana, and L. ter Maat, “Randomized Quasi-Optimal Local Approximation Spaces in Time,” SIAM Journal on Scientific Computing, vol. 45, no. 3, pp. A1066–A1096, May 2023, doi: 10.1137/22m1481002. [Online]. Available at: https://doi.org/10.1137%2F22m1481002
  45. X. Shan and M. B. van Gijzen, “Parareal Method for Anisotropic Diffusion Denoising,” in Parallel Processing and Applied Mathematics, Springer International Publishing, 2023, pp. 313–322 [Online]. Available at: https://doi.org/10.1007/978-3-031-30445-3_26
  46. B. Song, J.-Y. Wang, and Y.-L. Jiang, “Analysis of a New Krylov subspace enhanced parareal algorithm for time-periodic problems,” Numerical Algorithms, Nov. 2023, doi: 10.1007/s11075-023-01704-9. [Online]. Available at: http://dx.doi.org/10.1007/s11075-023-01704-9
  47. Y. Takahashi, K. Fujiwara, and T. Iwashita, “Parallel-in-Space-and-Time Finite-Element Method for Time-Periodic Magnetic Field Problems with Hysteresis,” IEEE Transactions on Magnetics, pp. 1–1, 2023, doi: 10.1109/tmag.2023.3307498. [Online]. Available at: https://doi.org/10.1109/tmag.2023.3307498
  48. K. Trotti, “A domain splitting strategy for solving PDEs,” arXiv:2303.01163v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2303.01163v1
  49. D. A. Vargas, R. D. Falgout, S. Günther, and J. B. Schroder, “Multigrid Reduction in Time for Chaotic Dynamical Systems,” SIAM Journal on Scientific Computing, vol. 45, no. 4, pp. A2019–A2042, Aug. 2023, doi: 10.1137/22m1518335. [Online]. Available at: https://doi.org/10.1137%2F22m1518335
  50. Y. Wang, “Parallel Numerical Picard Iteration Methods,” Journal of Scientific Computing, vol. 95, no. 1, Mar. 2023, doi: 10.1007/s10915-023-02156-y. [Online]. Available at: https://doi.org/10.1007/s10915-023-02156-y
  51. M. Wang and S. Zhang, “A Preconditioner for Galerkin–Legendre Spectral All-at-Once System from Time-Space Fractional Diffusion Equation,” Symmetry, vol. 15, no. 12, p. 2144, Dec. 2023, doi: 10.3390/sym15122144. [Online]. Available at: http://dx.doi.org/10.3390/sym15122144
  52. S.-L. Wu, Z. Wang, and T. Zhou, “PinT Preconditioner for Forward-Backward Evolutionary Equations,” SIAM Journal on Matrix Analysis and Applications, vol. 44, no. 4, pp. 1771–1798, Nov. 2023, doi: 10.1137/22m1516476. [Online]. Available at: http://dx.doi.org/10.1137/22M1516476
  53. H. Yamazaki, C. J. Cotter, and B. A. Wingate, “Time-parallel integration and phase averaging for the nonlinear shallow-water equations on the sphere,” Quarterly Journal of the Royal Meteorological Society, Jul. 2023, doi: 10.1002/qj.4517. [Online]. Available at: https://doi.org/10.1002%2Fqj.4517
  54. X. Yue, Z. Wang, and S.-L. Wu, “Convergence Analysis of a Mixed Precision Parareal Algorithm,” SIAM Journal on Scientific Computing, vol. 45, no. 5, pp. A2483–A2510, Sep. 2023, doi: 10.1137/22m1510169. [Online]. Available at: https://doi.org/10.1137/22m1510169
  55. J. Zeifang, A. T. Manikantan, and J. Schütz, “Time parallelism and Newton-adaptivity of the two-derivative deferred correction discontinuous Galerkin method,” Applied Mathematics and Computation, vol. 457, p. 128198, Nov. 2023, doi: 10.1016/j.amc.2023.128198. [Online]. Available at: https://doi.org/10.1016/j.amc.2023.128198
  56. Q. Zhou, Y. Liu, and S.-L. Wu, “Parareal algorithm via Chebyshev-Gauss spectral collocation method,” arXiv:2304.10152v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2304.10152v1
  57. Z. Zhou, H. Gu, G. Ju, and W. Xing, “A Parallel-in-time Method Based on Preconditioner for Biot’s Model,” arXiv:2310.10430v1 [math.NA], 2023 [Online]. Available at: http://arxiv.org/abs/2310.10430v1
top

2022

  1. W. C. Agboh, D. Ruprecht, and M. R. Dogar, “Combining Coarse and Fine Physics for Manipulation using Parallel-in-Time Integration,” in Robotics Research, 2022, pp. 725–740, doi: 10.1007/978-3-030-95459-8_44 [Online]. Available at: https://doi.org/10.1007/978-3-030-95459-8_44
  2. A. Arrarás, F. J. Gaspar, L. Portero, and C. Rodrigo, “Space-Time Parallel Methods for Evolutionary Reaction-Diffusion Problems,” in Domain Decomposition Methods in Science and Engineering XXVI, Springer International Publishing, 2022, pp. 643–651 [Online]. Available at: https://doi.org/10.1007/978-3-030-95025-5_70
  3. D. Q. Bui, C. Japhet, Y. Maday, and P. Omnes, “Coupling Parareal with Optimized Schwarz Waveform Relaxation for Parabolic Problems,” SIAM Journal on Numerical Analysis, vol. 60, no. 3, pp. 913–939, May 2022, doi: 10.1137/21m1419428. [Online]. Available at: https://doi.org/10.1137/21m1419428
  4. T. Cheng, N. Lin, and V. Dinavahi, “Hybrid Parallel-in-Time-and-Space Transient Stability Simulation of Large-Scale AC/DC Grids,” IEEE Transactions on Power Systems, pp. 1–1, 2022, doi: 10.1109/tpwrs.2022.3153450. [Online]. Available at: https://doi.org/10.1109/tpwrs.2022.3153450
  5. S. Costanzo, T. Sayadi, M. F. de Pando, P. J. Schmid, and P. Frey, “Parallel-in-time adjoint-based optimization – application to unsteady incompressible flows,” Journal of Computational Physics, p. 111664, Oct. 2022, doi: 10.1016/j.jcp.2022.111664. [Online]. Available at: https://doi.org/10.1016/j.jcp.2022.111664
  6. L. D’Amore, E. Constantinescu, and L. Carracciuolo, “A Scalable Space-Time Domain Decomposition Approach for Solving Large Scale Nonlinear Regularized Inverse Ill Posed Problems in 4D Variational Data Assimilation,” Journal of Scientific Computing, vol. 91, no. 2, Apr. 2022, doi: 10.1007/s10915-022-01826-7. [Online]. Available at: https://doi.org/10.1007/s10915-022-01826-7
  7. F. Danieli, B. S. Southworth, and A. J. Wathen, “Space-Time Block Preconditioning for Incompressible Flow,” SIAM Journal on Scientific Computing, vol. 44, no. 1, pp. A337–A363, Feb. 2022, doi: 10.1137/21m1390773. [Online]. Available at: https://doi.org/10.1137%2F21m1390773
  8. F. Danieli and S. MacLachlan, “Multigrid reduction in time for non-linear hyperbolic equations,” ETNA - Electronic Transactions on Numerical Analysis, vol. 58, pp. 43–65, 2022, doi: 10.1553/etna_vol58s43. [Online]. Available at: https://doi.org/10.1553%2Fetna_vol58s43
  9. S. Frei and A. Heinlein, “Efficient coarse correction for parallel time-stepping in plaque growth simulations,” arXiv:2207.02081v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2207.02081v1
  10. I. C. Garcia, I. Kulchytska-Ruchka, and S. Schöps, “Parareal for index two differential algebraic equations,” Numerical Algorithms, Mar. 2022, doi: 10.1007/s11075-022-01267-1. [Online]. Available at: https://doi.org/10.1007%2Fs11075-022-01267-1
  11. O. Gorynina, F. Legoll, T. Lelievre, and D. Perez, “Combining machine-learned and empirical force fields with the parareal algorithm: application to the diffusion of atomistic defects,” arXiv:2212.10508v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2212.10508v1
  12. J. Hahne, B. S. Southworth, and S. Friedhoff, “Asynchronous Truncated Multigrid-Reduction-in-Time,” SIAM Journal on Scientific Computing, pp. S281–S306, Nov. 2022, doi: 10.1137/21m1433149. [Online]. Available at: https://doi.org/10.1137/21m1433149
  13. G. He, “Time Parallel Denoising Algorithm Based on P-M Equation for Real Image,” Wireless Communications and Mobile Computing, vol. 2022, pp. 1–9, Aug. 2022, doi: 10.1155/2022/8008912. [Online]. Available at: https://doi.org/10.1155/2022/8008912
  14. Y. He and J. Liu, “A Vanka-type multigrid solver for complex-shifted Laplacian systems from diagonalization-based parallel-in-time algorithms,” Applied Mathematics Letters, vol. 132, p. 108125, Oct. 2022, doi: 10.1016/j.aml.2022.108125. [Online]. Available at: https://doi.org/10.1016/j.aml.2022.108125
  15. K. Herb and P. Welter, “Parallel time integration using Batched BLAS (Basic Linear Algebra Subprograms) routines,” Computer Physics Communications, vol. 270, p. 108181, Jan. 2022, doi: 10.1016/j.cpc.2021.108181. [Online]. Available at: https://doi.org/10.1016/j.cpc.2021.108181
  16. Y. Jiang and J. Liu, “Fast Parallel-in-Time Quasi-Boundary Value Methods for Backward Heat Conduction Problems,” Applied Numerical Mathematics, Oct. 2022, doi: 10.1016/j.apnum.2022.10.006. [Online]. Available at: https://doi.org/10.1016/j.apnum.2022.10.006
  17. E. Kazakov, D. Efremenko, V. Zemlyakov, and J. Gao, “A Time-Parallel Ordinary Differential Equation Solver with an Adaptive Step Size: Performance Assessment,” in Lecture Notes in Computer Science, Springer International Publishing, 2022, pp. 3–17 [Online]. Available at: https://doi.org/10.1007/978-3-031-22941-1_1
  18. D. Kressner, S. Massei, and J. Zhu, “Improved parallel-in-time integration via low-rank updates and interpolation,” arXiv:2204.03073v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2204.03073v1
  19. Y. Lee, J. Park, and C.-O. Lee, “Parareal Neural Networks Emulating a Parallel-in-Time Algorithm,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–12, 2022, doi: 10.1109/tnnls.2022.3206797. [Online]. Available at: https://doi.org/10.1109/tnnls.2022.3206797
  20. C.-O. Lee, Y. Lee, and J. Park, “A Parareal Architecture for Very Deep Convolutional Neural Networks,” in Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2022, pp. 407–415 [Online]. Available at: http://dx.doi.org/10.1007/978-3-030-95025-5_43
  21. F. Legoll, T. Lelièvre, and U. Sharma, “An Adaptive Parareal Algorithm: Application to the Simulation of Molecular Dynamics Trajectories,” SIAM Journal on Scientific Computing, vol. 44, no. 1, pp. B146–B176, Jan. 2022, doi: 10.1137/21m1412979. [Online]. Available at: https://doi.org/10.1137/21m1412979
  22. S. Li, L. Xie, and L. Zhou, “Convergence analysis of space-time domain decomposition method for parabolic equations,” Computers &\mathsemicolon Mathematics with Applications, Aug. 2022, doi: 10.1016/j.camwa.2022.08.012. [Online]. Available at: https://doi.org/10.1016/j.camwa.2022.08.012
  23. J. Liu and Z. Wang, “A ROM-accelerated parallel-in-time preconditioner for solving all-at-once systems in unsteady convection-diffusion PDEs,” vol. 416, p. 126750, Mar. 2022, doi: 10.1016/j.amc.2021.126750. [Online]. Available at: https://doi.org/10.1016/j.amc.2021.126750
  24. J. Liu, X.-S. Wang, S.-L. Wu, and T. Zhou, “A well-conditioned direct PinT algorithm for first- and second-order evolutionary equations,” Advances in Computational Mathematics, vol. 48, no. 3, Apr. 2022, doi: 10.1007/s10444-022-09928-4. [Online]. Available at: https://doi.org/10.1007%2Fs10444-022-09928-4
  25. C. Lohmann, J. Dünnebacke, and S. Turek, “Fourier analysis of a time-simultaneous two-grid algorithm using a damped Jacobi waveform relaxation smoother for the one-dimensional heat equation,” Journal of Numerical Mathematics, vol. 0, no. 0, Jun. 2022, doi: 10.1515/jnma-2021-0045. [Online]. Available at: https://doi.org/10.1515/jnma-2021-0045
  26. G. E. Moon and E. C. Cyr, “Parallel Training of GRU Networks with a Multi-Grid Solver for Long Sequences,” arXiv:2203.04738v1 [cs.CV], 2022 [Online]. Available at: http://arxiv.org/abs/2203.04738v1
  27. K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel, “Stochastic Parareal: An Application of Probabilistic Methods to Time-Parallelization,” SIAM Journal on Scientific Computing, pp. S82–S102, Jul. 2022, doi: 10.1137/21m1414231. [Online]. Available at: https://doi.org/10.1137%2F21m1414231
  28. K. Pentland, M. Tamborrino, and T. J. Sullivan, “Error bound analysis of the stochastic parareal algorithm,” arXiv:2211.05496v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2211.05496v1
  29. K. Pentland, M. Tamborrino, T. J. Sullivan, J. Buchanan, and L. C. Appel, “GParareal: a time-parallel ODE solver using Gaussian process emulation,” Statistics and Computing, vol. 33, no. 1, Dec. 2022, doi: 10.1007/s11222-022-10195-y. [Online]. Available at: https://doi.org/10.1007%2Fs11222-022-10195-y
  30. B. Philippi and T. Slawig, “The Parareal Algorithm Applied to the FESOM 2 Ocean Circulation Model,” arXiv:2208.07598v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2208.07598v1
  31. M. K. Riahi, “PiTSBiCG: Parallel in time Stable Bi-Conjugate gradient algorithm,” Applied Numerical Mathematics, vol. 181, pp. 225–233, Nov. 2022, doi: 10.1016/j.apnum.2022.06.004. [Online]. Available at: https://doi.org/10.1016%2Fj.apnum.2022.06.004
  32. S. Riffo, F. Kwok, and J. Salomon, “Time-parallelization of sequential data assimilation problems,” arXiv:2212.02377v1 [math.OC], 2022 [Online]. Available at: http://arxiv.org/abs/2212.02377v1
  33. J. Rosemeier, T. Haut, and B. Wingate, “Multi-level Parareal algorithm with Averaging,” arXiv:2211.17239v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2211.17239v1
  34. S. Särkkä and Á. F. García-Fernández, “Temporal Parallelisation of the HJB Equation and Continuous-Time Linear Quadratic Control,” arXiv:2212.11744v1 [math.OC], 2022 [Online]. Available at: http://arxiv.org/abs/2212.11744v1
  35. H. D. Sterck, R. D. Falgout, and O. A. Krzysik, “Fast multigrid reduction-in-time for advection via modified semi-Lagrangian coarse-grid operators,” arXiv:2203.13382v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2203.13382v1
  36. H. D. Sterck, S. Friedhoff, O. A. Krzysik, and S. P. MacLachlan, “Multigrid reduction-in-time convergence for advection problems: A Fourier analysis perspective,” arXiv:2208.01526v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2208.01526v1
  37. H. D. Sterck, R. D. Falgout, O. A. Krzysik, and J. B. Schroder, “Efficient multigrid reduction-in-time for method-of-lines discretizations of linear advection,” arXiv:2209.06916v1 [math.NA], 2022 [Online]. Available at: http://arxiv.org/abs/2209.06916v1
  38. J. Strake, D. Döhring, and A. Benigni, “MGRIT-Based Multi-Level Parallel-in-Time Electromagnetic Transient Simulation,” Energies, vol. 15, no. 21, p. 7874, Oct. 2022, doi: 10.3390/en15217874. [Online]. Available at: https://doi.org/10.3390/en15217874
  39. M. Sugiyama, J. B. Schroder, B. S. Southworth, and S. Friedhoff, “Weighted relaxation for multigrid reduction in time,” Numerical Linear Algebra with Applications, Sep. 2022, doi: 10.1002/nla.2465. [Online]. Available at: https://doi.org/10.1002%2Fnla.2465
  40. M. A. Sultanov, V. E. Misilov, and Y. Nurlanuly, “Efficient Parareal algorithm for solving time-fractional diffusion equation,” Dal nevostochnyi Matematicheskii Zhurnal, vol. 22, no. 2, pp. 245–251, 2022, doi: 10.47910/femj202233. [Online]. Available at: https://doi.org/10.47910/femj202233
  41. Y. Takahashi, K. Fujiwara, and T. Iwashita, “Parallel-in-space-and-time finite-element analysis of electric machines using time step overlapping in a massively parallel computing environment,” COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Jul. 2022, doi: 10.1108/compel-04-2022-0161. [Online]. Available at: https://doi.org/10.1108/compel-04-2022-0161
  42. R. Tielen, M. Möller, and C. Vuik, “Combining p-multigrid and Multigrid Reduction in Time methods to obtain a scalable solver for Isogeometric Analysis,” SN Applied Sciences, vol. 4, no. 6, May 2022, doi: 10.1007/s42452-022-05043-7. [Online]. Available at: https://doi.org/10.1007%2Fs42452-022-05043-7
  43. Utkarsh, C. Elrod, Y. Ma, K. Althaus, and C. Rackauckas, “Parallelizing Explicit and Implicit Extrapolation Methods for Ordinary Differential Equations,” in 2022 IEEE High Performance Extreme Computing Conference (HPEC), 2022, doi: 10.1109/hpec55821.2022.9926357 [Online]. Available at: https://doi.org/10.1109%2Fhpec55821.2022.9926357
  44. C.-Y. Wang, Y.-L. Jiang, and Z. Miao, “Time domain decomposition of parabolic control problems based on discontinuous Galerkin semi-discretization,” Applied Numerical Mathematics, Feb. 2022, doi: 10.1016/j.apnum.2022.02.016. [Online]. Available at: https://doi.org/10.1016/j.apnum.2022.02.016
  45. R. Watschinger, M. Merta, G. Of, and J. Zapletal, “A Parallel Fast Multipole Method for a Space-Time Boundary Element Method for the Heat Equation,” SIAM Journal on Scientific Computing, vol. 44, no. 4, pp. C320–C345, Aug. 2022, doi: 10.1137/21m1430157. [Online]. Available at: https://doi.org/10.1137%2F21m1430157
  46. J. Yang, Z. Yuan, and Z. Zhou, “Robust Convergence of Parareal Algorithms with Arbitrarily High-Order Fine Propagators,” SSRN Electronic Journal, 2022, doi: 10.2139/ssrn.4097528. [Online]. Available at: https://doi.org/10.2139%2Fssrn.4097528
  47. L. Yang and H. Li, “A hybrid algorithm based on parareal and Schwarz waveform relaxation,” Electronic Research Archive, vol. 30, no. 11, pp. 4086–4107, 2022, doi: 10.3934/era.2022207. [Online]. Available at: https://doi.org/10.3934/era.2022207
  48. R. Yoda, M. Bolten, K. Nakajima, and A. Fujii, “Assignment of idle processors to spatial redistributed domains on coarse levels in multigrid reduction in time,” in International Conference on High Performance Computing in Asia-Pacific Region, 2022, doi: 10.1145/3492805.3492810 [Online]. Available at: https://doi.org/10.1145/3492805.3492810
  49. R. Yoda, M. Bolten, K. Nakajima, and A. Fujii, “Acceleration of Optimized Coarse-Grid Operators by Spatial Redistribution for Multigrid Reduction in Time,” in Computational Science – ICCS 2022, Springer International Publishing, 2022, pp. 214–221 [Online]. Available at: https://doi.org/10.1007/978-3-031-08754-7_29
  50. R.-H. Zhang, Y.-L. Jiang, J. Li, and B. Song, “Analysis of the parareal algorithm for linear parametric differential equations,” International Journal of Computer Mathematics, pp. 1–0, Nov. 2022, doi: 10.1080/00207160.2022.2153225. [Online]. Available at: https://doi.org/10.1080/00207160.2022.2153225
top

