Coverage for pySDC/implementations/sweeper_classes/verlet.py: 88%
73 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 16:55 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 16:55 +0000
1import numpy as np
3from pySDC.core.sweeper import Sweeper
6class verlet(Sweeper):
7 """
8 Custom sweeper class, implements Sweeper.py
10 Second-order sweeper using velocity-Verlet as base integrator
12 Attributes:
13 QQ: 0-to-node collocation matrix (second order)
14 QT: 0-to-node trapezoidal matrix
15 Qx: 0-to-node Euler half-step for position update
16 qQ: update rule for final value (if needed)
17 """
19 def __init__(self, params):
20 """
21 Initialization routine for the custom sweeper
23 Args:
24 params: parameters for the sweeper
25 """
27 if 'QI' not in params:
28 params['QI'] = 'IE'
29 if 'QE' not in params:
30 params['QE'] = 'EE'
32 # call parent's initialization routine
33 super(verlet, self).__init__(params)
35 # Trapezoidal rule, Qx and Double-Q as in the Boris-paper
36 [self.QT, self.Qx, self.QQ] = self.__get_Qd()
38 self.qQ = np.dot(self.coll.weights, self.coll.Qmat[1:, 1:])
40 def __get_Qd(self):
41 """
42 Get integration matrices for 2nd-order SDC
44 Returns:
45 S: node-to-node collocation matrix (first order)
46 SQ: node-to-node collocation matrix (second order)
47 ST: node-to-node trapezoidal matrix
48 Sx: node-to-node Euler half-step for position update
49 """
51 # set implicit and explicit Euler matrices
52 QI = self.get_Qdelta_implicit(self.params.QI)
53 QE = self.get_Qdelta_explicit(self.params.QE)
55 # trapezoidal rule
56 QT = 0.5 * (QI + QE)
57 # QT = QI
59 # Qx as in the paper
60 Qx = np.dot(QE, QT) + 0.5 * QE * QE
62 QQ = np.zeros(np.shape(self.coll.Qmat))
64 # if we have Gauss-Lobatto nodes, we can do a magic trick from the Book
65 # this takes Gauss-Lobatto IIIB and create IIIA out of this
66 if self.coll.node_type == 'LEGENDRE' and self.coll.quad_type == 'LOBATTO':
67 for m in range(self.coll.num_nodes):
68 for n in range(self.coll.num_nodes):
69 QQ[m + 1, n + 1] = self.coll.weights[n] * (
70 1.0 - self.coll.Qmat[n + 1, m + 1] / self.coll.weights[m]
71 )
72 QQ = np.dot(self.coll.Qmat, QQ)
74 # if we do not have Gauss-Lobatto, just multiply Q (will not get a symplectic method, they say)
75 else:
76 QQ = np.dot(self.coll.Qmat, self.coll.Qmat)
78 return [QT, Qx, QQ]
80 def update_nodes(self):
81 """
82 Update the u- and f-values at the collocation nodes -> corresponds to a single sweep over all nodes
84 Returns:
85 None
86 """
88 # get current level and problem description
89 L = self.level
90 P = L.prob
92 # only if the level has been touched before
93 assert L.status.unlocked
95 # get number of collocation nodes for easier access
96 M = self.coll.num_nodes
98 # gather all terms which are known already (e.g. from the previous iteration)
99 # get QF(u^k)
100 integral = self.integrate()
101 for m in range(M):
102 # get -QdF(u^k)_m
103 for j in range(1, M + 1):
104 integral[m].pos -= L.dt * (L.dt * self.Qx[m + 1, j] * L.f[j])
105 integral[m].vel -= L.dt * self.QT[m + 1, j] * L.f[j]
107 # add initial value
108 integral[m].pos += L.u[0].pos
109 integral[m].vel += L.u[0].vel
110 # add tau if associated
111 if L.tau[m] is not None:
112 integral[m] += L.tau[m]
114 # do the sweep
115 for m in range(0, M):
116 # build rhs, consisting of the known values from above and new values from previous nodes (at k+1)
117 L.u[m + 1] = P.dtype_u(integral[m])
118 for j in range(1, m + 1):
119 # add QxF(u^{k+1})
120 L.u[m + 1].pos += L.dt * (L.dt * self.Qx[m + 1, j] * L.f[j])
121 L.u[m + 1].vel += L.dt * self.QT[m + 1, j] * L.f[j]
123 # get RHS with new positions
124 L.f[m + 1] = P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m])
126 L.u[m + 1].vel += L.dt * self.QT[m + 1, m + 1] * L.f[m + 1]
128 # indicate presence of new values at this level
129 L.status.updated = True
131 # # do the sweep (alternative description)
132 # for m in range(0, M):
133 # # build rhs, consisting of the known values from above and new values from previous nodes (at k+1)
134 # L.u[m + 1] = P.dtype_u(integral[m])
135 # for j in range(1, m + 1):
136 # # add QxF(u^{k+1})
137 # L.u[m + 1].pos += L.dt * (L.dt * self.Qx[m + 1, j] * L.f[j])
138 #
139 # # get RHS with new positions
140 # L.f[m + 1] = P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m])
141 #
142 # for m in range(0, M):
143 # for n in range(0, M):
144 # L.u[m + 1].vel += L.dt * self.QT[m + 1, n + 1] * L.f[n + 1]
145 #
146 # # indicate presence of new values at this level
147 # L.status.updated = True
149 return None
151 def integrate(self):
152 """
153 Integrates the right-hand side
155 Returns:
156 list of dtype_u: containing the integral as values
157 """
159 # get current level and problem description
160 L = self.level
161 P = L.prob
162 # create new instance of dtype_u, initialize values with 0
163 p = []
164 for m in range(1, self.coll.num_nodes + 1):
165 p.append(P.dtype_u(P.init, val=0.0))
167 # integrate RHS over all collocation nodes, RHS is here only f(x)!
168 for j in range(1, self.coll.num_nodes + 1):
169 p[-1].pos += L.dt * (L.dt * self.QQ[m, j] * L.f[j]) + L.dt * self.coll.Qmat[m, j] * L.u[0].vel
170 p[-1].vel += L.dt * self.coll.Qmat[m, j] * L.f[j]
171 # we need to set mass and charge here, too, since the code uses the integral to create new particles
172 p[-1].m = L.u[0].m
173 p[-1].q = L.u[0].q
175 return p
177 def compute_end_point(self):
178 """
179 Compute u at the right point of the interval
181 The value uend computed here is a full evaluation of the Picard formulation (always!)
183 Returns:
184 None
185 """
187 # get current level and problem description
188 L = self.level
189 P = L.prob
191 # start with u0 and add integral over the full interval (using coll.weights)
192 if self.coll.right_is_node and not self.params.do_coll_update:
193 # a copy is sufficient
194 L.uend = P.dtype_u(L.u[-1])
195 else:
196 L.uend = P.dtype_u(L.u[0])
197 for m in range(self.coll.num_nodes):
198 L.uend.pos += L.dt * (L.dt * self.qQ[m] * L.f[m + 1]) + L.dt * self.coll.weights[m] * L.u[0].vel
199 L.uend.vel += L.dt * self.coll.weights[m] * L.f[m + 1]
200 # remember to set mass and charge here, too
201 L.uend.m = L.u[0].m
202 L.uend.q = L.u[0].q
203 # add up tau correction of the full interval (last entry)
204 if L.tau[-1] is not None:
205 L.uend += L.tau[-1]
207 return None