2021

  1. J. Angel, S. Götschel, and D. Ruprecht, “Impact of spatial coarsening on Parareal convergence,” arXiv:2111.10228v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2111.10228v1
  2. P. Benedusi, M. L. Minion, and R. Krause, “An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem,” Computers & Mathematics with Applications, vol. 99, pp. 162–170, Oct. 2021, doi: 10.1016/j.camwa.2021.07.008. [Online]. Available at: https://doi.org/10.1016%2Fj.camwa.2021.07.008
  3. S. Blanes, “Novel parallel in time integrators for ODEs,” Applied Mathematics Letters, p. 107542, Jul. 2021, doi: 10.1016/j.aml.2021.107542. [Online]. Available at: https://doi.org/10.1016/j.aml.2021.107542
  4. A. L. Blumers, M. Yin, H. Nakajima, Y. Hasegawa, Z. Li, and G. E. Karniadakis, “Multiscale parareal algorithm for long-time mesoscopic simulations of microvascular blood flow in zebrafish,” Computational Mechanics, Aug. 2021, doi: 10.1007/s00466-021-02062-w. [Online]. Available at: https://doi.org/10.1007%2Fs00466-021-02062-w
  5. T. Buvoli and M. Minion, “IMEX Runge-Kutta Parareal for Non-diffusive Equations,” in Springer Proceedings in Mathematics &\mathsemicolon Statistics, Springer International Publishing, 2021, pp. 95–127 [Online]. Available at: https://doi.org/10.1007%2F978-3-030-75933-9_5
  6. M. Cai, J. Mahseredjian, I. Kocar, X. Fu, and A. Haddadi, “A parallelization-in-time approach for accelerating EMT simulations,” Electric Power Systems Research, vol. 197, p. 107346, Aug. 2021, doi: 10.1016/j.epsr.2021.107346. [Online]. Available at: https://doi.org/10.1016/j.epsr.2021.107346
  7. J. G. Caldas Steinstraesser, “Coupling large and small scale shallow water models with porosity in the presence of anisotropy,” PhD thesis, Université de Montpellier, 2021 [Online]. Available at: https://www.theses.fr/2021MONTS040
  8. J. G. Caldas Steinstraesser, V. Guinot, and A. Rousseau, “Modified parareal method for solving the two-dimensional nonlinear shallow water equations using finite volumes,” The SMAI journal of computational mathematics, vol. 7, pp. 159–184, 2021, doi: 10.5802/smai-jcm.75. [Online]. Available at: https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.75/
  9. M. Caliari, L. Einkemmer, A. Moriggl, and A. Ostermann, “An accurate and time-parallel rational exponential integrator for hyperbolic and oscillatory PDEs,” Journal of Computational Physics, vol. 437, p. 110289, Jul. 2021, doi: 10.1016/j.jcp.2021.110289. [Online]. Available at: https://doi.org/10.1016%2Fj.jcp.2021.110289
  10. J. Chaudhry, D. Estep, and S. Tavener, “A posteriori error analysis for a space-time parallel discretization of parabolic partial differential equations,” arXiv:2111.00606v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2111.00606v1
  11. Y.-C. Chen and K. Nakajima, “Optimized Cascadic Multigrid Parareal Method for Explicit Time-Marching Schemes,” in 2021 12th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), 2021, doi: 10.1109/scala54577.2021.00007 [Online]. Available at: https://doi.org/10.1109/scala54577.2021.00007
  12. T. Cheng, N. Lin, T. Liang, and V. Dinavahi, “Parallel-in-time-and-space electromagnetic transient simulation of multi-terminal DC grids with device-level switch modelling,” IET Generation, Transmission & Distribution, Sep. 2021, doi: 10.1049/gtd2.12285. [Online]. Available at: https://doi.org/10.1049/gtd2.12285
  13. F. Danieli and A. J. Wathen, “All-at-once solution of linear wave equations,” Numerical Linear Algebra with Applications, May 2021, doi: 10.1002/nla.2386. [Online]. Available at: https://doi.org/10.1002/nla.2386
  14. V. Dinavahi and N. Lin, “Parallel-in-Time EMT and Transient Stability Simulation of AC-DC Grids,” in Parallel Dynamic and Transient Simulation of Large-Scale Power Systems, Springer International Publishing, 2021, pp. 313–357 [Online]. Available at: https://doi.org/10.1007/978-3-030-86782-9_7
  15. M. Donatelli, R. Krause, M. Mazza, and K. Trotti, “All-at-once multigrid approaches for one-dimensional space-fractional diffusion equations,” vol. 58, no. 4, Oct. 2021, doi: 10.1007/s10092-021-00436-3. [Online]. Available at: https://doi.org/10.1007/s10092-021-00436-3
  16. A. C. Ellison and B. Fornberg, “A parallel-in-time approach for wave-type PDEs,” Numerische Mathematik, Apr. 2021, doi: 10.1007/s00211-021-01197-5. [Online]. Available at: https://doi.org/10.1007/s00211-021-01197-5
  17. R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder, “Multigrid reduction in time with Richardson extrapolation,” ETNA - Electronic Transactions on Numerical Analysis, vol. 54, pp. 210–233, 2021, doi: 10.1553/etna_vol54s210. [Online]. Available at: https://doi.org/10.1553%2Fetna_vol54s210
  18. L. Fang, S. Vandewalle, and J. Meyers, “A parallel-in-time multiple shooting algorithm for large-scale PDE-constrained optimal control problems,” Journal of Computational Physics, p. 110926, Dec. 2021, doi: 10.1016/j.jcp.2021.110926. [Online]. Available at: https://doi.org/10.1016/j.jcp.2021.110926
  19. M. J. Gander, J. Liu, S.-L. Wu, X. Yue, and T. Zhou, “ParaDiag: parallel-in-time algorithms based on the diagonalization technique,” arXiv preprint arXiv:2005.09158, 2021 [Online]. Available at: http://arxiv.org/abs/2005.09158
  20. S. Götschel, M. Minion, D. Ruprecht, and R. Speck, “Twelve Ways to Fool the Masses When Giving Parallel-in-Time Results,” in Springer Proceedings in Mathematics & Statistics, Springer International Publishing, 2021, pp. 81–94 [Online]. Available at: https://doi.org/10.1007/978-3-030-75933-9_4
  21. L. Grigori, S. A. Hirstoaga, V.-T. Nguyen, and J. Salomon, “Reduced model-based parareal simulations of oscillatory singularly perturbed ordinary differential equations,” Journal of Computational Physics, vol. 436, p. 110282, Jul. 2021, doi: 10.1016/j.jcp.2021.110282. [Online]. Available at: https://doi.org/10.1016/j.jcp.2021.110282
  22. R. Kumari, S. Prasad, A. Kumari, and A. Kumar, “Parallel in Time Simulation of Automatic Generation Control System for Near Real-Time Transient Stability Analysis,” in 2021 International Conference on Control, Automation, Power and Signal Processing (CAPS), 2021, doi: 10.1109/caps52117.2021.9730716 [Online]. Available at: https://doi.org/10.1109/caps52117.2021.9730716
  23. S. Lakshmiranganatha and S. S. Muknahallipatna, “Performance Analysis of Accelerator Architectures and Programming Models for Parareal Algorithm Solutions of Ordinary Differential Equations,” Journal of Computer and Communications, vol. 09, no. 02, pp. 29–56, 2021, doi: 10.4236/jcc.2021.92003. [Online]. Available at: https://doi.org/10.4236/jcc.2021.92003
  24. U. Langer and M. Zank, “Efficient Direct Space-Time Finite Element Solvers for Parabolic Initial-Boundary Value Problems in Anisotropic Sobolev Spaces,” SIAM Journal on Scientific Computing, vol. 43, no. 4, pp. A2714–A2736, Jan. 2021, doi: 10.1137/20m1358128. [Online]. Available at: https://doi.org/10.1137%2F20m1358128
  25. S. Li, X. Shao, and R. Chen, “Multilevel space-time multiplicative Schwarz preconditioner for parabolic equations,” Numerical Linear Algebra with Applications, May 2021, doi: 10.1002/nla.2390. [Online]. Available at: https://doi.org/10.1002/nla.2390
  26. X. Li and Y. Su, “A parallel in time/spectral collocation combined with finite difference method for the time fractional differential equations,” Journal of Algorithms & Computational Technology, vol. 15, p. 174830262110084, Jan. 2021, doi: 10.1177/17483026211008409. [Online]. Available at: https://doi.org/10.1177/17483026211008409
  27. J. Li, P. Liu, and V. Dinavahi, “Space-Time-Parallel 3-D Finite Element Transformer Model with Adaptive TLM and Parareal Techniques for Electromagnetic Transient Analysis,” IEEE Open Journal of Industry Applications, pp. 1–1, 2021, doi: 10.1109/ojia.2021.3091557. [Online]. Available at: https://doi.org/10.1109/ojia.2021.3091557
  28. J. Li, Y.-L. Jiang, and Z. Miao, “Analysis of the parareal approach based on discontinuous Galerkin method for time-dependent Stokes equations,” Numerical Methods for Partial Differential Equations, Jul. 2021, doi: 10.1002/num.22782. [Online]. Available at: https://doi.org/10.1002/num.22782
  29. G. Li and J. Hu, “Wavelet-based Edge Multiscale Parareal Algorithm for Parabolic Equations with Heterogeneous Coefficients and Rough Initial Data,” Journal of Computational Physics, p. 110572, Jul. 2021, doi: 10.1016/j.jcp.2021.110572. [Online]. Available at: https://doi.org/10.1016/j.jcp.2021.110572
  30. J. Li and Y.-L. Jiang, “The study of parareal algorithm for the linear switched systems,” p. 107763, Oct. 2021, doi: 10.1016/j.aml.2021.107763. [Online]. Available at: https://doi.org/10.1016/j.aml.2021.107763
  31. X.-lei Lin, M. K. Ng, and Y. Zhi, “A parallel-in-time two-sided preconditioning for all-at-once system from a non-local evolutionary equation with weakly singular kernel,” Journal of Computational Physics, vol. 434, p. 110221, Jun. 2021, doi: 10.1016/j.jcp.2021.110221. [Online]. Available at: https://doi.org/10.1016%2Fj.jcp.2021.110221
  32. X.-L. Lin and Z. Zhang, “A Parallel-in-Time Preconditioner for the Schur Complement of Parabolic Optimal Control Problems,” arXiv:2109.12524v2 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2109.12524v2
  33. J. Liu and S.-L. Wu, “Parallel-in-time preconditioners for the Sinc-Nyström method,” arXiv:2108.01700v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2108.01700v1
  34. C. Lyu, N. Lin, and V. Dinavahi, “Device-Level Parallel-in-time Simulation of MMC-Based Energy System for Electric Vehicles,” IEEE Transactions on Vehicular Technology, pp. 1–1, 2021, doi: 10.1109/tvt.2021.3081534. [Online]. Available at: https://doi.org/10.1109/tvt.2021.3081534
  35. N. Margenberg and T. Richter, “Parallel time-stepping for fluid–structure interactions,” Mathematical Modelling of Natural Phenomena, vol. 16, p. 20, 2021, doi: 10.1051/mmnp/2021005. [Online]. Available at: https://doi.org/10.1051/mmnp/2021005
  36. B. Park, K. Sun, A. Dimitrovski, Y. Liu, and S. Simunovic, “Examination of Semi-Analytical Solution Methods in the Coarse Operator of Parareal Algorithm for Power System Simulation,” IEEE Transactions on Power Systems, pp. 1–1, 2021, doi: 10.1109/tpwrs.2021.3069136. [Online]. Available at: https://doi.org/10.1109/tpwrs.2021.3069136
  37. M. Patil and A. Datta, “Time-Parallel Scalable Solution of Periodic Rotor Dynamics for Large-Scale 3D Structures,” in AIAA Scitech 2021 Forum, 2021, doi: 10.2514/6.2021-1079 [Online]. Available at: https://doi.org/10.2514/6.2021-1079
  38. A. Pels, I. Kulchytska-Ruchka, and S. Schöps, “Parallel-in-Time Simulation of Power Converters Using Multirate PDEs,” in Scientific Computing in Electrical Engineering, Springer International Publishing, 2021, pp. 33–41 [Online]. Available at: https://doi.org/10.1007%2F978-3-030-84238-3_4
  39. J. Schütz, D. C. Seal, and J. Zeifang, “Parallel-in-Time High-Order Multiderivative IMEX Solvers,” Journal of Scientific Computing, vol. 90, no. 1, Dec. 2021, doi: 10.1007/s10915-021-01733-3. [Online]. Available at: https://doi.org/10.1007%2Fs10915-021-01733-3
  40. A. A. Sivas, B. S. Southworth, and S. Rhebergen, “AIR Algebraic Multigrid for a Space-Time Hybridizable Discontinuous Galerkin Discretization of Advection(-Diffusion),” vol. 43, no. 5, pp. A3393–A3416, Jan. 2021, doi: 10.1137/20m1375103. [Online]. Available at: https://doi.org/10.1137%2F20m1375103
  41. C. S. Skene, M. F. Eggl, and P. J. Schmid, “A parallel-in-time approach for accelerating direct-adjoint studies,” Journal of Computational Physics, vol. 429, p. 110033, Mar. 2021, doi: 10.1016/j.jcp.2020.110033. [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.110033
  42. Y. Sun, S.-L. Wu, and Y. Xu, “A Parallel-in-Time Implementation of the Numerov Method For Wave Equations,” Journal of Scientific Computing, vol. 90, no. 1, Nov. 2021, doi: 10.1007/s10915-021-01701-x. [Online]. Available at: https://doi.org/10.1007/s10915-021-01701-x
  43. Y. Takahashi, K. Fujiwara, T. Iwashita, and H. Nakashima, “Comparison of Parallel-in-Space-and-Time Finite-Element Methods for Magnetic Field Analysis of Electric Machines,” IEEE Transactions on Magnetics, pp. 1–1, 2021, doi: 10.1109/tmag.2021.3064320. [Online]. Available at: https://doi.org/10.1109/tmag.2021.3064320
  44. R. van Venetië and J. Westerdiep, “A Parallel Algorithm for Solving Linear Parabolic Evolution Equations,” Springer International Publishing, 2021, pp. 33–50 [Online]. Available at: https://doi.org/10.1007/978-3-030-75933-9_2
  45. A. S. Walker and K. E. Niemeyer, “Applying the Swept Rule for Solving Two-Dimensional Partial Differential Equations on Heterogeneous Architectures,” Mathematical and Computational Applications, vol. 26, no. 3, p. 52, Jul. 2021, doi: 10.3390/mca26030052. [Online]. Available at: https://doi.org/10.3390/mca26030052
  46. S.-L. Wu and T. Zhou, “Parallel implementation for the two-stage SDIRK methods via diagonalization,” Journal of Computational Physics, vol. 428, p. 110076, Mar. 2021, doi: 10.1016/j.jcp.2020.110076. [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.110076
  47. S. Wu, T. Zhou, and Z. Zhou, “Stability implies robust convergence of a class of preconditioned parallel-in-time iterative algorithms,” arXiv:2102.04646v2 [math.NA], 2021 [Online]. Available at: https://arxiv.org/abs/2102.04646v2
  48. S. Wu and Z. Zhou, “A Parallel-in-Time Algorithm for High-Order BDF Methods for Diffusion and Subdiffusion Equations,” vol. 43, no. 6, pp. A3627–A3656, Jan. 2021, doi: 10.1137/20m1355690. [Online]. Available at: https://doi.org/10.1137/20m1355690
  49. D. Xue, Y. Hou, and Y. Li, “Analysis of the local and parallel space-time algorithm for the heat equation,” Computers & Mathematics with Applications, vol. 100, pp. 167–181, Oct. 2021, doi: 10.1016/j.camwa.2021.09.008. [Online]. Available at: https://doi.org/10.1016/j.camwa.2021.09.008
  50. X. Yue, K. Pan, J. Zhou, Z. Weng, S. Shu, and J. Tang, “A multigrid-reduction-in-time solver with a new two-level convergence for unsteady fractional Laplacian problems,” Computers & Mathematics with Applications, vol. 89, pp. 57–67, May 2021, doi: 10.1016/j.camwa.2021.02.020. [Online]. Available at: https://doi.org/10.1016/j.camwa.2021.02.020
  51. Y. Zeng, Y. Duan, and B.-S. Liu, “Solving 2D parabolic equations by using time parareal coupling with meshless collocation RBFs methods,” Engineering Analysis with Boundary Elements, vol. 127, pp. 102–112, Jun. 2021, doi: 10.1016/j.enganabound.2021.03.008. [Online]. Available at: https://doi.org/10.1016/j.enganabound.2021.03.008
  52. Y.-L. Zhao, X.-M. Gu, and A. Ostermann, “A Preconditioning Technique for an All-at-once System from Volterra Subdiffusion Equations with Graded Time Steps,” Journal of Scientific Computing, vol. 88, no. 1, May 2021, doi: 10.1007/s10915-021-01527-7. [Online]. Available at: https://doi.org/10.1007/s10915-021-01527-7
  53. Y.-L. Zhao, J. Wu, and X.-M. Gu, “On the bilateral preconditioning for a L2-type all-at-once system arising from time-space fractional Bloch-Torrey equations,” arXiv:2109.06510v1 [math.NA], 2021 [Online]. Available at: http://arxiv.org/abs/2109.06510v1
top

2020

  1. W. Agboh, O. Grainger, D. Ruprecht, and M. Dogar, “Parareal with a Learned Coarse Model for Robotic Manipulation,” Computing and Visualization in Science, vol. 23, no. 8, 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00327-0
  2. D. Bast, I. Kulchytska-Ruchka, S. Schoeps, and O. Rain, “Accelerated Steady-State Torque Computation for Induction Machines Using Parallel-In-Time Algorithms,” IEEE Transactions on Magnetics, pp. 1–1, 2020, doi: 10.1109/tmag.2019.2945510. [Online]. Available at: https://doi.org/10.1109/tmag.2019.2945510
  3. C.-E. Brehier and X. Wang, “On Parareal Algorithms for Semilinear Parabolic Stochastic PDEs,” SIAM Journal on Numerical Analysis, vol. 58, no. 1, pp. 254–278, Jan. 2020, doi: 10.1137/19m1251011. [Online]. Available at: https://doi.org/10.1137/19m1251011
  4. T. Buvoli, “Exponential Polynomial Time Integrators,” arXiv:2011.00670v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2011.00670v1
  5. T. Buvoli and M. L. Minion, “IMEX Parareal Integrators,” arXiv:2011.01604v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2011.01604v1
  6. T. Cheng, T. Duan, and V. Dinavahi, “Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Power Systems,” IEEE Open Access Journal of Power and Energy, pp. 1–1, 2020, doi: 10.1109/oajpe.2020.3012636. [Online]. Available at: https://doi.org/10.1109/oajpe.2020.3012636
  7. C.-K. Cheng, C.-T. Ho, C. Jia, X. Wang, Z. Zen, and X. Zha, “A Parallel-in-Time Circuit Simulator for Power Delivery Networks with Nonlinear Load Models,” in 2020 IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2020, doi: 10.1109/epeps48591.2020.9231406 [Online]. Available at: https://doi.org/10.1109/epeps48591.2020.9231406
  8. J. Christopher, R. D. Falgout, J. B. Schroder, S. M. Guzik, and X. Gao, “A space-time parallel algorithm with adaptive mesh refinement for computational fluid dynamics,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020, doi: 10.1007/s00791-020-00334-1. [Online]. Available at: https://doi.org/10.1007/s00791-020-00334-1
  9. A. T. Clarke, C. J. Davies, D. Ruprecht, and S. M. Tobias, “Parallel-in-time integration of Kinematic Dynamos,” Journal of Computational Physics: X, vol. 7, p. 100057, 2020, doi: 10.1016/j.jcpx.2020.100057. [Online]. Available at: https://doi.org/10.1016/j.jcpx.2020.100057
  10. A. Clarke, C. Davies, D. Ruprecht, S. Tobias, and J. S. Oishi, “Performance of parallel-in-time integration for Rayleigh Bénard Convection,” Computing and Visualization in Science, vol. 23, no. 10, 2020 [Online]. Available at: https://doi.org/10.1007/s00791-020-00332-3
  11. L. D’Amore and R. Cacciapuoti, “Model Reduction in Space and Time for the ab initio decomposition of 4D Variational Data Assimilation Problems,” Applied Numerical Mathematics, Oct. 2020, doi: 10.1016/j.apnum.2020.10.003. [Online]. Available at: https://doi.org/10.1016/j.apnum.2020.10.003
  12. C. Flamant, P. Protopapas, and D. Sondak, “Solving Differential Equations Using Neural Network Solution Bundles,” arXiv:2006.14372v1 [cs.LG], 2020 [Online]. Available at: http://arxiv.org/abs/2006.14372v1
  13. M. J. Gander and T. Lunet, “ParaStieltjes: Parallel computation of Gauss quadrature rules using a Parareal-like approach for the Stieltjes procedure,” Numerical Linear Algebra with Applications, Jun. 2020, doi: 10.1002/nla.2314. [Online]. Available at: https://doi.org/10.1002/nla.2314
  14. M. J. Gander, F. Kwok, and J. Salomon, “PARAOPT: A Parareal Algorithm for Optimality Systems,” SIAM Journal on Scientific Computing, vol. 42, no. 5, pp. A2773–A2802, Jan. 2020, doi: 10.1137/19m1292291. [Online]. Available at: https://doi.org/10.1137/19m1292291
  15. M. J. Gander and S.-L. Wu, “A Diagonalization-Based Parareal Algorithm for Dissipative and Wave Propagation Problems,” SIAM Journal on Numerical Analysis, vol. 58, no. 5, pp. 2981–3009, Jan. 2020, doi: 10.1137/19m1271683. [Online]. Available at: https://doi.org/10.1137/19m1271683
  16. M. J. Gander, I. Kulchytska-Ruchka, and S. Schöps, “A New Parareal Algorithm for Time-Periodic Problems with Discontinuous Inputs,” in Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2020, pp. 243–250 [Online]. Available at: https://doi.org/10.1007/978-3-030-56750-7_27
  17. I. C. Garcia, I. Kulchytska-Ruchka, M. Clemens, and S. Schops, “Parallel-in-Time Solution of Eddy Current Problems Using Implicit and Explicit Time-stepping Methods,” in 2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC), 2020, doi: 10.1109/cefc46938.2020.9451465 [Online]. Available at: https://doi.org/10.1109%2Fcefc46938.2020.9451465
  18. A. Garmon and D. Perez, “Exploiting Model Uncertainty to Improve the Scalability of Long-Time Simulations using Parallel Trajectory Splicing,” Modelling and Simulation in Materials Science and Engineering, Jul. 2020, doi: 10.1088/1361-651x/aba511. [Online]. Available at: https://doi.org/10.1088/1361-651x/aba511
  19. X.-M. Gu and S.-L. Wu, “A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel,” Journal of Computational Physics, vol. 417, p. 109576, Sep. 2020, doi: 10.1016/j.jcp.2020.109576. [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.109576
  20. S. Günther, L. Ruthotto, J. B. Schroder, E. C. Cyr, and N. R. Gauger, “Layer-Parallel Training of Deep Residual Neural Networks,” SIAM Journal on Mathematics of Data Science, vol. 2, no. 1, pp. 1–23, Jan. 2020, doi: 10.1137/19m1247620. [Online]. Available at: https://doi.org/10.1137/19m1247620
  21. J. Hahne, S. Friedhoff, and M. Bolten, “PyMGRIT: A Python Package for the parallel-in-time method MGRIT,” arXiv:2008.05172v1 [cs.MS], 2020 [Online]. Available at: http://arxiv.org/abs/2008.05172v1
  22. F. P. Hamon, M. Schreiber, and M. L. Minion, “Parallel-in-time multi-level integration of the shallow-water equations on the rotating sphere,” Journal of Computational Physics, vol. 407, p. 109210, Apr. 2020, doi: 10.1016/j.jcp.2019.109210. [Online]. Available at: https://doi.org/10.1016/j.jcp.2019.109210
  23. A. Hessenthaler, B. S. Southworth, D. Nordsletten, O. Röhrle, R. D. Falgout, and J. B. Schroder, “Multilevel Convergence Analysis of Multigrid-Reduction-in-Time,” SIAM Journal on Scientific Computing, vol. 42, no. 2, pp. A771–A796, Jan. 2020, doi: 10.1137/19m1238812. [Online]. Available at: https://doi.org/10.1137/19m1238812
  24. N. E. Hodge, “Towards Improved Speed and Accuracy of Laser Powder Bed FusionSimulations via Representation of Multiple Time Scales,” Additive Manufacturing, p. 101600, Oct. 2020, doi: 10.1016/j.addma.2020.101600. [Online]. Available at: https://doi.org/10.1016/j.addma.2020.101600
  25. X. Hu, C. Rodrigo, and F. J. Gaspar, “Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation,” Journal of Computational Physics, p. 109540, May 2020, doi: 10.1016/j.jcp.2020.109540. [Online]. Available at: https://doi.org/10.1016/j.jcp.2020.109540
  26. K. Jałowiecki, A. Więckowski, P. Gawron, and B. Gardas, “Parallel in time dynamics with quantum annealers,” Scientific Reports, vol. 10, no. 1, Aug. 2020, doi: 10.1038/s41598-020-70017-x. [Online]. Available at: https://doi.org/10.1038/s41598-020-70017-x
  27. A. Kirby, S. Samsi, M. Jones, A. Reuther, J. Kepner, and V. Gadepally, “Layer-Parallel Training with GPU Concurrency of Deep Residual Neural Networks via Nonlinear Multigrid,” in 2020 IEEE High Performance Extreme Computing Conference (HPEC), 2020, doi: 10.1109/hpec43674.2020.9286180 [Online]. Available at: https://doi.org/10.1109/hpec43674.2020.9286180
  28. S. Lakshmiranganatha and S. S. Muknahallipatna, “Graphical Processing Unit Based Time-Parallel Numerical Method for Ordinary Differential Equations,” Journal of Computer and Communications, vol. 08, no. 02, pp. 39–63, 2020, doi: 10.4236/jcc.2020.82004. [Online]. Available at: https://doi.org/10.4236/jcc.2020.82004
  29. F. Legoll, T. Lelièvre, K. Myerscough, and G. Samaey, “Parareal computation of stochastic differential equations with time-scale separation: a numerical convergence study,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020, doi: 10.1007/s00791-020-00329-y. [Online]. Available at: https://doi.org/10.1007/s00791-020-00329-y
  30. H. Liu, A. Cheng, and H. Wang, “A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations,” Journal of Scientific Computing, vol. 85, no. 1, Oct. 2020, doi: 10.1007/s10915-020-01321-x. [Online]. Available at: https://doi.org/10.1007/s10915-020-01321-x
  31. J. Liu and Z. Wang, “A ROM-accelerated parallel-in-time preconditioner for solving all-at-once systems from evolutionary PDEs,” arXiv:2012.09148v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2012.09148v1
  32. J. Liu and S.-L. Wu, “A Fast Block \textdollar}alpha\textdollar-Circulant Preconditoner for All-at-Once Systems From Wave Equations,” SIAM Journal on Matrix Analysis and Applications, vol. 41, no. 4, pp. 1912–1943, Jan. 2020, doi: 10.1137/19m1309869. [Online]. Available at: https://doi.org/10.1137/19m1309869
  33. E. Lorin, “Derivation and analysis of parallel-in-time neural ordinary differential equations,” Annals of Mathematics and Artificial Intelligence, Jul. 2020, doi: 10.1007/s10472-020-09702-6. [Online]. Available at: https://doi.org/10.1007/s10472-020-09702-6
  34. Y. Maday and O. Mula, “An adaptive parareal algorithm,” Journal of Computational and Applied Mathematics, vol. 377, p. 112915, Oct. 2020, doi: 10.1016/j.cam.2020.112915. [Online]. Available at: https://doi.org/10.1016/j.cam.2020.112915
  35. X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis, “PPINN: Parareal physics-informed neural network for time-dependent PDEs,” Computer Methods in Applied Mechanics and Engineering, vol. 370, p. 113250, Oct. 2020, doi: 10.1016/j.cma.2020.113250. [Online]. Available at: https://doi.org/10.1016/j.cma.2020.113250
  36. H. Nguyen and R. Tsai, “A stable parareal-like method for the second order wave equation,” Journal of Computational Physics, vol. 405, p. 109156, 2020, doi: https://doi.org/10.1016/j.jcp.2019.109156. [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0021999119308617
  37. B. W. Ong and J. B. Schroder, “Applications of time parallelization,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020, doi: 10.1007/s00791-020-00331-4. [Online]. Available at: https://doi.org/10.1007/s00791-020-00331-4
  38. B. Park et al., “Performance and Feature Improvements in Parareal-based Power System Dynamic Simulation,” in 2020 IEEE International Conference on Power Systems Technology (POWERCON), 2020, doi: 10.1109/powercon48463.2020.9230544 [Online]. Available at: https://doi.org/10.1109/powercon48463.2020.9230544
  39. H. Rittich and R. Speck, “Time-parallel simulation of the Schrödinger Equation,” Computer Physics Communications, vol. 255, p. 107363, Oct. 2020, doi: 10.1016/j.cpc.2020.107363. [Online]. Available at: https://doi.org/10.1016/j.cpc.2020.107363
  40. R. Schöbel and R. Speck, “PFASST-ER: combining the parallel full approximation scheme in space and time with parallelization across the method,” Computing and Visualization in Science, vol. 23, no. 1-4, Sep. 2020, doi: 10.1007/s00791-020-00330-5. [Online]. Available at: https://doi.org/10.1007/s00791-020-00330-5
  41. L. Z. sci, “Convergence Analysis of Parareal Algorithm Based on Milstein Scheme for Stochastic Differential Equations,” Journal of Computational Mathematics, vol. 38, no. 3, pp. 487–501, Jun. 2020, doi: 10.4208/jcm.1901-m2018-0085. [Online]. Available at: https://doi.org/10.4208/jcm.1901-m2018-0085
  42. B. Song, Y.-L. Jiang, and X. Wang, “Analysis of two new parareal algorithms based on the Dirichlet-Neumann/Neumann-Neumann waveform relaxation method for the heat equation,” Numerical Algorithms, Jun. 2020, doi: 10.1007/s11075-020-00949-y. [Online]. Available at: https://doi.org/10.1007/s11075-020-00949-y
  43. B. Stump and A. Plotkowski, “Spatiotemporal parallelization of an analytical heat conduction model for additive manufacturing via a hybrid OpenMP \mathplus MPI approach,” Computational Materials Science, vol. 184, p. 109861, Nov. 2020, doi: 10.1016/j.commatsci.2020.109861. [Online]. Available at: https://doi.org/10.1016/j.commatsci.2020.109861
  44. S.-L. Wu and J. Liu, “A Parallel-In-Time Block-Circulant Preconditioner for Optimal Control of Wave Equations,” SIAM Journal on Scientific Computing, vol. 42, no. 3, pp. A1510–A1540, Jan. 2020, doi: 10.1137/19m1289613. [Online]. Available at: https://doi.org/10.1137/19m1289613
  45. S. Wu and Z. Zhou, “Parallel-in-time high-order BDF schemes for diffusion and subdiffusion equations,” arXiv:2007.13125v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2007.13125v1
  46. S.-L. Wu and T. Zhou, “Diagonalization-based parallel-in-time algorithms for parabolic PDE-constrained optimization problems,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 26, p. 88, 2020, doi: 10.1051/cocv/2020012. [Online]. Available at: https://doi.org/10.1051/cocv/2020012
  47. Y.-L. Zhao, X.-M. Gu, M. Li, and H.-Y. Jian, “Preconditioners for all-at-once system from the fractional mobile/immobile advection–diffusion model,” Journal of Applied Mathematics and Computing, Jul. 2020, doi: 10.1007/s12190-020-01410-y. [Online]. Available at: https://doi.org/10.1007/s12190-020-01410-y
  48. Y.-L. Zhao, X.-M. Gu, and A. Ostermann, “A parallel preconditioning technique for an all-at-once system from subdiffusion equations with variable time steps,” arXiv:2007.14636v1 [math.NA], 2020 [Online]. Available at: http://arxiv.org/abs/2007.14636v1
top

2019

  1. A. L. Blumers, Z. Li, and G. E. Karniadakis, “Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics,” Journal of Computational Physics, vol. 393, pp. 214–228, 2019, doi: 10.1016/j.jcp.2019.05.016. [Online]. Available at: https://doi.org/10.1016/j.jcp.2019.05.016
  2. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-Driven Time Parallelism via Forecasting,” SIAM Journal on Scientific Computing, vol. 41, no. 3, pp. B466–B496, Jan. 2019, doi: 10.1137/18m1174362. [Online]. Available at: https://doi.org/10.1137/18m1174362
  3. S. Dohr, J. Zapletal, G. Of, M. Merta, and M. Kravčenko, “A parallel space–time boundary element method for the heat equation,” Computers & Mathematics with Applications, 2019, doi: https://doi.org/10.1016/j.camwa.2018.12.031. [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0898122118307296
  4. S. Friedhoff, J. Hahne, I. Kulchytska-Ruchka, and S. Schöps, “Exploring Parallel-in-Time Approaches for Eddy Current Problems,” in Progress in Industrial Mathematics at ECMI 2018, Springer International Publishing, 2019, pp. 373–379 [Online]. Available at: https://doi.org/10.1007/978-3-030-27550-1_47
  5. S. Friedhoff, J. Hahne, and S. Schöps, “Multigrid-reduction-in-time for Eddy Current problems,” PAMM, vol. 19, no. 1, Nov. 2019, doi: 10.1002/pamm.201900262. [Online]. Available at: https://doi.org/10.1002/pamm.201900262
  6. S. Friedhoff and B. S. Southworth, “On ‘Optimal’ h-Independent Convergence of Parareal and MGRIT Using Runge-Kutta Time Integration,” arXiv:1906.06672 [math.NA], 2019 [Online]. Available at: https://arxiv.org/abs/1906.06672
  7. M. Gander, L. Halpern, J. Rannou, and J. Ryan, “A Direct Time Parallel Solver by Diagonalization for the Wave Equation,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A220–A245, 2019, doi: 10.1137/17M1148347. [Online]. Available at: https://doi.org/10.1137/17M1148347
  8. M. Gander, Y. Jiang, and B. Song, “A Superlinear Convergence Estimate for the Parareal Schwarz Waveform Relaxation Algorithm,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. A1148–A1169, 2019, doi: 10.1137/18M1177226. [Online]. Available at: https://doi.org/10.1137/18M1177226
  9. M. J. Gander, I. Kulchytska-Ruchka, I. Niyonzima, and S. Schöps, “A New Parareal Algorithm for Problems with Discontinuous Sources,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. B375–B395, 2019, doi: 10.1137/18M1175653. [Online]. Available at: https://doi.org/10.1137/18M1175653
  10. M. J. Gander and S.-L. Wu, “Convergence analysis of a periodic-like waveform relaxation method for initial-value problems via the diagonalization technique,” Numerische Mathematik, vol. 143, no. 2, pp. 489–527, Jun. 2019, doi: 10.1007/s00211-019-01060-8. [Online]. Available at: https://doi.org/10.1007/s00211-019-01060-8
  11. S. Götschel and M. L. Minion, “An Efficient Parallel-in-Time Method for Optimization with Parabolic PDEs,” SIAM Journal on Scientific Computing, vol. 41, no. 6, pp. C603–C626, Jan. 2019, doi: 10.1137/19m1239313. [Online]. Available at: https://doi.org/10.1137/19m1239313
  12. F. Hédin and T. Lelièvre, “gen.parRep: A first implementation of the Generalized Parallel Replica dynamics for the long time simulation of metastable biochemical systems,” Computer Physics Communications, 2019, doi: 10.1016/j.cpc.2019.01.005. [Online]. Available at: https://doi.org/10.1016/j.cpc.2019.01.005
  13. J. Hong, X. Wang, and L. Zhang, “Parareal Exponential \textdollar}theta\textdollar-Scheme for Longtime Simulation of Stochastic Schrödinger Equations with Weak Damping,” SIAM Journal on Scientific Computing, vol. 41, no. 6, pp. B1155–B1177, Jan. 2019, doi: 10.1137/18m1176749. [Online]. Available at: https://doi.org/10.1137/18m1176749
  14. A. Howse, H. Sterck, R. Falgout, S. MacLachlan, and J. Schroder, “Parallel-In-Time Multigrid with Adaptive Spatial Coarsening for The Linear Advection and Inviscid Burgers Equations,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A538–A565, 2019, doi: 10.1137/17M1144982. [Online]. Available at: https://dx.doi.org/10.1137/17M1144982
  15. O. A. Krzysik, H. D. Sterck, S. P. MacLachlan, and S. Friedhoff, “On selecting coarse-grid operators for Parareal and MGRIT applied to linear advection,” arXiv:1902.07757 [math.NA], 2019 [Online]. Available at: https://arxiv.org/abs/1902.07757
  16. F. Kwok and B. Ong, “Schwarz Waveform Relaxation with Adaptive Pipelining,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A339–A364, 2019, doi: 10.1137/17M115311X. [Online]. Available at: https://doi.org/10.1137/17M115311X
  17. S. Li, R. Chen, and X. Shao, “Parallel two-level space–time hybrid Schwarz method for solving linear parabolic equations,” Applied Numerical Mathematics, vol. 139, pp. 120–135, 2019, doi: 10.1016/j.apnum.2019.01.016. [Online]. Available at: https://doi.org/10.1016/j.apnum.2019.01.016
  18. S. Li, X. Shao, and X.-C. Cai, “Highly parallel space-time domain decomposition methods for parabolic problems,” CCF Transactions on High Performance Computing, 2019, doi: 10.1007/s42514-019-00003-x. [Online]. Available at: https://doi.org/10.1007/s42514-019-00003-x
  19. V. Mele, D. Romano, E. M. Constantinescu, L. Carracciuolo, and L. D’Amore, “Performance Evaluation for a PETSc Parallel-in-Time Solver Based on the MGRIT Algorithm,” in Euro-Par 2018: Parallel Processing Workshops, 2019, pp. 716–728, doi: 10.1002/cpe.4928 [Online]. Available at: https://doi.org/10.1002/cpe.4928
  20. M. Neumüller and I. Smears, “Time-Parallel Iterative Solvers for Parabolic Evolution Equations,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. C28–C51, 2019, doi: 10.1137/18M1172466. [Online]. Available at: https://doi.org/10.1137/18M1172466
  21. A. G. Peddle, T. Haut, and B. Wingate, “Parareal Convergence for Oscillatory PDEłowercases with Finite Time-Scale Separation,” SIAM Journal on Scientific Computing, vol. 41, no. 6, pp. A3476–A3497, Jan. 2019, doi: 10.1137/17m1131611. [Online]. Available at: https://doi.org/10.1137/17m1131611
  22. Rosa-Raı́ces Jorge L., B. Zhang, and T. F. Miller, “Path-accelerated stochastic molecular dynamics: Parallel-in-time integration using path integrals,” The Journal of Chemical Physics, vol. 151, no. 16, p. 164120, Oct. 2019, doi: 10.1063/1.5125455. [Online]. Available at: https://doi.org/10.1063/1.5125455
  23. D. Samaddar, D. P. Coster, X. Bonnin, L. A. Berry, W. R. Elwasif, and D. B. Batchelor, “Application of the parareal algorithm to simulations of ELMs in ITER plasma,” Computer Physics Communications, vol. 235, pp. 246–257, 2019, doi: 10.1016/j.cpc.2018.08.007. [Online]. Available at: https://doi.org/10.1016/j.cpc.2018.08.007
  24. M. Schreiber, N. Schaeffer, and R. Loft, “Exponential Integrators with Parallel-in-Time Rational Approximations for Shallow-Water Equations on the Rotating Sphere,” Parallel Computing, 2019, doi: 10.1016/j.parco.2019.01.005. [Online]. Available at: https://dx.doi.org/10.1016/j.parco.2019.01.005
  25. M. Schreiber and R. Loft, “A parallel time integrator for solving the linearized shallow water equations on the rotating sphere,” Numerical Linear Algebra with Applications, vol. 26, no. 2, p. e2220, 2019, doi: 10.1002/nla.2220. [Online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2220
  26. B. S. Southworth, “Necessary Conditions and Tight Two-level Convergence Bounds for Parareal and Multigrid Reduction in Time,” SIAM J. Matrix Anal. Appl., vol. 40, no. 2, pp. 564–608, 2019, doi: https://doi.org/10.1137/18M1226208.
  27. R. Speck, “Algorithm 997: pySDC - Prototyping Spectral Deferred Corrections,” ACM Transactions on Mathematical Software, vol. 45, no. 3, pp. 1–23, Aug. 2019, doi: 10.1145/3310410. [Online]. Available at: https://doi.org/10.1145/3310410
  28. R. Speck, M. Knobloch, A. Gocht, and S. Lührs, “Using performance analysis tools for parallel-in-time integrators – Does my time-parallel code do what I think it does?,” arXiv:1911.13027v1 [cs.PF], 2019 [Online]. Available at: http://arxiv.org/abs/1911.13027v1
  29. S. Wang, Y. Shao, and Z. Peng, “A Parallel-in-Space-and-Time Method for Transient Electromagnetic Problems,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 6, pp. 3961–3973, 2019, doi: 10.1109/TAP.2019.2909937. [Online]. Available at: https://doi.org/10.1109/TAP.2019.2909937
  30. S.-L. Wu and T. Zhou, “Acceleration of the Two-Level MGRIT Algorithm via the Diagonalization Technique,” SIAM Journal on Scientific Computing, vol. 41, no. 5, pp. A3421–A3448, Jan. 2019, doi: 10.1137/18m1207697. [Online]. Available at: https://doi.org/10.1137/18m1207697
  31. L. Zhang, W. Zhou, and L. Ji, “Parareal algorithms applied to stochastic differential equations with conserved quantities,” Journal of Computational Mathematics, vol. 37, no. 1, pp. 48–60, 2019, doi: 10.4208/jcm.1708-m2017-0089. [Online]. Available at: https://doi.org/10.4208/jcm.1708-m2017-0089
top

2018

  1. S. Badia and M. Olm, “Nonlinear parallel-in-time Schur complement solvers for ordinary differential equations,” Journal of Computational and Applied Mathematics, vol. 344, pp. 794–806, 2018, doi: 10.1016/j.cam.2017.09.033. [Online]. Available at: https://doi.org/10.1016/j.cam.2017.09.033
  2. P. Benedusi, C. Garoni, R. Krause, X. Li, and S. Serra-Capizzano, “Space-Time FE-DG Discretization of the Anisotropic Diffusion Equation in Any Dimension: The Spectral Symbol,” SIAM Journal on Matrix Analysis and Applications, vol. 39, no. 3, pp. 1383–1420, 2018, doi: 10.1137/17M113527X. [Online]. Available at: https://doi.org/10.1137/17M113527X
  3. M. Bolten, D. Moser, and R. Speck, “Asymptotic convergence of the parallel full approximation scheme in space and time for linear problems,” Numerical Linear Algebra with Applications, vol. 25, no. 6, p. e2208, 2018, doi: 10.1002/nla.2208. [Online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2208
  4. Manuel Borregales and Kundan Kumar and Florin Adrian Radu and Carmen Rodrigo and Francisco José Gaspar, “A partially parallel-in-time fixed-stress splitting method for Biot’s consolidation model,” Computers & Mathematics with Applications, 2018, doi: 10.1016/j.camwa.2018.09.005. [Online]. Available at: https://doi.org/10.1016/j.camwa.2018.09.005
  5. S. Bu, “Time parallelization scheme with an adaptive time step size for solving stiff initial value problems,” Open Mathematics, vol. 16, no. 1, pp. 210–218, 2018, doi: 10.1515/math-2018-0022. [Online]. Available at: https://doi.org/10.1515/math-2018-0022
  6. L. D’Amore and R. Cacciapuoti, “DD-DA PinT-based model: A Domain Decomposition approach in space and time, based on Parareal, for solving the 4D-Var Data Assimilation model,” arXiv:1807.07107 [math.NA], 2018 [Online]. Available at: https://arxiv.org/abs/1807.07107
  7. N. Duan, S. Simunovic, A. Dimitrovski, and K. Sun, “Improving the Convergence Rate of Parareal-in-time Power System Simulation using the Krylov Subspace,” in 2018 IEEE Power Energy Society General Meeting (PESGM), 2018, pp. 1–5, doi: 10.1109/PESGM.2018.8586354 [Online]. Available at: https://dx.doi.org/10.1109/PESGM.2018.8586354
  8. R. Dyja, B. Ganapathysubramanian, and K. G. van der Zee, “Parallel-In-Space-Time, Adaptive Finite Element Framework for Nonlinear Parabolic Equations,” SIAM Journal on Scientific Computing, vol. 40, no. 3, pp. C283–C304, 2018, doi: 10.1137/16M108985X. [Online]. Available at: https://doi.org/10.1137/16M108985X
  9. L. Fischer, S. Götschel, and M. Weiser, “Lossy data compression reduces communication time in hybrid time-parallel integrators,” Computing and Visualization in Science, vol. 19, no. 1, pp. 19–30, 2018, doi: 10.1007/s00791-018-0293-2. [Online]. Available at: https://doi.org/10.1007/s00791-018-0293-2
  10. S. R. Franco, F. J. Gaspar, M. A. V. Pinto, and C. Rodrigo, “Multigrid method based on a space-time approach with standard coarsening for parabolic problems,” Applied Mathematics and Computation, vol. 317, no. Supplement C, pp. 25–34, 2018, doi: 10.1016/j.amc.2017.08.043. [Online]. Available at: https://doi.org/10.1016/j.amc.2017.08.043
  11. S. R. Franco, C. Rodrigo, F. J. Gaspar, and M. A. V. Pinto, “A multigrid waveform relaxation method for solving the poroelasticity equations,” Computational and Applied Mathematics, pp. 1–16, 2018, doi: 10.1007/s40314-018-0603-9. [Online]. Available at: https://doi.org/10.1007/s40314-018-0603-9
  12. H. Fu and H. Wang, “A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation,” Journal of Scientific Computing, 2018, doi: 10.1007/s10915-018-0835-2. [Online]. Available at: https://doi.org/10.1007/s10915-018-0835-2
  13. M. J. Gander, S. Güttel, and M. Petcu, “A Nonlinear ParaExp Algorithm,” in Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2018, pp. 261–270 [Online]. Available at: https://doi.org/10.1007/978-3-319-93873-8_24
  14. M. J. Gander, F. Kwok, and H. Zhang, “Multigrid interpretations of the parareal algorithm leading to an overlapping variant and MGRIT,” Computing and Visualization in Science, 2018, doi: 10.1007/s00791-018-0297-y. [Online]. Available at: https://doi.org/10.1007/s00791-018-0297-y
  15. A. Goddard and A. Wathen, “A note on parallel preconditioning for all-at-once evolutionary PDEs,” pp. 135–150, 2018, doi: 10.1553/etna_vol51s135. [Online]. Available at: https://dx.doi.org/10.1553/etna_vol51s135
  16. S. Götschel and M. L. Minion, “Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST,” in Domain Decomposition Methods in Science and Engineering XXIV, 2018, pp. 363–371, doi: 10.1007/978-3-319-93873-8_34 [Online]. Available at: https://doi.org/10.1007/978-3-319-93873-8_34
  17. S. Günther, N. R. Gauger, and J. B. Schroder, “A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library,” Computing and Visualization in Science, 2018, doi: 10.1007/s00791-018-0300-7. [Online]. Available at: https://doi.org/10.1007/s00791-018-0300-7
  18. A. Hessenthaler, D. Nordsletten, O. Röhrle, J. B. Schroder, and R. D. Falgout, “Convergence of the multigrid reduction in time algorithm for the linear elasticity equations,” Numerical Linear Algebra with Applications, vol. 25, no. 3, p. e2155, 2018, doi: 10.1002/nla.2155. [Online]. Available at: https://dx.doi.org/10.1002/nla.2155
  19. J. T. Hwang and D. Munster, “Solution of ordinary differential equations in gradient-based multidisciplinary design optimization,” in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, 2018 [Online]. Available at: https://doi.org/10.2514/6.2018-1646
  20. M. Iizuka and K. Ono, “Influence of the phase accuracy of the coarse solver calculation on the convergence of the parareal method iteration for hyperbolic PDEs,” Computing and Visualization in Science, 2018, doi: 10.1007/s00791-018-0299-9. [Online]. Available at: https://doi.org/10.1007/s00791-018-0299-9
  21. G. L. Kooij, M. A. Botchev, and B. J. Geurts, “An Exponential Time Integrator for the Incompressible Navier–Stokes Equation,” SIAM Journal on Scientific Computing, vol. 40, no. 3, pp. B684–B705, 2018, doi: 10.1137/17M1121950. [Online]. Available at: https://doi.org/10.1137/17M1121950
  22. C. Lederman and D. Bilyeu, “An Approximate Time-Parallel Method for the Fast and Accurate Computation of Particle Trajectories in a Magnetic Field,” Journal of Applied Mathematics and Physics, vol. 6, pp. 498–519, 2018, doi: 10.4236/jamp.2018.63046 . [Online]. Available at: https://doi.org/10.4236/jamp.2018.63046
  23. J. Liang and M. C. Lin, “Time-Domain Parallelization for Accelerating Cloth Simulation,” Computer Graphics Forum, vol. 37, no. 8, pp. 21–34, 2018, doi: 10.1111/cgf.13509. [Online]. Available at: https://dx.doi.org/10.1111/cgf.13509
  24. T. Lunet, J. Bodart, S. Gratton, and X. Vasseur, “Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening,” Computing and Visualization in Science, vol. 19, no. 1, pp. 31–44, 2018, doi: 10.1007/s00791-018-0295-0. [Online]. Available at: https://doi.org/10.1007/s00791-018-0295-0
  25. Y. Maday and O. Mula, “A Scalable Adaptive Parareal Algorithm With Online Stopping Criterion,” hal-01781257, version 1, 2018 [Online]. Available at: https://hal.archives-ouvertes.fr/hal-01781257/
  26. F. Magoulès, G. Gbikpi-Benissan, and Q. Zou, “Asynchronous Iterations of Parareal Algorithm for Option Pricing Models,” Mathematics, vol. 6, no. 4, 2018, doi: 10.3390/math6040045. [Online]. Available at: https://doi.org/10.3390/math6040045
  27. F. Magoulès and G. Gbikpi-Benissan, “Asynchronous Parareal Time Discretization For Partial Differential Equations,” SIAM Journal on Scientific Computing, vol. 40, no. 6, pp. C704–C725, Jan. 2018, doi: 10.1137/17m1149225. [Online]. Available at: https://doi.org/10.1137/17m1149225
  28. T. Manteuffel, J. Ruge, and B. Southworth, “Nonsymmetric Algebraic Multigrid Based on Local Approximate Ideal Restriction,” SIAM Journal on Scientific Computing, vol. 40, no. 6, pp. A4105–A4130, 2018.
  29. V. Mele, E. M. Constantinescu, L. Carracciuolo, and L. D’Amore, “A PETSc parallel-in-time solver based on MGRIT algorithm,” Concurrency and Computation: Practice and Experience, vol. 0, no. 0, p. e4928, 2018, doi: 10.1002/cpe.4928. [Online]. Available at: https://dx.doi.org/10.1002/cpe.4928
  30. V. Mele, D. Romano, E. M. Constantinescu, L. Carracciuolo, and L. D’Amore, “Performance Evaluation for a PETSc Parallel-in-Time Solver Based on the MGRIT Algorithm,” in Euro-Par 2018: Parallel Processing Workshops, Springer International Publishing, 2018, pp. 716–728 [Online]. Available at: http://dx.doi.org/10.1007/978-3-030-10549-5_56
  31. Z. Miao, Y.-L. Jiang, and Y.-B. Yang, “Convergence analysis of a parareal-in-time algorithm for the incompressible non-isothermal flows,” International Journal of Computer Mathematics, vol. 0, no. 0, pp. 1–18, 2018, doi: 10.1080/00207160.2018.1498484. [Online]. Available at: https://doi.org/10.1080/00207160.2018.1498484
  32. S. A. Morton, “An Implicit BDF2 Time-Parallel Algorithm for Solving Convection Diffusion Equations,” in 2018 AIAA Aerospace Sciences Meeting, 2018 [Online]. Available at: https://doi.org/10.2514/6.2018-1046
  33. A. S. Nielsen, G. Brunner, and J. S. Hesthaven, “Communication-aware adaptive parareal with application to a nonlinear hyperbolic system of partial differential equations,” Journal of Computational Physics, 2018, doi: 10.1016/j.jcp.2018.04.056. [Online]. Available at: https://doi.org/10.1016/j.jcp.2018.04.056
  34. B. W. Ong and B. C. Mandal, “Pipeline implementations of Neumann–Neumann and Dirichlet–Neumann waveform relaxation methods,” Numerical Algorithms, vol. 78, no. 1, pp. 1–20, May 2018, doi: 10.1007/s11075-017-0364-3. [Online]. Available at: https://doi.org/10.1007/s11075-017-0364-3
  35. G. Pagès, O. Pironneau, and G. Sall, “The Parareal Algorithm for American Options,” SIAM Journal on Financial Mathematics, vol. 9, no. 3, pp. 966–993, 2018, doi: 10.1137/17M1138832. [Online]. Available at: https://doi.org/10.1137/17M1138832
  36. D. Ruprecht, “Wave propagation characteristics of Parareal,” Computing and Visualization in Science, vol. 19, no. 1, pp. 1–17, 2018, doi: 10.1007/s00791-018-0296-z. [Online]. Available at: https://doi.org/10.1007/s00791-018-0296-z
  37. G. Samaey and T. Slawig, “A micro/macro parallel-in-time (parareal) algorithm applied to a climate model with discontinuous non-monotone coefficients and oscillatory forcing,” arXiv:1806.04442 [math.NA], 2018 [Online]. Available at: https://arxiv.org/abs/1806.04442
  38. A. Schmitt, M. Schreiber, P. Peixoto, and M. Schäfer, “A numerical study of a semi-Lagrangian Parareal method applied to the viscous Burgers equation,” Computing and Visualization in Science, vol. 19, no. 1, pp. 45–57, 2018, doi: 10.1007/s00791-018-0294-1. [Online]. Available at: https://doi.org/10.1007/s00791-018-0294-1
  39. S. Schöps, I. Niyonzima, and M. Clemens, “Parallel-In-Time Simulation of Eddy Current Problems Using Parareal,” IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1–4, 2018, doi: 10.1109/TMAG.2017.2763090. [Online]. Available at: https://dx.doi.org/10.1109/TMAG.2017.2763090
  40. M. Schreiber, P. S. Peixoto, T. Haut, and B. Wingate, “Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems,” The International Journal of High Performance Computing Applications, vol. 32, no. 6, pp. 913–933, 2018, doi: 10.1177/1094342016687625. [Online]. Available at: https://doi.org/10.1177/1094342016687625
  41. M. Schreiber and R. Loft, “A parallel time integrator for solving the linearized shallow water equations on the rotating sphere,” Numerical Linear Algebra with Applications, 2018, doi: 10.1002/nla.2220. [Online]. Available at: https://doi.org/10.1002/nla.2220
  42. J. B. Schroder, R. D. Falgout, C. S. Woodward, P. Top, and M. Lecouvez, “Parallel-in-Time Solution of Power Systems with Scheduled Events,” in 2018 IEEE Power & Energy Society General Meeting (PESGM), 2018, pp. 1–5.
  43. R. Speck, “Parallelizing spectral deferred corrections across the method,” Computing and Visualization in Science, 2018, doi: 10.1007/s00791-018-0298-x. [Online]. Available at: https://doi.org/10.1007/s00791-018-0298-x
  44. W. Subber and A. Sarkar, “A Parallel Time Integrator for Noisy Nonlinear Oscillatory Systems,” Journal of Computational Physics, 2018, doi: 10.1016/j.jcp.2018.01.019. [Online]. Available at: https://doi.org/10.1016/j.jcp.2018.01.019
  45. A. T. Weaver, S. Gürol, J. Tshimanga, M. Chrust, and A. Piacentini, “‘Time’-Parallel diffusion-based correlation operators,” Quarterly Journal of the Royal Meteorological Society, vol. 144, no. 716, pp. 2067–2088, Oct. 2018, doi: 10.1002/qj.3302. [Online]. Available at: https://doi.org/10.1002/qj.3302
  46. S. Wu, “Toward Parallel Coarse Grid Correction for the Parareal Algorithm,” SIAM Journal on Scientific Computing, vol. 40, no. 3, pp. A1446–A1472, 2018, doi: 10.1137/17M1141102. [Online]. Available at: https://doi.org/10.1137/17M1141102
  47. S.-L. Wu and T. Zhou, “Parareal algorithms with local time-integrators for time fractional differential equations,” Journal of Computational Physics, vol. 358, pp. 135–149, 2018, doi: 10.1016/j.jcp.2017.12.029. [Online]. Available at: https://doi.org/10.1016/j.jcp.2017.12.029
  48. G. R. Yalla and B. Engquist, “Parallel in Time Algorithms for Multiscale Dynamical Systems Using Interpolation and Neural Networks,” in Proceedings of the High Performance Computing Symposium, 2018, pp. 9:1–9:12 [Online]. Available at: http://dl.acm.org/citation.cfm?id=3213069.3213078
  49. X. Q. Yue, S. Shu, X. W. Xu, W. P. Bu, and K. J. Pan, “Parallel-in-Time with Fully Finite Element Multigrid for 2-D Space-fractional Diffusion Equations,” arXiv:1805.06688 [math.NA], 2018 [Online]. Available at: https://arxiv.org/abs/1805.06688v1
  50. S. Zhu and S. Weng, “A parallel spectral deferred correction method for first-order evolution problems,” BIT Numerical Mathematics, pp. 1–28, 2018, doi: 10.1007/s10543-018-0702-4. [Online]. Available at: https://doi.org/10.1007/s10543-018-0702-4
top

2017

  1. G. Ariel, H. Nguyen, and R. Tsai, “θ-parareal schemes,” arXiv:1704.06882 [math.NA], 2017 [Online]. Available at: https://arxiv.org/abs/1704.06882
  2. S. Badia and M. Olm, “Space-Time Balancing Domain Decomposition,” SIAM Journal on Scientific Computing, vol. 39, no. 2, pp. C194–C213, 2017, doi: 10.1137/16M1074266. [Online]. Available at: https://doi.org/10.1137/16M1074266
  3. P. Belliveau and E. Haber, “Coupled simulation of electromagnetic induction and IP effects using stretched exponential relaxation,” Geophysics, pp. 1–61, 2017, doi: 10.1190/geo2017-0494.1. [Online]. Available at: https://doi.org/10.1190/geo2017-0494.1
  4. E. Blayo, A. Rousseau, and M. Tayachi, “Boundary conditions and Schwarz waveform relaxation method for linear viscous Shallow Water equations in hydrodynamics,” The SMAI journal of computational mathematics, vol. 3, pp. 117–137, 2017, doi: 10.5802/smai-jcm.22. [Online]. Available at: https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_2017__3__117_0
  5. M. Bolten, D. Moser, and R. Speck, “A multigrid perspective on the parallel full approximation scheme in space and time,” Numerical Linear Algebra with Applications, vol. 24, no. 6, p. e2110, 2017, doi: 10.1002/nla.2110. [Online]. Available at: https://dx.doi.org/10.1002/nla.2110
  6. V. A. Dobrev, T. Kolev, N. A. Petersson, and J. B. Schroder, “Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT),” SIAM Journal on Scientific Computing, vol. 39, no. 5, pp. S501–S527, 2017, doi: 10.1137/16M1074096. [Online]. Available at: https://doi.org/10.1137/16M1074096
  7. R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder, “Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study,” SIAM Journal on Scientific Computing, vol. 39, no. 5, pp. S298–S322, 2017, doi: 10.1137/16M1082330. [Online]. Available at: https://doi.org/10.1137/16M1082330
  8. R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, J. B. Schroder, and S. Vandewalle, “Multigrid methods with space–time concurrency,” Computing and Visualization in Science, vol. 18, no. 4, pp. 123–143, 2017, doi: 10.1007/s00791-017-0283-9. [Online]. Available at: https://doi.org/10.1007/s00791-017-0283-9
  9. M. J. Gander and L. Halpern, “Time Parallelization for Nonlinear Problems Based on Diagonalization,” in Domain Decomposition Methods in Science and Engineering XXIII, 2017, pp. 163–170, doi: 10.1007/978-3-319-52389-7_15 [Online]. Available at: https://doi.org/10.1007/978-3-319-52389-7_15
  10. F. J. Gaspar and C. Rodrigo, “Multigrid Waveform Relaxation for the Time-Fractional Heat Equation,” SIAM Journal on Scientific Computing, vol. 39, no. 4, pp. A1201–A1224, 2017, doi: 10.1137/16M1090193. [Online]. Available at: https://doi.org/10.1137/16M1090193
  11. S. Han and O. A. Bauchau, “Parallel Time-Integration of Flexible Multibody Dynamics Based on Newton-Waveform Method,” in 13th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, 2017, vol. 6, doi: 10.1115/DETC2017-68232 [Online]. Available at: https://dx.doi.org/10.1115/DETC2017-68232
  12. A. J. M. Howse, “Nonlinear Preconditioning Methods for Optimization and Parallel-In-Time Methods for 1D Scalar Hyperbolic Partial Differential Equations,” PhD thesis, UWSpace, 2017 [Online]. Available at: http://hdl.handle.net/10012/12559
  13. J. Jansson and J. Hoffman, “Direct FEM parallel-in-time computation of turbulent flow,” 2017 [Online]. Available at: http://www.csc.kth.se/ jjan/publications/pit_preprint_2017-08-09.pdf
  14. G. L. Kooij, M. A. Botchev, and B. J. Geurts, “A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations,” Journal of Computational and Applied Mathematics, vol. 316, pp. 229–246, 2017, doi: 10.1016/j.cam.2016.09.036. [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2016.09.036
  15. A. Kreienbuehl, P. Benedusi, D. Ruprecht, and R. Krause, “Time-parallel gravitational collapse simulation,” Communications in Applied Mathematics and Computational Science, vol. 12, no. 1, pp. 109–128, 2017, doi: 10.2140/camcos.2017.12.109. [Online]. Available at: http://dx.doi.org/10.2140/camcos.2017.12.109
  16. T. M. Masthay and S. Perugini, “Parareal Algorithm Implementation and Simulation in Julia,” arXiv:1706.08569v1 [cs.MS], 2017 [Online]. Available at: https://arxiv.org/pdf/1706.08569.pdf
  17. M. Merkel, I. Niyonzima, and S. Schöps, “ParaExp Using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations,” Radio Science, vol. 52, no. 12, pp. 1558–1569, 2017, doi: 10.1002/2017RS006357. [Online]. Available at: https://dx.doi.org/10.1002/2017RS006357
  18. W. Pazner and P.-O. Persson, “Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations,” Journal of Computational Physics, vol. 335, pp. 700–717, 2017, doi: 10.1016/j.jcp.2017.01.050. [Online]. Available at: https://doi.org/10.1016/j.jcp.2017.01.050
  19. D. Perez, R. Huang, and A. F. Voter, “Long-time molecular dynamics simulations on massively parallel platforms: A comparison of parallel replica dynamics and parallel trajectory splicing,” Journal of Materials Research, pp. 1–10, 2017, doi: 10.1557/jmr.2017.456. [Online]. Available at: https://dx.doi.org/10.1557/jmr.2017.456
  20. D. Ruprecht, “Shared Memory Pipelined Parareal,” in Euro-Par 2017: Parallel Processing: 23rd International Conference on Parallel and Distributed Computing, Santiago de Compostela, Spain, August 28 – September 1, 2017, Proceedings, F. F. Rivera, T. F. Pena, and J. C. Cabaleiro, Eds. Springer International Publishing, 2017, pp. 669–681 [Online]. Available at: https://doi.org/10.1007/978-3-319-64203-1_48
  21. R. Speck and D. Ruprecht, “Toward fault-tolerant parallel-in-time integration with PFASST ,” Parallel Computing, vol. 62, pp. 20–37, 2017, doi: 10.1016/j.parco.2016.12.001. [Online]. Available at: http://dx.doi.org/10.1016/j.parco.2016.12.001
  22. S. Wang and Z. Peng, “Space-time parallel computation for time-domain Maxwell’s equations,” in 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), 2017, pp. 1680–1683, doi: 10.1109/ICEAA.2017.8065615 [Online]. Available at: http://ieeexplore.ieee.org/document/8065615/
  23. S.-L. Wu, “Three rapidly convergent parareal solvers with application to time-dependent PDEs with fractional Laplacian,” Mathematical Methods in the Applied Sciences, 2017, doi: 10.1002/mma.4273. [Online]. Available at: http://dx.doi.org/10.1002/mma.4273
  24. S.-L. Wu, “An efficient parareal algorithm for a class of time-dependent problems with fractional Laplacian,” Applied Mathematics and Computation, vol. 307, pp. 329–341, 2017, doi: 10.1016/j.amc.2017.02.012. [Online]. Available at: http://dx.doi.org/10.1016/j.amc.2017.02.012
  25. S.-L. Wu and T.-Z. Huang, “A fast second-order parareal solver for fractional optimal control problems,” Journal of Vibration and Control, vol. 0, no. 0, p. 1077546317705557, 2017, doi: 10.1177/1077546317705557. [Online]. Available at: http://dx.doi.org/10.1177/1077546317705557
top

2016

  1. M. Alhubail and Q. Wang, “The swept rule for breaking the latency barrier in time advancing PDEs,” Journal of Computational Physics, vol. 307, pp. 110–121, 2016, doi: 10.1016/j.jcp.2015.11.026. [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2015.11.026
  2. G. Ariel, S. J. Kim, and R. Tsai, “Parareal Multiscale Methods for Highly Oscillatory Dynamical Systems,” SIAM Journal on Scientific Computing, vol. 38, no. 6, pp. A3540–A3564, Jan. 2016, doi: 10.1137/15m1011044. [Online]. Available at: https://doi.org/10.1137/15m1011044
  3. M. Astorino, F. Chouly, and A. Quarteroni, “A Time-Parallel Framework for Coupling Finite Element and Lattice Boltzmann Methods,” Applied Mathematics Research eXpress, vol. 2016, no. 1, pp. 24–67, 2016, doi: 10.1093/amrx/abv009. [Online]. Available at: http://dx.doi.org/10.1093/amrx/abv009
  4. T. Beck, “In-Time Parallelization Of Atmospheric Chemical Kinetics,” PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2016 [Online]. Available at: http://archiv.ub.uni-heidelberg.de/volltextserver/20092/1/TBeck_Phd_a.pdf
  5. P. Benedusi, D. Hupp, P. Arbenz, and R. Krause, “A Parallel Multigrid Solver for Time–periodic Incompressible Navier–Stokes Equations in 3D,” in Numerical Mathematics and Advanced Applications ENUMATH 2015, 2016, pp. 265–273, doi: 10.1007/978-3-319-39929-4_26 [Online]. Available at: https://doi.org/10.1007/978-3-319-39929-4_26
  6. J. H. Chaudhry, D. Estep, S. Tavener, V. Carey, and J. Sandelin, “A Posteriori Error Analysis of Two-Stage Computation Methods with Application to Efficient Discretization and the Parareal Algorithm,” SIAM Journal on Numerical Analysis, vol. 54, no. 5, pp. 2974–3002, 2016, doi: 10.1137/16M1079014. [Online]. Available at: http://dx.doi.org/10.1137/16M1079014
  7. F. De Vuyst, “Efficient solvers for time-dependent problems: a review of IMEX, LATIN, PARAEXP and PARAREAL algorithms for heat-type problems with potential use of approximate exponential integrators and reduced-order models,” Advanced Modeling and Simulation in Engineering Sciences, pp. 3–8, 2016, doi: 10.1186/s40323-016-0063-y. [Online]. Available at: http://dx.doi.org/10.1186/s40323-016-0063-y
  8. A. Eghbal, A. G. Gerber, and E. Aubanel, “Acceleration of Unsteady Hydrodynamic Simulations Using the Parareal Algorithm,” Journal of Computational Science , vol. 19, pp. 57–76, 2016, doi: 10.1016/j.jocs.2016.12.006. [Online]. Available at: http://dx.doi.org/10.1016/j.jocs.2016.12.006
  9. R. D. Falgout, T. A. Manteuffel, B. Southworth, and J. B. Schroder, “Parallel-In-Time For Moving Meshes,” Lawrence Livermore National Laboratory, 2016 [Online]. Available at: http://www.osti.gov/scitech/servlets/purl/1239230
  10. H. Gahvari et al., “A Performance Model for Allocating the Parallelism in a Multigrid-in-Time Solver,” in 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems, 2016, doi: 10.1109/PMBS.2016.8 [Online]. Available at: http://dx.doi.org/10.1109/PMBS.2016.8
  11. M. J. Gander, L. Halpern, J. Ryan, and T. T. B. Tran, “A Direct Solver for Time Parallelization,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, pp. 491–499, doi: 10.1007/978-3-319-18827-0_50 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-18827-0_50
  12. R. GUETAT, “Coupling Parareal with Non-Overlapping Domain Decomposition Method,” Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, vol. Volume 23 - 2016 - Special..., Dec. 2016, doi: 10.46298/arima.1474. [Online]. Available at: https://doi.org/10.46298/arima.1474
  13. G. Gurrala, A. Dimitrovski, S. Pannala, S. Simunovic, and M. Starke, “Parareal in Time for Fast Power System Dynamic Simulations,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 1820–1830, 2016, doi: 10.1109/TPWRS.2015.2434833. [Online]. Available at: http://dx.doi.org/10.1109/TPWRS.2015.2434833
  14. T. S. Haut, T. Babb, P. G. Martinsson, and B. A. Wingate, “A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator,” IMA Journal of Numerical Analysis, vol. 36, no. 2, pp. 688–716, 2016, doi: 10.1093/imanum/drv021. [Online]. Available at: http://dx.doi.org/10.1093/imanum/drv021
  15. A. Lapin and A. Romanenko, “Udzawa-type iterative method with parareal preconditioner for a parabolic optimal control problem,” IOP Conference Series: Materials Science and Engineering, vol. 158, no. 1, p. 012059, 2016, doi: 10.1088/1757-899X/158/1/012059. [Online]. Available at: http://dx.doi.org/10.1088/1757-899X/158/1/012059
  16. M. Lecouvez, R. D. Falgout, C. S. Woodward, and P. Top, “A parallel multigrid reduction in time method for power systems,” in 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016, pp. 1–5, doi: 10.1109/PESGM.2016.7741520 [Online]. Available at: https://dx.doi.org/10.1109/PESGM.2016.7741520
  17. C. Lederman, R. Martin, and J.-L. Cambier, “Time-parallel solutions to differential equations via functional optimization,” Computational and Applied Mathematics, pp. 1–25, 2016, doi: 10.1007/s40314-016-0319-7. [Online]. Available at: http://dx.doi.org/10.1007/s40314-016-0319-7
  18. J. I. Leffell, J. Sitaraman, V. K. Lakshminarayan, and A. M. Wissink, “Towards Efficient Parallel-in-Time Simulation of Periodic Flows,” in 54th AIAA Aerospace Sciences Meeting, 2016, doi: 10.2514/6.2016-0066 [Online]. Available at: http://dx.doi.org/10.2514/6.2016-0066
  19. S. Matsuoka et al., “From FLOPS to BYTES: Disruptive Change in High-performance Computing Towards the Post-moore Era,” in Proceedings of the ACM International Conference on Computing Frontiers, New York, NY, USA, 2016, pp. 274–281, doi: 10.1145/2903150.2906830 [Online]. Available at: http://dx.doi.org/10.1145/2903150.2906830
  20. M. Merkel, I. Niyonzima, and S. Schöps, “An Application of ParaExp to Electromagnetic Wave Problems,” in Proceedings of 2016 URSI International Symposium on Electromagnetic Theory (EMTS), 2016, doi: 10.1109/URSI-EMTS.2016.7571330 [Online]. Available at: https://doi.org/10.1109/URSI-EMTS.2016.7571330
  21. M. J. Gander and M. Neumüller, “Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems,” SIAM Journal on Scientific Computing, vol. 38, no. 4, pp. A2173–A2208, 2016, doi: 10.1137/15M1046605. [Online]. Available at: http://dx.doi.org/10.1137/15M1046605
  22. A. S. Nielsen and J. S. Hesthaven, “Fault Tolerance in the Parareal Method,” in Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale, New York, NY, USA, 2016, pp. 1–8, doi: 10.1145/2909428.2909431 [Online]. Available at: http://dx.doi.org/10.1145/2909428.2909431
  23. B. W. Ong, R. D. Haynes, and K. Ladd, “Algorithm 965: RIDC Methods: A Family of Parallel Time Integrators,” ACM Trans. Math. Softw., vol. 43, no. 1, pp. 8:1–8:13, 2016, doi: 10.1145/2964377. [Online]. Available at: http://dx.doi.org/10.1145/2964377
  24. D. Ruprecht, R. Speck, and R. Krause, “Parareal for Diffusion Problems with Space- and Time-Dependent Coefficients,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, pp. 371–378, doi: 10.1007/978-3-319-18827-0_37 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-18827-0_37
  25. T. Sekine, T. Tsuji, T. Oyama, F. Magoulès, and K. Uchida, “Speedup of parallel computing by parareal method in transient stability analysis of Japanese power system,” in 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), 2016, pp. 1177–1182, doi: 10.1109/ISGT-Asia.2016.7796552 [Online]. Available at: http://dx.doi.org/10.1109/ISGT-Asia.2016.7796552
  26. S.-L. Wu, “A second-order parareal algorithm for fractional PDEs,” Journal of Computational Physics, vol. 307, pp. 280–290, 2016, doi: 10.1016/j.jcp.2015.12.007. [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2015.12.007
  27. S.-L. Wu, “Towards essential improvement for the Parareal-TR and Parareal-Gauss4 algorithms,” Journal of Computational and Applied Mathematics, vol. 308, pp. 391–407, 2016, doi: 10.1016/j.cam.2016.05.036. [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2016.05.036
  28. S.-L. Wu, “Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues,” Journal of Scientific Computing, vol. 67, no. 2, pp. 644–668, 2016, doi: 10.1007/s10915-015-0100-x. [Online]. Available at: http://dx.doi.org/10.1007/s10915-015-0100-x
  29. S.-L. Wu and T. Zhou, “Fast parareal iterations for fractional diffusion equations,” Journal of Computational Physics, vol. 329, pp. 210–226, 2016, doi: 10.1016/j.jcp.2016.10.046. [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2016.10.046
top

2015

  1. G. Ariel, S. J. Kim, and R. Tsai, “Parareal methods for highly oscillatory ordinary differential equations.” arXiv:1503.02094 [math.NA], 2015 [Online]. Available at: http://arxiv.org/abs/1503.02094v1
  2. A. Arteaga, D. Ruprecht, and R. Krause, “A stencil-based implementation of Parareal in the C++ domain specific embedded language STELLA,” Applied Mathematics and Computation, vol. 267, pp. 727–741, 2015, doi: 10.1016/j.amc.2014.12.055. [Online]. Available at: http://dx.doi.org/10.1016/j.amc.2014.12.055
  3. M. Bedez et al., “A fully parallel in time and space algorithm for simulating the electrical activity of a neural tissue,” Journal of Neuroscience Methods, vol. 257, pp. 17–25, 2015, doi: 10.1016/j.jneumeth.2015.09.017. [Online]. Available at: http://dx.doi.org/10.1016/j.jneumeth.2015.09.017
  4. L. Carracciuolo, L. D’Amore, and V. Mele, “Toward a fully parallel multigrid in time algorithm in PETSc environment: A case study in ocean models,” in High Performance Computing Simulation (HPCS), 2015 International Conference on, 2015, pp. 595–598, doi: 10.1109/HPCSim.2015.7237098 [Online]. Available at: http://dx.doi.org/10.1109/HPCSim.2015.7237098
  5. A. J. Christlieb, C. B. MacDonald, B. W. Ong, and R. J. Spiteri, “Revisionist integral deferred correction with adaptive step-size control,” Communications in Applied Mathematics and Computational Science, vol. 10, no. 1, pp. 1–25, 2015, doi: 10.2140/camcos.2015.10.1. [Online]. Available at: http://dx.doi.org/10.2140/camcos.2015.10.1
  6. F. Chen, J. S. Hesthaven, Y. Maday, and A. S. Nielsen, “An Adjoint Approach for Stabilizing the Parareal Method,” EPFL-ARTICLE-211097, 2015 [Online]. Available at: http://infoscience.epfl.ch/record/211097
  7. M. J. Gander, “50 years of Time Parallel Time Integration,” in Multiple Shooting and Time Domain Decomposition, Springer, 2015 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-23321-5_3
  8. G. Gurrala, A. Dimitrovski, P. Sreekanth, S. Simunovic, and M. Starke, “Parareal in Time for Dynamic Simulations of Power Systems,” in Proceedings of the International Conference on Power Systems Transients (IPST2015) in Cavtat, Croatia June 15-18, 2015, 2015 [Online]. Available at: http://www.ipstconf.org/papers/Proc_IPST2015/15IPST073.pdf
  9. T. S. Haut, T. Babb, P. G. Martinsson, and B. A. Wingate, “A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator,” IMA Journal of Numerical Analysis, 2015, doi: 10.1093/imanum/drv021. [Online]. Available at: http://dx.doi.org/10.1093/imanum/drv021
  10. A. Kreienbuehl, A. Naegel, D. Ruprecht, R. Speck, G. Wittum, and R. Krause, “Numerical simulation of skin transport using Parareal,” Computing and Visualization in Science, vol. 17, no. 2, pp. 99–108, 2015, doi: 10.1007/s00791-015-0246-y. [Online]. Available at: http://dx.doi.org/10.1007/s00791-015-0246-y
  11. M. L. Minion, R. Speck, M. Bolten, M. Emmett, and D. Ruprecht, “Interweaving PFASST and parallel multigrid,” SIAM Journal on Scientific Computing, vol. 37, no. 5, pp. S244–S263, 2015, doi: 10.1137/14097536X. [Online]. Available at: http://dx.doi.org/10.1137/14097536X
  12. B. Ong, F. Kwok, and S. High, “Pipeline Schwarz Waveform Relaxation,” in Methods in Science and Engineering XXII, 2015.
  13. D. Perez, E. D. Cubuk, A. Waterland, E. Kaxiras, and A. F. Voter, “Long-time dynamics through parallel trajectory splicing,” Journal of Chemical Theory and Computation, 2015, doi: 10.1021/acs.jctc.5b00916. [Online]. Available at: http://dx.doi.org/10.1021/acs.jctc.5b00916
  14. T. D. Scheibe et al., “An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods,” Groundwater, vol. 53, no. 1, pp. 38–56, 2015, doi: 10.1111/gwat.12179. [Online]. Available at: http://dx.doi.org/10.1111/gwat.12179
  15. M. Schreiber, A. Peddle, T. Haut, and B. Wingate, “A Decentralized Parallelization-in-Time Approach with Parareal,” arXiv:1506.05157 [cs.DC], 2015 [Online]. Available at: http://arxiv.org/abs/1506.05157
  16. B. Song and Y.-L. Jiang, “A new parareal waveform relaxation algorithm for time-periodic problems,” International Journal of Computer Mathematics, vol. 92, no. 2, pp. 377–393, 2015, doi: 10.1080/00207160.2014.891734. [Online]. Available at: http://dx.doi.org/10.1080/00207160.2014.891734
  17. R. Speck, D. Ruprecht, M. Emmett, M. L. Minion, M. Bolten, and R. Krause, “A multi-level spectral deferred correction method,” BIT Numerical Mathematics, vol. 55, no. 3, pp. 843–867, 2015, doi: 10.1007/s10543-014-0517-x. [Online]. Available at: http://dx.doi.org/10.1007/s10543-014-0517-x
  18. J. Steiner, D. Ruprecht, R. Speck, and R. Krause, “Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number,” in Numerical Mathematics and Advanced Applications - ENUMATH 2013, vol. 103, A. Abdulle, S. Deparis, D. Kressner, F. Nobile, and M. Picasso, Eds. Springer International Publishing, 2015, pp. 195–202 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-10705-9_19
  19. S. Ulbrich, “Preconditioners Based on ‘Parareal’ Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization,” in Multiple Shooting and Time Domain Decomposition Methods: MuS-TDD, Heidelberg, May 6-8, 2013, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, Eds. Cham: Springer International Publishing, 2015, pp. 203–232 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-23321-5_8
  20. Z. Wang and S.-L. Wu, “Parareal Algorithms Implemented with IMEX Runge-Kutta Methods,” Mathematical Problems in Engineering, vol. 2015, 2015, doi: 10.1155/2015/395340. [Online]. Available at: http://dx.doi.org/10.1155/2015/395340
  21. S.-L. Wu and T. Zhou, “Convergence Analysis for Three Parareal Solvers,” SIAM Journal on Scientific Computing, vol. 37, no. 2, pp. A970–A992, 2015, doi: 10.1137/140970756. [Online]. Available at: http://dx.doi.org/10.1137/140970756
  22. S.-L. Wu, “Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues,” Journal of Scientific Computing, pp. 1–25, 2015, doi: 10.1007/s10915-015-0100-x. [Online]. Available at: http://dx.doi.org/10.1007/s10915-015-0100-x
top

2014

  1. P. Arbenz, D. Hupp, and D. Obrist, “A Parallel Solver for the Time-Periodic Navier-Stokes Equations,” in Parallel Processing and Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Eds. Springer Berlin Heidelberg, 2014, pp. 291–300 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-55195-6_27
  2. A. T. Barker, “A minimal communication approach to parallel time integration,” International Journal of Computer Mathematics, vol. 91, no. 3, pp. 601–615, 2014, doi: 10.1080/00207160.2013.800193. [Online]. Available at: http://dx.doi.org/10.1080/00207160.2013.800193
  3. A.-M. Baudron, J.-J. Lautard, Y. Maday, M. K. Riahi, and J. Salomon, “Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model,” Journal of Computational Physics, vol. 279, no. 0, pp. 67–79, 2014, doi: 10.1016/j.jcp.2014.08.037. [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2014.08.037
  4. A.-M. Baudron, J.-J. Lautard, Y. Maday, and O. Mula, “The parareal in time algorithm applied to the kinetic neutron diffusion equation,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, pp. 437–445, doi: 10.1007/978-3-319-05789-7_41 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_41
  5. S. Bu and J.-Y. Lee, “An enhanced parareal algorithm based on the deferred correction methods for a stiff system,” Journal of Computational and Applied Mathematics, vol. 255, no. 0, pp. 297–305, 2014, doi: 10.1016/j.cam.2013.05.001. [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2013.05.001
  6. J. J. Caceres Silva, B. Baran, and C. E. Schaerer, “Implementation of a distributed parallel in time scheme using PETSc for a parabolic optimal control problem,” in Computer Science and Information Systems (FedCSIS), 2014 Federated Conference on, 2014, pp. 577–586, doi: 10.15439/2014F340 [Online]. Available at: http://dx.doi.org/10.15439/2014F340
  7. F. Chen, J. S. Hesthaven, and X. Zhu, “On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method,” in Reduced Order Methods for Modeling and Computational Reduction, vol. 9, A. Quarteroni and G. Rozza, Eds. Springer International Publishing, 2014, pp. 187–214 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-02090-7_7
  8. F. Chouly and A. Lozinski, “Parareal multi-model numerical zoom for parabolic multiscale problems,” Comptes Rendus Mathematique, vol. 352, no. 6, pp. 535–540, 2014, doi: 10.1016/j.crma.2014.03.018. [Online]. Available at: http://dx.doi.org/10.1016/j.crma.2014.03.018
  9. R. Croce, D. Ruprecht, and R. Krause, “Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady Navier-Stokes Equations for Incompressible Flow,” in Modeling, Simulation and Optimization of Complex Processes – HPSC 2012, H. G. Bock, X. P. Hoang, R. Rannacher, and J. P. Schlöder, Eds. Springer International Publishing, 2014, pp. 13–23 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-09063-4_2
  10. J. Dongarra and al., “Applied Mathematics Research for Exascale Computing,” Lawrence Livermore National Laboratory, LLNL-TR-651000, 2014 [Online]. Available at: http://science.energy.gov/ /media/ascr/pdf/research/am/docs/EMWGreport.pdf
  11. M. Emmett and M. L. Minion, “Efficient implementation of a multi-level parallel in time algorithm,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 359–366, doi: 10.1007/978-3-319-05789-7_33 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_33
  12. R. D. Falgout, A. Katz, T. V. Kolev, J. B. Schroder, A. M. Wissink, and U. M. Yang, “Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application,” Lawrence Livermore National Laboratory, 2014 [Online]. Available at: https://computation.llnl.gov/project/parallel-time-integration/pubs/strand2d-pit.pdf
  13. R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, “Parallel time integration with multigrid,” SIAM Journal on Scientific Computing, vol. 36, no. 6, pp. C635–C661, 2014, doi: 10.1137/130944230. [Online]. Available at: http://dx.doi.org/10.1137/130944230
  14. M. J. Gander and E. Hairer, “Analysis for parareal algorithms applied to Hamiltonian differential equations,” Journal of Computational and Applied Mathematics, vol. 259, Part A, no. 0, pp. 2–13, 2014, doi: 10.1016/j.cam.2013.01.011. [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2013.01.011
  15. T. Haut and B. Wingate, “An asymptotic parallel-in-time method for highly oscillatory PDEs,” SIAM Journal on Scientific Computing, vol. 36, no. 2, pp. A693–A713, 2014, doi: 10.1137/130914577. [Online]. Available at: http://dx.doi.org/10.1137/130914577
  16. R. D. Haynes and B. W. Ong, “MPI-OpenMP algorithms for the parallel space-time solution of time dependent PDEs,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 179–187, doi: 10.1007/978-3-319-05789-7_14 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_14
  17. T. Loderer, V. Heuveline, and R. Lohner, “The parareal algorithm as a new approach for numerical integration of ODEs in real-time simulations in automotive industry,” PAMM, vol. 14, no. 1, pp. 1027–1030, 2014, doi: 10.1002/pamm.201410489. [Online]. Available at: http://dx.doi.org/10.1002/pamm.201410489
  18. N. Makhoul-Karam, N. R. Nassif, and J. Erhel, “An Adaptive Parallel-in-Time Method with application to a membrane problem,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 707–717, doi: 10.1007/978-3-319-05789-7_68 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_68
  19. O. Mula, “Some contributions towards the parallel simulation of time dependent neutron transport and the integration of observed data in real time,” PhD thesis, Université Pierre et Marie Curie - Paris VI, 2014 [Online]. Available at: https://tel.archives-ouvertes.fr/tel-01081601
  20. M. J. Gander and M. Neumueller, “Analysis of a Time Multigrid Algorithm for DG-Discretizations in Time,” 2014 [Online]. Available at: http://arxiv.org/abs/1409.5254
  21. A. Randles and E. Kaxiras, “Parallel in time approximation of the lattice Boltzmann method for laminar flows,” Journal of Computational Physics, vol. 270, pp. 577–586, 2014, doi: 10.1016/j.jcp.2014.04.006. [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2014.04.006
  22. A. Randles and E. Kaxiras, “A Spatio-temporal Coupling Method to Reduce the Time-to-Solution of Cardiovascular Simulations,” in Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, 2014, pp. 593–602, doi: 10.1109/IPDPS.2014.68 [Online]. Available at: http://dx.doi.org/10.1109/IPDPS.2014.68
  23. V. Rao and A. Sandu, “An adjoint-based scalable algorithm for time-parallel integration,” Journal of Computational Science, vol. 5, no. 2, pp. 76–84, 2014, doi: 10.1016/j.jocs.2013.03.004. [Online]. Available at: http://dx.doi.org/10.1016/j.jocs.2013.03.004
  24. D. Ruprecht, “Convergence of Parareal with spatial coarsening,” PAMM, vol. 14, no. 1, pp. 1031–1034, 2014, doi: 10.1002/pamm.201410490. [Online]. Available at: http://dx.doi.org/10.1002/pamm.201410490
  25. R. Krause and D. Ruprecht, “Hybrid Space-Time Parallel Solution of Burgers’ Equation,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 647–655, doi: 10.1007/978-3-319-05789-7_62 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_62
  26. D. Samaddar et al., “Poster: Greater than 10x Acceleration of fusion plasma edge simulations using the Parareal algorithm,” in Proceedings of the 2014 Conference on High Performance Computing Networking, Storage and Analysis Companion, 2014 [Online]. Available at: http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/poster_files/post163s2-file3.pdf
  27. B. Song and Y.-L. Jiang, “Analysis of a new parareal algorithm based on waveform relaxation method for time-periodic problems,” Numerical Algorithms, vol. 67, no. 3, pp. 599–622, 2014, doi: 10.1007/s11075-013-9810-z. [Online]. Available at: http://dx.doi.org/10.1007/s11075-013-9810-z
  28. R. Speck et al., “Integrating an N-body problem with SDC and PFASST,” in Domain Decomposition Methods in Science and Engineering XXI, 2014, vol. 98, pp. 637–645, doi: 10.1007/978-3-319-05789-7_61 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-05789-7_61
  29. R. Speck, D. Ruprecht, M. Emmett, M. Bolten, and R. Krause, “A space-time parallel solver for the three-dimensional heat equation,” in Parallel Computing: Accelerating Computational Science and Engineering (CSE), 2014, vol. 25, pp. 263–272, doi: 10.3233/978-1-61499-381-0-263 [Online]. Available at: http://dx.doi.org/10.3233/978-1-61499-381-0-263
  30. T. Takami and D. Fukudome, “An Identity Parareal Method for Temporal Parallel Computations,” in Parallel Processing and Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Eds. Springer Berlin Heidelberg, 2014, pp. 67–75 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-55224-3_7
  31. T. Takami and D. Fukudome, “An Efficient Pipelined Implementation of Space-Time Parallel Applications,” in Parallel Computing: Accelerating Computational Science and Engineering (CSE), vol. 25, M. Bader, A. Bode, H.-J. Bungartz, M. Gerndt, G. R. Joubert, and F. Peters, Eds. 2014, pp. 273–281 [Online]. Available at: http://dx.doi.org/10.3233/978-1-61499-381-0-273
  32. P. L. C. van der Valk and D. J. Rixen, “Towards a Parallel Time Integration Method for Nonlinear Systems,” in Dynamics of Coupled Structures, Volume 1: Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, 2014, M. Allen, R. Mayes, and D. Rixen, Eds. Cham: Springer International Publishing, 2014, pp. 135–145 [Online]. Available at: http://dx.doi.org/10.1007/978-3-319-04501-6_12
  33. S.-L. Wu, “Convergence analysis of some second-order parareal algorithms,” IMA Journal of Numerical Analysis, 2014, doi: 10.1093/imanum/dru031. [Online]. Available at: http://dx.doi.org/10.1093/imanum/dru031
  34. Q. Xu, J. S. Hesthaven, and F. Chen, “A parareal method for time-fractional differential equations,” Journal of Computational Physics, 2014, doi: 10.1016/j.jcp.2014.11.034. [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2014.11.034
top

2013

  1. E. J. Bylaska, J. Q. Weare, and J. H. Weare, “Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations,” The Journal of Chemical Physics, vol. 139, no. 7, p. 074114, 2013, doi: 10.1063/1.4818328. [Online]. Available at: http://dx.doi.org/10.1063/1.4818328
  2. X. Dai and Y. Maday, “Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems,” SIAM Journal on Scientific Computing, vol. 35, no. 1, pp. A52–A78, 2013, doi: 10.1137/110861002. [Online]. Available at: http://dx.doi.org/10.1137/110861002
  3. X. Dai, C. Le Bris, F. Legoll, and Y. Maday, “Symmetric parareal algorithms for Hamiltonian systems,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 47, no. 03, pp. 717–742, Apr. 2013, doi: 10.1051/m2an/2012046. [Online]. Available at: http://dx.doi.org/10.1051/m2an/2012046
  4. X. Du, M. Sarkis, C. E. Schaerer, and D. B. Szyld, “Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems,” Electrontic Transactions on Numerical Analysis, vol. 40, pp. 36–57, 2013 [Online]. Available at: http://etna.mcs.kent.edu/vol.40.2013/pp36-57.dir/pp36-57.pdf
  5. S. Friedhoff, R. D. Falgout, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, “A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel,” in Presented at: Sixteenth Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, United States, Mar 17 - Mar 22, 2013, 2013 [Online]. Available at: http://www.osti.gov/scitech/servlets/purl/1073108
  6. D. Fukudome and T. Takami, “Parallel bucket-brigade communication interface for scientific applications,” in Proceedings of the 20th European MPI Users’ Group Meeting, New York, NY, USA, 2013, pp. 135–136, doi: 10.1145/2488551.2488595 [Online]. Available at: http://dx.doi.org/10.1145/2488551.2488595
  7. M. J. Gander, Y.-L. Jiang, and R.-J. Li, “Parareal Schwarz Waveform Relaxation Methods,” in Domain Decomposition Methods in Science and Engineering XX, vol. 91, R. Bank, M. Holst, O. Widlund, and J. Xu, Eds. Springer Berlin Heidelberg, 2013, pp. 451–458 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-35275-1_53
  8. M. J. Gander and S. Güttel, “PARAEXP: A Parallel Integrator for Linear Initial-Value Problems,” SIAM Journal on Scientific Computing, vol. 35, no. 2, pp. C123–C142, 2013, doi: 10.1137/110856137. [Online]. Available at: http://dx.doi.org/10.1137/110856137
  9. F. Legoll, T. Lelièvre, and G. Samaey, “A Micro-Macro Parareal Algorithm: Application to Singularly Perturbed Ordinary Differential Equations,” SIAM Journal on Scientific Computing, vol. 35, no. 4, pp. A1951–A1986, 2013, doi: 10.1137/120872681. [Online]. Available at: http://dx.doi.org/10.1137/120872681
  10. J. R. McClean, J. A. Parkhill, and A. Aspuru-Guzik, “Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics,” Proceedings of the National Academy of Sciences, vol. 110, no. 41, pp. E3901–E3909, 2013, doi: 10.1073/pnas.1308069110. [Online]. Available at: http://dx.doi.org/10.1073/pnas.1308069110
  11. D. Ruprecht, R. Speck, M. Emmett, M. Bolten, and R. Krause, “Poster: Extreme-scale space-time parallelism,” in Proceedings of the 2013 Conference on High Performance Computing Networking, Storage and Analysis Companion, 2013 [Online]. Available at: http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post148s2-file3.pdf
  12. D. Samaddar et al., “Time parallelization of advanced operation scenario simulations of ITER plasma,” Journal of Physics: Conference Series, vol. 410, no. 1, p. 012032, 2013, doi: 10.1088/1742-6596/410/1/012032. [Online]. Available at: http://dx.doi.org/10.1088/1742-6596/410/1/012032
  13. Q. Wang, S. A. Gomez, P. J. Blonigan, A. L. Gregory, and E. Y. Qian, “Towards scalable parallel-in-time turbulent flow simulations,” Physics of Fluids (1994-present), vol. 25, no. 11, p. 110818, 2013, doi: 10.1063/1.4819390. [Online]. Available at: https://doi.org/10.1063/1.4819390
top

2012

  1. P. Arbenz, A. Hiltebrand, and D. Obrist, “A Parallel Space-Time Finite Difference Solver for Periodic Solutions of the Shallow-Water Equation,” in Parallel Processing and Applied Mathematics, vol. 7204, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Eds. Springer Berlin Heidelberg, 2012, pp. 302–312 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-31500-8_31
  2. L. A. Berry, W. R. Elwasif, J. M. Reynolds-Barredo, D. Samaddar, R. S. Sánchez, and D. E. Newman, “Event-based parareal: A data-flow based implementation of parareal,” Journal of Computational Physics, vol. 231, no. 17, pp. 5945–5954, 2012, doi: 10.1016/j.jcp.2012.05.016. [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2012.05.016
  3. A. J. Christlieb, R. D. Haynes, and B. W. Ong, “A Parallel Space-Time Algorithm,” SIAM Journal on Scientific Computing, vol. 34, no. 5, pp. C233–C248, 2012, doi: 10.1137/110843484. [Online]. Available at: http://dx.doi.org/10.1137/110843484
  4. M. Emmett and M. L. Minion, “Toward an Efficient Parallel in Time Method for Partial Differential Equations,” Communications in Applied Mathematics and Computational Science, vol. 7, pp. 105–132, 2012, doi: 10.2140/camcos.2012.7.105. [Online]. Available at: http://dx.doi.org/10.2140/camcos.2012.7.105
  5. S. S. Foley, W. R. Elwasif, and D. E. Bernholdt, “The integrated plasma simulator: A flexible python framework for coupled multiphysics simulation,” Oak Ridge National Laboratory, ORNL/TM-2012/57, 2012 [Online]. Available at: http://info.ornl.gov/sites/publications/files/Pub34832.pdf
  6. J. Geiser and S. Güttel, “Coupling methods for heat transfer and heat flow: Operator splitting and the parareal algorithm,” Journal of Mathematical Analysis and Applications, vol. 388, no. 2, pp. 873–887, 2012, doi: 10.1016/j.jmaa.2011.10.030. [Online]. Available at: http://dx.doi.org/10.1016/j.jmaa.2011.10.030
  7. L.-P. He and M. He, “Parareal in Time Simulation Of Morphological Transformation in Cubic Alloys with Spatially Dependent Composition,” Communications in Computational Physics, vol. 11, no. 5, pp. 1697–1717, 2012, doi: 10.4208/cicp.110310.090911a. [Online]. Available at: http://dx.doi.org/10.4208/cicp.110310.090911a
  8. J. Liu and Y.-L. Jiang, “A parareal algorithm based on waveform relaxation,” Mathematics and Computers in Simulation, vol. 82, no. 11, pp. 2167–2181, 2012, doi: 10.1016/j.matcom.2012.05.017. [Online]. Available at: http://dx.doi.org/10.1016/j.matcom.2012.05.017
  9. J. Liu and Y.-L. Jiang, “A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations,” Journal of Computational and Applied Mathematics, vol. 236, no. 17, pp. 4245–4263, 2012, doi: 10.1016/j.cam.2012.05.014. [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2012.05.014
  10. M. Loïc, “Semi-explicit Parareal method based on convergence acceleration technique,” arXiv:1212.4703 [cs.SY], 2012 [Online]. Available at: https://arxiv.org/abs/1212.4703
  11. B. W. Ong, A. Melfi, and A. J. Christlieb, “Parallel Semi-Implicit Time Integrators,” 2012 [Online]. Available at: http://arxiv.org/abs/1209.4297
  12. V. Rao, A. Cioaca, and A. Sandu, “A Highly Scalable Approach for Time Parallelization of Long Range Forecasts,” in High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion: 2012, pp. 609–616, doi: 10.1109/SC.Companion.2012.85 [Online]. Available at: http://dx.doi.org/10.1109/SC.Companion.2012.85
  13. J. M. Reynolds-Barredo, D. E. Newman, R. S. Sánchez, D. Samaddar, L. A. Berry, and W. R. Elwasif, “Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations,” Journal of Computational Physics, vol. 231, no. 23, pp. 7851–7867, 2012, doi: 10.1016/j.jcp.2012.07.028. [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2012.07.028
  14. J. M. Reynolds-Barredo, D. E. Newman, R. S. Sánchez, and L. A. Berry, “Modelling parareal convergence in 2D drift wave plasma turbulence,” in High Performance Computing and Simulation (HPCS), 2012 International Conference on, 2012, pp. 726–727, doi: 10.1109/HPCSim.2012.6267004 [Online]. Available at: http://dx.doi.org/10.1109/HPCSim.2012.6267004
  15. D. Ruprecht and R. Krause, “Explicit parallel-in-time integration of a linear acoustic-advection system,” Computers & Fluids, vol. 59, no. 0, pp. 72–83, 2012, doi: 10.1016/j.compfluid.2012.02.015. [Online]. Available at: http://dx.doi.org/10.1016/j.compfluid.2012.02.015
  16. H. Samuel, “Time domain parallelization for computational geodynamics,” Geochemistry, Geophysics, Geosystems, vol. 13, no. 1, 2012, doi: 10.1029/2011GC003905. [Online]. Available at: http://dx.doi.org/10.1029/2011GC003905
  17. R. Speck et al., “A massively space-time parallel N-body solver,” in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, Los Alamitos, CA, USA, 2012, pp. 92:1–92:11, doi: 10.1109/SC.2012.6 [Online]. Available at: http://dx.doi.org/10.1109/SC.2012.6
  18. T. Takami and A. Nishida, “Parareal Acceleration of Matrix Multiplication,” in Applications, Tools and Techniques on the Road to Exascale Computing, 2012, vol. 22, pp. 437–444, doi: 10.3233/978-1-61499-041-3-437 [Online]. Available at: http://dx.doi.org/10.3233/978-1-61499-041-3-437
  19. H. Xiao and E. Aubanel, “Scheduling of Tasks in the Parareal Algorithm for Heterogeneous Cloud Platforms,” in Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International, 2012, pp. 1440–1448, doi: 10.1109/IPDPSW.2012.181 [Online]. Available at: http://dx.doi.org/10.1109/IPDPSW.2012.181
top

2011

  1. E. Aubanel, “Scheduling of Tasks in the Parareal Algorithm,” Parallel Computing, vol. 37, pp. 172–182, 2011, doi: 10.1016/j.parco.2010.10.004. [Online]. Available at: http://dx.doi.org/10.1016/j.parco.2010.10.004
  2. X. Bai and J. L. Junkins, “Modified Chebyshev-Picard Iteration Methods for Orbit Propagation,” The Journal of the Astronautical Sciences, vol. 58, no. 4, pp. 583–613, Oct. 2011, doi: 10.1007/bf03321533. [Online]. Available at: https://doi.org/10.1007/bf03321533
  3. T. Cadeau and F. Magoules, “Coupling the Parareal Algorithm with the Waveform Relaxation Method for the Solution of Differential Algebraic Equations,” in Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2011 Tenth International Symposium on, 2011, pp. 15–19, doi: 10.1109/DCABES.2011.34 [Online]. Available at: http://dx.doi.org/10.1109/DCABES.2011.34
  4. A. J. Christlieb and B. W. Ong, “Implicit parallel time integrators,” Journal of Scientific Computing, vol. 49, no. 2, pp. 167–179, 2011, doi: 10.1007/s10915-010-9452-4. [Online]. Available at: http://dx.doi.org/10.1007/s10915-010-9452-4
  5. C. Douglas, I. Kim, H. Lee, and D. Sheen, “Higher-order schemes for the Laplace transformation method for parabolic problems,” Computing and Visualization in Science, vol. 14, no. 1, pp. 39–47, 2011, doi: 10.1007/s00791-011-0156-6. [Online]. Available at: https://doi.org/10.1007/s00791-011-0156-6
  6. M. Duarte, M. Massot, and S. Descombes, “Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 45, no. 05, pp. 825–852, Aug. 2011, doi: 10.1051/m2an/2010104. [Online]. Available at: http://dx.doi.org/10.1051/m2an/2010104
  7. W. R. Elwasif et al., “A dependency-driven formulation of parareal: parallel-in-time solution of PDEs as a many-task application,” in Proceedings of the 2011 ACM international workshop on many task computing on grids and supercomputers, 2011, pp. 15–24, doi: 10.1145/2132876.2132883 [Online]. Available at: http://dx.doi.org/10.1145/2132876.2132883
top

2010

  1. A. Blouza, B. Laurent, and S. M. Kaber, “Parallel in time algorithms with reduction methods for solving chemical kinetics,” Communications in Applied Mathematics and Computational Science, vol. 5, no. 2, pp. 241–263, 2010, doi: 10.2140/camcos.2010.5.241. [Online]. Available at: http://dx.doi.org/10.2140/camcos.2010.5.241
  2. A. J. Christlieb, C. B. Macdonald, and B. W. Ong, “Parallel high-order integrators,” SIAM Journal on Scientific Computing, vol. 32, no. 2, pp. 818–835, 2010, doi: 10.1137/09075740X. [Online]. Available at: http://dx.doi.org/10.1137/09075740X
  3. N. K. Fu and N. H. M. Ali, “Improving Pipelined Time Stepping Algorithm for Distributed Memory Multicomputers,” Sains Malaysiana, vol. 39, no. 6, pp. 1041–1048, 2010 [Online]. Available at: http://www.ukm.my/jsm/pdf_files/SM-PDF-39-6-2010/25 Ng Kok Fu.pdf
  4. C. H. Lai, “On Transformation Methods and the Induced Parallel Properties for the Temporal Domain,” in Substructing Techniques and Domain Decomposition Methods, 2010, pp. 45–70, doi: 10.4203/csets.24.3 [Online]. Available at: http://dx.doi.org/10.4203/csets.24.3
  5. B. Lepsa and A. Sandu, “An efficient error control mechanism for the adaptive ’parareal’ time discretization algorithm,” in Proceedings of the 2010 Spring Simulation Multiconference, San Diego, CA, USA, 2010, pp. 87:1–87:7, doi: 10.1145/1878537.1878628 [Online]. Available at: http://dx.doi.org/10.1145/1878537.1878628
  6. T. Mathew, M. Sarkis, and C. E. Schaerer, “Analysis of Block Parareal Preconditioners for Parabolic Optimal Control Problems,” SIAM Journal on Scientific Computing, vol. 32, no. 3, pp. 1180–1200, 2010, doi: 10.1137/080717481. [Online]. Available at: http://dx.doi.org/10.1137/080717481
  7. M. L. Minion, “A Hybrid Parareal Spectral Deferred Corrections Method,” Communications in Applied Mathematics and Computational Science, vol. 5, no. 2, pp. 265–301, 2010, doi: 10.2140/camcos.2010.5.265. [Online]. Available at: http://dx.doi.org/10.2140/camcos.2010.5.265
  8. S. Mitran, “Time parallel kinetic-molecular interaction algorithm for CPU/GPU computers,” Procedia Computer Science, vol. 1, no. 1, pp. 745–752, 2010, doi: 10.1016/j.procs.2010.04.080. [Online]. Available at: http://dx.doi.org/10.1016/j.procs.2010.04.080
  9. D. Samaddar, D. E. Newman, and R. S. Sánchez, “Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm,” Journal of Computational Physics, vol. 229, no. 18, pp. 6558–6573, 2010, doi: 10.1016/j.jcp.2010.05.012. [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2010.05.012
top

2009

  1. P. Amodio and L. Brugnano, “Parallel solution in time of ODEs: some achievements and perspectives,” Applied Numerical Mathematics, vol. 59, no. 3–4, pp. 424–435, 2009, doi: 10.1016/j.apnum.2008.03.024. [Online]. Available at: http://dx.doi.org/10.1016/j.apnum.2008.03.024
  2. A. Borzì and G. von Winckel, “Multigrid Methods and Sparse-Grid Collocation Techniques for Parabolic Optimal Control Problems with Random Coefficients,” SIAM Journal on Scientific Computing, vol. 31, no. 3, pp. 2172–2192, 2009, doi: 10.1137/070711311. [Online]. Available at: http://dx.doi.org/10.1137/070711311
  3. E. Celledoni and T. Kvamsdal, “Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium,” International Journal for Numerical Methods in Engineering, vol. 79, no. 5, pp. 576–598, 2009, doi: 10.1002/nme.2585. [Online]. Available at: http://dx.doi.org/10.1002/nme.2585
  4. J. Cortial and C. Farhat, “A time-parallel implicit method for accelerating the solution of non-linear structural dynamics problems,” International Journal for Numerical Methods in Engineering, vol. 77, no. 4, pp. 451–470, 2009, doi: 10.1002/nme.2418. [Online]. Available at: http://dx.doi.org/10.1002/nme.2418
  5. S. Engblom, “Parallel in Time Simulation of Multiscale Stochastic Chemical Kinetics,” Multiscale Modeling & Simulation, vol. 8, no. 1, pp. 46–68, 2009, doi: 10.1137/080733723. [Online]. Available at: http://dx.doi.org/10.1137/080733723
  6. G. Frantziskonis, K. Muralidharan, P. Deymier, S. Simunovic, P. Nukala, and S. Pannala, “Time-parallel multiscale/multiphysics framework,” Journal of Computational Physics, vol. 228, no. 21, pp. 8085–8092, 2009, doi: 10.1016/j.jcp.2009.07.035. [Online]. Available at: http://dx.doi.org/10.1016/j.jcp.2009.07.035
  7. Y. Maday, “Symposium: Recent Advances on the Parareal in Time Algorithms,” AIP Conference Proceedings, vol. 1168, no. 1, pp. 1515–1516, 2009, doi: 10.1063/1.3241386. [Online]. Available at: http://dx.doi.org/10.1063/1.3241386
  8. D. Mercerat, L. Guillot, and J.-P. Vilotte, “Application of the parareal algorithm for acoustic wave propagation,” in AIP Conference Proceedings, 2009, vol. 1168, pp. 1521–1524, doi: 10.1063/1.3241388 [Online]. Available at: http://dx.doi.org/10.1063/1.3241388
  9. N. R. Nassif, N. Makhoul-Karam, and Y. Soukiassian, “Computation of blowing-up solutions for second-order differential equations using re-scaling techniques,” Journal of Computational and Applied Mathematics, vol. 227, no. 1, pp. 185–195, 2009, doi: 10.1016/j.cam.2008.07.020. [Online]. Available at: http://dx.doi.org/10.1016/j.cam.2008.07.020
  10. S. Wu, B. Shi, and C. Huang, “Parareal-Richardson Algorithm for Solving Nonlinear ODEs and PDEs,” Communications in Computational Physics, vol. 6, no. 4, pp. 883–902, 2009, doi: 10.4208/cicp.2009.v6.p883. [Online]. Available at: http://dx.doi.org/10.4208/cicp.2009.v6.p883
top

2008

  1. P. Amodio and L. Brugnano, “Recent Advances in the Parallel Solution in Time of ODEs,” AIP Conference Proceedings, vol. 1048, no. 1, pp. 867–870, 2008, doi: 10.1063/1.2991069. [Online]. Available at: http://dx.doi.org/10.1063/1.2991069
  2. G. Bal and Q. Wu, “Symplectic Parareal,” in Domain Decomposition Methods in Science and Engineering XVII, vol. 60, U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, and W. Zulehner, Eds. Springer Berlin Heidelberg, 2008, pp. 401–408 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-75199-1_51
  3. M. J. Gander, “Analysis of the Parareal Algorithm Applied to Hyperbolic Problems using Characteristics,” Bol. Soc. Esp. Mat. Apl., vol. 42, pp. 21–35, 2008.
  4. M. J. Gander and E. Hairer, “Nonlinear Convergence Analysis for the Parareal Algorithm,” in Domain Decomposition Methods in Science and Engineering, 2008, vol. 60, pp. 45–56, doi: 10.1007/978-3-540-75199-1_4 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-75199-1_4
  5. M. J. Gander and M. Petcu, “Analysis of a Krylov Subspace Enhanced Parareal Algorithm for Linear Problem,” ESAIM: Proc., vol. 25, pp. 114–129, 2008, doi: 10.1051/proc:082508. [Online]. Available at: http://dx.doi.org/10.1051/proc:082508
  6. Y. Liu and J. Hu, “Modified propagators of parareal in time algorithm and application to Princeton Ocean model,” Int. J. for Numerical Methods in Fluids, vol. 57, no. 12, pp. 1793–1804, 2008, doi: 10.1002/fld.1703. [Online]. Available at: http://dx.doi.org/10.1002/fld.1703
  7. Y. Maday and E. M. Rønquist, “Parallelization in time through tensor-product space-time solvers,” Comptes Rendus Mathematique, vol. 346, no. 1–2, pp. 113–118, 2008, doi: 10.1016/j.crma.2007.09.012. [Online]. Available at: http://dx.doi.org/10.1016/j.crma.2007.09.012
  8. M. L. Minion and S. A. Williams, “Parareal and spectral deferred corrections,” in AIP Conference Proceedings, 2008, vol. 1048, p. 388, doi: 10.1063/1.2990941 [Online]. Available at: http://dx.doi.org/10.1063/1.2990941
  9. M. Sarkis, C. E. Schaerer, and T. Mathew, “Block Diagonal Parareal Preconditioner for Parabolic Optimal Control Problems,” in Domain Decomposition Methods in Science and Engineering XVII, vol. 60, U. Langer and al., Eds. Springer Berlin Heidelberg, 2008, pp. 409–416 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-75199-1_52
top

2007

  1. D. S. Daoud, “Stability of the Parareal Time Discretization for Parabolic Inverse Problems,” in Domain Decomposition Methods in Science and Engineering XVI, vol. 55, O. B. Widlund and D. E. Keyes, Eds. Springer Berlin Heidelberg, 2007, pp. 275–282 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-34469-8_32
  2. M. J. Gander and M. Petcu, “Analysis of a Modified Parareal Algorithm for Second-Order Ordinary Differential Equations,” in AIP Conference Proceedings, 2007, vol. 936, p. 233, doi: 10.1063/1.2790116 [Online]. Available at: http://dx.doi.org/10.1063/1.2790116
  3. M. J. Gander and S. Vandewalle, “On the Superlinear and Linear Convergence of the Parareal Algorithm,” in Domain Decomposition Methods in Science and Engineering, vol. 55, O. B. Widlund and D. E. Keyes, Eds. Springer Berlin Heidelberg, 2007, pp. 291–298 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-34469-8_34
  4. M. J. Gander and S. Vandewalle, “Analysis of the Parareal Time-Parallel Time-Integration Method,” SIAM Journal on Scientific Computing, vol. 29, no. 2, pp. 556–578, 2007, doi: 10.1137/05064607X. [Online]. Available at: http://dx.doi.org/10.1137/05064607X
  5. D. Guibert and D. Tromeur-Dervout, “Adaptive Parareal for Systems of ODEs,” in Domain Decomposition Methods in Science and Engineering XVI, vol. 55, O. B. Widlund and D. E. Keyes, Eds. Springer Berlin Heidelberg, 2007, pp. 587–594 [Online]. Available at: http://dx.doi.org/10.1007/978-3-540-34469-8_73
  6. D. Guibert and D. Tromeur-Dervout, “Parallel adaptive time domain decomposition for stiff systems of ODEs/DAEs,” Computers & Structures, vol. 85, no. 9, pp. 553–562, 2007, doi: 10.1016/j.compstruc.2006.08.040. [Online]. Available at: http://dx.doi.org/10.1016/j.compstruc.2006.08.040
  7. D. Guibert and D. Tromeur-Dervout, “Parallel deferred correction method for CFD problems,” in Parallel Computational Fluid Dynamics 2006, J. H. Kwon, A. Ecer, N. Satofuka, J. Periaux, and P. Fox, Eds. Amsterdam: Elsevier, 2007, pp. 131–138 [Online]. Available at: http://dx.doi.org/10.1016/B978-044453035-6/50019-5
  8. S. M. Kaber and Y. Maday, “Parareal in time approximation of the Korteveg-deVries-Burgers’ equations,” PAMM, vol. 7, no. 1, pp. 1026403–1026404, 2007, doi: 10.1002/pamm.200700574. [Online]. Available at: http://dx.doi.org/10.1002/pamm.200700574
  9. Y. Maday, J. Salomon, and G. Turinici, “Monotonic parareal control for quantum systems,” SIAM Journal on Numerical Analysis, vol. 45, no. 6, pp. 2468–2482, 2007, doi: 10.1137/050647086. [Online]. Available at: http://dx.doi.org/10.1137/050647086
  10. S. Ulbrich, “7. Generalized SQP Methods with ‘Parareal’ Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization,” in Real-Time PDE-Constrained Optimization, SIAM, 2007, pp. 145–168 [Online]. Available at: https://dx.doi.org/10.1137/1.9780898718935.ch7
top

2006

  1. C. Farhat, J. Cortial, C. Dastillung, and H. Bavestrello, “Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses,” International Journal for Numerical Methods in Engineering, vol. 67, no. 5, pp. 697–724, 2006, doi: 10.1002/nme.1653. [Online]. Available at: http://dx.doi.org/10.1002/nme.1653
  2. I. Garrido, B. Lee, G. E. Fladmark, and M. S. Espedal, “Convergent iterative schemes for time parallelization,” Mathematics of Computation, vol. 75, no. 255, pp. 1403–1429, Feb. 2006, doi: 10.1090/s0025-5718-06-01832-1. [Online]. Available at: https://doi.org/10.1090/s0025-5718-06-01832-1
  3. N. R. Nassif, N. M. Karam, and Y. Soukiassian, “A New Approach for Solving Evolution Problems in Time-Parallel Way,” in Computational Science – ICCS 2006, vol. 3991, V. N. Alexandrov, G. D. Albada, P. M. A. Sloot, and J. Dongarra, Eds. Springer Berlin Heidelberg, 2006, pp. 148–155 [Online]. Available at: http://dx.doi.org/10.1007/11758501_24
  4. J. M. F. Trindade and J. C. F. Pereira, “Parallel-in-Time Simulation of Two-Dimensional, Unsteady, Incompressible Laminar Flows,” Numerical Heat Transfer, Part B: Fundamentals, vol. 50, no. 1, pp. 25–40, 2006, doi: 10.1080/10407790500459379. [Online]. Available at: http://dx.doi.org/10.1080/10407790500459379
  5. Y. Yu, A. Srinivasan, and N. Chandra, “Scalable Time-Parallelization of Molecular Dynamics Simulations in Nano Mechanics,” in Parallel Processing, 2006. ICPP 2006. International Conference on, 2006, pp. 119–126, doi: 10.1109/ICPP.2006.64 [Online]. Available at: http://dx.doi.org/10.1109/ICPP.2006.64
top

2005

  1. G. Bal, “On the convergence and the stability of the parareal algorithm to solve partial differential equations,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 426–432, doi: 10.1007/3-540-26825-1_43 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_43
  2. A. Borzì and R. Griesse, “Experiences with a space–time multigrid method for the optimal control of a chemical turbulence model,” International Journal for Numerical Methods in Fluids, vol. 47, no. 8-9, pp. 879–885, 2005, doi: 10.1002/fld.904. [Online]. Available at: http://dx.doi.org/10.1002/fld.904
  3. P. F. Fischer, F. Hecht, and Y. Maday, “A parareal in time semi-implicit approximation of the Navier-Stokes equations,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 433–440, doi: 10.1007/3-540-26825-1_44 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_44
  4. I. Garrido, M. S. Espedal, and G. E. Fladmark, “A Convergent Algorithm for Time Parallelization Applied to Reservoir Simulation,” in Domain Decomposition Methods in Science and Engineering, vol. 40, T. J. Barth and al., Eds. Springer Berlin Heidelberg, 2005, pp. 469–476 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_48
  5. Y. Maday and G. Turinici, “The parareal in time iterative solver: A further direction to parallel implementation,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 441–448, doi: 10.1007/3-540-26825-1_45 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_45
  6. B. A. Schmitt, R. Weiner, and H. Podhaisky, “Multi-Implicit Peer Two-Step W-Methods for Parallel Time Integration,” BIT Numerical Mathematics, vol. 45, no. 1, pp. 197–217, 2005, doi: 10.1007/s10543-005-2635-y. [Online]. Available at: http://dx.doi.org/10.1007/s10543-005-2635-y
  7. A. Srinivasan and N. Chandra, “Latency tolerance through parallelization of time in scientific applications,” Parallel Computing, vol. 31, no. 7, pp. 777–796, 2005, doi: 10.1016/j.parco.2005.04.008. [Online]. Available at: http://dx.doi.org/10.1016/j.parco.2005.04.008
  8. A. Srinivasan, Y. Yu, and N. Chandra, “Application of Reduce Order Modeling to Time Parallelization,” in High Performance Computing – HiPC 2005, vol. 3769, D. A. Bader, M. Parashar, V. Sridhar, and V. K. Prasanna, Eds. Springer Berlin Heidelberg, 2005, pp. 106–117 [Online]. Available at: http://dx.doi.org/10.1007/11602569_15
  9. G. A. Staff and E. M. Rønquist, “Stability of the parareal algorithm,” in Domain Decomposition Methods in Science and Engineering, Berlin, 2005, vol. 40, pp. 449–456, doi: 10.1007/3-540-26825-1_46 [Online]. Available at: http://dx.doi.org/10.1007/3-540-26825-1_46
  10. V. Thomée, “A high order parallel method for time discretization of parabolic type equations based on Laplace transformation and quadrature,” International Journal of Numerical Analysis and Modeling, vol. 2, no. 1, pp. 85–96, 2005.
top

2000 - 2004

  1. D. Sheen, I. H. Sloan, and V. Thomée, “A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature,” Mathematics of Computation, vol. 69, no. 229, pp. 177–195, 2000, doi: 10.1090/S0025-5718-99-01098-4. [Online]. Available at: https://doi.org/10.1090/S0025-5718-99-01098-4
  2. M. A. Botchev and H. A. van der Vorst, “A parallel nearly implicit time-stepping scheme,” Journal of Computational and Applied Mathematics, vol. 137, no. 2, pp. 229–243, 2001, doi: 10.1016/S0377-0427(01)00358-2. [Online]. Available at: http://dx.doi.org/10.1016/S0377-0427(01)00358-2
  3. J.-L. Lions, Y. Maday, and G. Turinici, “A ‘parareal’ in time discretization of PDE’s,” Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, vol. 332, pp. 661–668, 2001, doi: 10.1016/S0764-4442(00)01793-6. [Online]. Available at: http://dx.doi.org/10.1016/S0764-4442(00)01793-6
  4. L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah, “Parallel-in-time molecular-dynamics simulations,” Phys. Rev. E, vol. 66, no. 5, p. 057701, 2002, doi: 10.1103/PhysRevE.66.057701. [Online]. Available at: http://link.aps.org/doi/10.1103/PhysRevE.66.057701
  5. G. Bal and Y. Maday, “A ‘Parareal’ time discretization for non-linear PDE’s with application to the pricing of an American Put,” in Recent Developments in Domain Decomposition Methods, vol. 23, L. Pavarino and A. Toselli, Eds. Springer Berlin, 2002, pp. 189–202 [Online]. Available at: http://dx.doi.org/10.1007/978-3-642-56118-4_12
  6. E. Giladi and H. B. Keller, “Space-time domain decomposition for parabolic problems,” Numerische Mathematik, vol. 93, no. 2, pp. 279–313, 2002, doi: 10.1007/s002110100345. [Online]. Available at: https://doi.org/10.1007/s002110100345
  7. Y. Maday and G. Turinici, “A parareal in time procedure for the control of partial differential equations,” Comptes Rendus Mathématique, vol. 335, no. 4, pp. 387–392, 2002, doi: 10.1016/S1631-073X(02)02467-6. [Online]. Available at: http://dx.doi.org/10.1016/S1631-073X(02)02467-6
  8. C. Farhat and M. Chandesris, “Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications,” International Journal for Numerical Methods in Engineering, vol. 58, no. 9, pp. 1397–1434, 2003, doi: 10.1002/nme.860. [Online]. Available at: http://dx.doi.org/10.1002/nme.860
  9. Y. Maday and G. Turinici, “Parallel in time algorithms for quantum control: Parareal time discretization scheme,” Int. J. Quant. Chem., vol. 93, no. 3, pp. 223–228, 2003, doi: 10.1002/qua.10554. [Online]. Available at: http://dx.doi.org/10.1002/qua.10554
  10. D. Sheen, I. H. Sloan, and V. Thomée, “A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature,” IMA Journal of Numerical Analysis, vol. 23, no. 2, pp. 269–299, 2003, doi: 10.1093/imanum/23.2.269. [Online]. Available at: https://doi.org/10.1093/imanum/23.2.269
  11. J. M. F. Trindade and J. C. F. Pereira, “Parallel-in-time simulation of the unsteady Navier-Stokes equations for incompressible flow,” International Journal for Numerical Methods in Fluids, vol. 45, no. 10, pp. 1123–1136, 2004, doi: 10.1002/fld.732. [Online]. Available at: http://dx.doi.org/10.1002/fld.732
top

1995 - 1999

  1. K. Burrage, Parallel and sequential methods for ordinary differential equations. The Clarendon Press, Oxford University Press, New York, 1995, p. xvi+446.
  2. A. Deshpande, S. Malhotra, M. Schultz, and C. Douglas, “A rigorous analysis of time domain parallelism,” Parallel Algorithms and Applications, vol. 6, no. 1, pp. 53–62, 1995, doi: 10.1080/10637199508915498. [Online]. Available at: http://dx.doi.org/10.1080/10637199508915498
  3. G. Horton, S. Vandewalle, and P. Worley, “An Algorithm with Polylog Parallel Complexity for Solving Parabolic Partial Differential Equations,” SIAM Journal on Scientific Computing, vol. 16, no. 3, pp. 531–541, 1995, doi: 10.1137/0916034. [Online]. Available at: http://dx.doi.org/10.1137/0916034
  4. G. Horton and S. Vandewalle, “A Space-Time Multigrid Method for Parabolic Partial Differential Equations,” SIAM Journal on Scientific Computing, vol. 16, no. 4, pp. 848–864, 1995, doi: 10.1137/0916050. [Online]. Available at: http://dx.doi.org/10.1137/0916050
  5. K. R. Jackson and S. P. Nørsett, “The Potential for Parallelism in Runge–Kutta Methods. Part 1: RK Formulas in Standard Form,” SIAM Journal on Numerical Analysis, vol. 32, no. 1, pp. 49–82, 1995, doi: 10.1137/0732002. [Online]. Available at: http://dx.doi.org/10.1137/0732002
  6. S. Vandewalle and G. Horton, “Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods,” Computing, vol. 54, no. 4, pp. 317–330, 1995, doi: 10.1007/BF02238230. [Online]. Available at: http://dx.doi.org/10.1007/BF02238230
  7. K. Burrage, “Parallel methods for systems of ordinary differential equations,” in Applications on Advanced Architecture Computers, G. Astfalk, Ed. Society for Industrial and Applied Mathematics, 1996, pp. 101–120 [Online]. Available at: http://dx.doi.org/10.1137/1.9780898719659.ch10
  8. J. Janssen and S. Vandewalle, “Multigrid Waveform Relaxation on Spatial Finite Element Meshes: The Discrete-Time Case,” SIAM Journal on Scientific Computing, vol. 17, no. 1, pp. 133–155, 1996, doi: 10.1137/0917011. [Online]. Available at: http://dx.doi.org/10.1137/0917011
  9. T. Rauber and G. Rünger, “Parallel Implementations of Iterated Runge-Kutta Methods,” The International Journal of Supercomputer Applications and High Performance Computing, vol. 10, no. 1, pp. 62–90, Mar. 1996, doi: 10.1177/109434209601000103. [Online]. Available at: https://doi.org/10.1177/109434209601000103
  10. S. Ta’asan and H. Zhang, “Fourier-Laplace analysis of the multigrid waveform relaxation method for hyperbolic equations,” BIT Numerical Mathematics, vol. 36, no. 4, pp. 831–841, 1996, doi: 10.1007/BF01733794. [Online]. Available at: http://dx.doi.org/10.1007/BF01733794
  11. K. Burrage, “Parallel methods for ODEs,” Advances in Computational Mathematics, vol. 7, pp. 1–3, 1997, doi: 10.1023/A:1018997130884. [Online]. Available at: http://dx.doi.org/10.1023/A:1018997130884
  12. M. J. Gander and A. M. Stuart, “Space-Time Continuous Analysis of Waveform Relaxation for the Heat Equation,” SIAM Journal on Scientific Computing, vol. 19, no. 6, pp. 2014–2031, 1998, doi: 10.1137/S1064827596305337. [Online]. Available at: http://dx.doi.org/10.1137/S1064827596305337
  13. F. Z. Wang, “Parallel-in-time relaxed Newton method for transient stability analysis,” IEE Proceedings - Generation, Transmission and Distribution, vol. 145, no. 2, pp. 155–159, 1998, doi: 10.1049/ip-gtd:19981836. [Online]. Available at: https://dx.doi.org/10.1049/ip-gtd:19981836
top

1990 - 1994

  1. A. Bellen, R. Vermiglio, and M. Zennaro, “Parallel ODE-solvers with stepsize control,” Journal of Computational and Applied Mathematics, vol. 31, no. 2, pp. 277–293, Aug. 1990, doi: 10.1016/0377-0427(90)90170-5. [Online]. Available at: https://doi.org/10.1016/0377-0427(90)90170-5
  2. “On the theory of parallel Runge-Kutta methods,” IMA Journal of Numerical Analysis, vol. 10, no. 4, pp. 463–488, 1990, doi: 10.1093/imanum/10.4.463. [Online]. Available at: https://doi.org/10.1093/imanum/10.4.463
  3. M. La Scala, A. Bose, D. J. Tylavsky, and J. S. Chai, “A highly parallel method for transient stability analysis,” IEEE Transactions on Power Systems, vol. 5, no. 4, pp. 1439–1446, 1990, doi: 10.1109/59.99398. [Online]. Available at: http://dx.doi.org/10.1109/59.99398
  4. P. J. Van Der Houwen and B. P. Sommeijer, “Parallel iteration of high-order Runge-Kutta methods with stepsize control,” Journal of Computational and Applied Mathematics, vol. 29, no. 1, pp. 111–127, 1990, doi: 10.1016/0377-0427(90)90200-J. [Online]. Available at: http://dx.doi.org/10.1016/0377-0427(90)90200-J
  5. D. E. Womble, “A time-stepping algorithm for parallel computers,” SIAM Journal on Scientific and Statistical Computing, vol. 11, no. 5, pp. 824–837, 1990, doi: 10.1137/0911049. [Online]. Available at: http://dx.doi.org/10.1137/0911049
  6. C. W. Gear, “Waveform methods for space and time parallelism,” in Proceedings of the International Symposium on Computational Mathematics (Matsuyama, 1990), 1991, vol. 38, pp. 137–147.
  7. G. Horton, “Time-Parallel Multigrid Solution of the Navier-Stokes Equations,” in Applications of Supercomputers in Engineering II, C. A. Brebbia, A. Peters, and D. Howard, Eds. Springer Netherlands, 1991, pp. 435–445 [Online]. Available at: http://dx.doi.org/10.1007/978-94-011-3660-0_31
  8. K. R. Jackson, “A SURVEY OF PARALLEL NUMERICAL METHODS FOR INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS,” IEEE Transactions on Magnetics, vol. 27, no. 5, pp. 3792–3797, 1991, doi: 10.1109/20.104928. [Online]. Available at: http://dx.doi.org/10.1109/20.104928
  9. S. Murata, N. Satofuka, and T. Kushiyama, “Parabolic multi-grid method for incompressible viscous flows using a group explicit relaxation scheme,” Computers & Fluids, vol. 19, no. 1, pp. 33–41, 1991, doi: 10.1016/0045-7930(91)90005-3. [Online]. Available at: http://dx.doi.org/10.1016/0045-7930(91)90005-3
  10. P. J. van der Houwen and B. P. Sommeijer, “Iterated Runge–Kutta Methods on Parallel Computers,” SIAM Journal on Scientific and Statistical Computing, vol. 12, no. 5, pp. 1000–1028, 1991, doi: 10.1137/0912054. [Online]. Available at: http://dx.doi.org/10.1137/0912054
  11. G. Horton, “The time-parallel multigrid method,” Communications in Applied Numerical Methods, vol. 8, no. 9, pp. 585–595, 1992, doi: 10.1002/cnm.1630080906. [Online]. Available at: http://dx.doi.org/10.1002/cnm.1630080906
  12. G. Horton, R. Knirsch, and H. Vollath, “The time-parallel solution of parabolic partial differential equations using the frequency-filtering method,” in Parallel Processing: CONPAR 92 –VAPP V, vol. 634, L. Bougé, M. Cosnard, Y. Robert, and D. Trystram, Eds. Springer Berlin Heidelberg, 1992, pp. 205–216 [Online]. Available at: http://dx.doi.org/10.1007/3-540-55895-0_415
  13. G. Horton and R. Knirsch, “A time-parallel multigrid-extrapolation method for parabolic partial differential equations,” Parallel Computing, vol. 18, no. 1, pp. 21–29, 1992, doi: 10.1016/0167-8191(92)90108-J. [Online]. Available at: http://dx.doi.org/10.1016/0167-8191(92)90108-J
  14. S. Vandewalle and R. Piessens, “Efficient Parallel Algorithms for Solving Initial-Boundary Value and Time-Periodic Parabolic Partial Differential Equations,” SIAM Journal on Scientific and Statistical Computing, vol. 13, no. 6, pp. 1330–1346, 1992, doi: 10.1137/0913075. [Online]. Available at: http://dx.doi.org/10.1137/0913075
  15. K. Burrage, “Parallel methods for initial value problems,” Applied Numerical Mathematics, vol. 11, no. 1–3, pp. 5–25, 1993, doi: 10.1016/0168-9274(93)90037-R. [Online]. Available at: http://dx.doi.org/10.1016/0168-9274(93)90037-R
  16. P. Chartier and B. Philippe, “A parallel shooting technique for solving dissipative ODE’s,” Computing, vol. 51, no. 3-4, pp. 209–236, 1993, doi: 10.1007/BF02238534. [Online]. Available at: http://dx.doi.org/10.1007/BF02238534
  17. A. Fijany, “Time Parallel Algorithms for Solution of Linear Parabolic PDEs,” in Parallel Processing, 1993. ICPP 1993. International Conference on, 1993, vol. 3, pp. 51–56, doi: 10.1109/ICPP.1993.179 [Online]. Available at: http://dx.doi.org/10.1109/ICPP.1993.179
  18. C. W. Gear and X. Xuhai, “Parallelism across time in ODEs,” Applied Numerical Mathematics. An IMACS Journal, vol. 11, no. 1-3, pp. 45–68, 1993.
  19. C. Oosterlee and P. Wesseling, “Multigrid schemes for time-dependent incompressible Navier-Stokes equations,” IMPACT of Computing in Science and Engineering, vol. 5, no. 3, pp. 153–175, 1993, doi: 10.1006/icse.1993.1007. [Online]. Available at: http://dx.doi.org/10.1006/icse.1993.1007
  20. M. La Scala and A. Bose, “Relaxation/Newton methods for concurrent time step solution of differential-algebraic equations in power system dynamic simulations,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 40, no. 5, pp. 317–330, 1993, doi: 10.1109/81.232576. [Online]. Available at: http://dx.doi.org/10.1109/81.232576
  21. B. P. Sommeijer, “Parallel-iterated Runge-Kutta methods for stiff ordinary differential equations,” Journal of Computational and Applied Mathematics, vol. 45, no. 1, pp. 151–168, 1993, doi: 10.1016/0377-0427(93)90271-C. [Online]. Available at: http://dx.doi.org/10.1016/0377-0427(93)90271-C
  22. P. J. van der Houwen and B. P. Sommeijer, “Analysis of parallel diagonally implicit iteration of Runge-Kutta methods,” Applied Numerical Mathematics, vol. 11, no. 1, pp. 169–188, 1993, doi: 10.1016/0168-9274(93)90047-U. [Online]. Available at: http://dx.doi.org/10.1016/0168-9274(93)90047-U
  23. H. G. Bock, W. Hackbusch, and W. Rannacher, Eds., Parallel multigrid waveform relaxation for parabolic problems. Stuttgart: B. G. Teubner, 1993 [Online]. Available at: http://dx.doi.org/10.1007/978-3-322-94761-1
  24. J. Janssen and S. Vandewalle, “Multigrid waveform relaxation on spatial finite element meshes,” in Contributions to multigrid (Amsterdam, 1993), vol. 103, Amsterdam: Math. Centrum Centrum Wisk. Inform., 1994, pp. 75–86.
  25. M. Kiehl, “Parallel multiple shooting for the solution of initial value problems,” Parallel Computing, vol. 20, no. 3, pp. 275–295, 1994, doi: 10.1016/S0167-8191(06)80013-X. [Online]. Available at: http://dx.doi.org/10.1016/S0167-8191(06)80013-X
  26. N. Toomarian, A. Fijany, and J. Barmen, “Time-parallel solution of linear partial differential equations on the Intel Touchstone Delta supercomputer,” Concurrency: Practice and Experience, vol. 6, no. 8, pp. 641–652, 1994, doi: 10.1002/cpe.4330060803. [Online]. Available at: http://dx.doi.org/10.1002/cpe.4330060803
  27. S. Vandewalle and G. Horton, “Multicomputer-Multigrid Solution of Parabolic Partial Differential Equations,” in Multigrid Methods IV, vol. 116, P. W. Hemker and P. Wesseling, Eds. Birkhäuser Basel, 1994, pp. 97–109 [Online]. Available at: http://dx.doi.org/10.1007/978-3-0348-8524-9_7
  28. S. G. Vandewalle and E. F. Van de Velde, “Space-time concurrent multigrid waveform relaxation,” Annals of Numerical Mathematics, vol. 1, no. 1-4, pp. 347–360, 1994, doi: 10.13140/2.1.1146.1761. [Online]. Available at: http://dx.doi.org/10.13140/2.1.1146.1761
top

Pre 1990

  1. J. Nievergelt, “Parallel methods for integrating ordinary differential equations,” Commun. ACM, vol. 7, no. 12, pp. 731–733, 1964, doi: 10.1145/355588.365137. [Online]. Available at: http://dx.doi.org/10.1145/355588.365137
  2. W. L. Miranker and W. Liniger, “Parallel methods for the numerical integration of ordinary differential equations,” Mathematics of Computation, vol. 21, no. 99, pp. 303–320, 1967, doi: 10.1090/S0025-5718-1967-0223106-8. [Online]. Available at: http://dx.doi.org/10.1090/S0025-5718-1967-0223106-8
  3. P. B. Worland, “Parallel Methods for the Numerical Solution of Ordinary Differential Equations,” Computers, IEEE Transactions on, vol. C-25, no. 10, pp. 1045–1048, 1976, doi: 10.1109/TC.1976.1674545. [Online]. Available at: http://dx.doi.org/10.1109/TC.1976.1674545
  4. M. A. Franklin, “Parallel Solution of Ordinary Differential Equations,” IEEE Transactions on Computers, vol. C-27, no. 5, pp. 413–420, 1978, doi: 10.1109/TC.1978.1675121. [Online]. Available at: http://dx.doi.org/10.1109/TC.1978.1675121
  5. W. Hackbusch, “Parabolic multi-grid methods,” Computing Methods in Applied Sciences and Engineering, VI, pp. 189–197, 1984 [Online]. Available at: http://dl.acm.org/citation.cfm?id=4673.4714
  6. M. Chu and H. Hamilton, “Parallel Solution of ODE’s by Multiblock Methods,” SIAM Journal on Scientific and Statistical Computing, vol. 8, no. 3, pp. 342–353, 1987, doi: 10.1137/0908039. [Online]. Available at: http://dx.doi.org/10.1137/0908039
  7. C. Lubich and A. Ostermann, “Multi-grid dynamic iteration for parabolic equations,” BIT Numerical Mathematics, vol. 27, no. 2, pp. 216–234, 1987, doi: 10.1007/BF01934186. [Online]. Available at: http://dx.doi.org/10.1007/BF01934186
  8. C. W. Gear, “Parallel methods for ordinary differential equations,” CALCOLO, vol. 25, no. 1-2, pp. 1–20, 1988, doi: 10.1007/BF02575744. [Online]. Available at: http://dx.doi.org/10.1007/BF02575744
  9. A. Bellen and M. Zennaro, “Parallel algorithms for initial-value problems for difference and differential equations,” Journal of Computational and Applied Mathematics, vol. 25, no. 3, pp. 341–350, 1989, doi: 10.1016/0377-0427(89)90037-X. [Online]. Available at: http://dx.doi.org/10.1016/0377-0427(89)90037-X
  10. E. Gallopoulos and Y. Saad, “On the Parallel Solution of Parabolic Equations,” in Proceedings of the 3rd International Conference on Supercomputing, New York, NY, USA, 1989, pp. 17–28, doi: 10.1145/318789.318793 [Online]. Available at: http://doi.acm.org/10.1145/318789.318793
top