Coverage for pySDC/implementations/transfer_classes/BaseTransferMPI.py: 100%
74 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1from mpi4py import MPI
3from pySDC.core.errors import UnlockError
4from pySDC.core.base_transfer import BaseTransfer
7class base_transfer_MPI(BaseTransfer):
8 """
9 Standard base_transfer class
11 Attributes:
12 logger: custom logger for sweeper-related logging
13 params(__Pars): parameter object containing the custom parameters passed by the user
14 fine (pySDC.Level.level): reference to the fine level
15 coarse (pySDC.Level.level): reference to the coarse level
16 """
18 def __init__(self, *args, **kwargs):
19 super().__init__(*args, **kwargs)
20 self.comm_fine = self.fine.sweep.comm
21 self.comm_coarse = self.coarse.sweep.comm
23 if (
24 self.comm_fine.size != self.fine.sweep.coll.num_nodes
25 or self.comm_coarse.size != self.coarse.sweep.coll.num_nodes
26 ):
27 raise NotImplementedError(
28 f'{type(self).__name__} only works when each rank administers one collocation node so far!'
29 )
31 def restrict(self):
32 """
33 Space-time restriction routine
35 The routine applies the spatial restriction operator to the fine values on the fine nodes, then reevaluates f
36 on the coarse level. This is used for the first part of the FAS correction tau via integration. The second part
37 is the integral over the fine values, restricted to the coarse level. Finally, possible tau corrections on the
38 fine level are restricted as well.
39 """
41 F, G = self.fine, self.coarse
42 CF, CG = self.comm_fine, self.comm_coarse
43 SG = G.sweep
44 PG = G.prob
46 # only if the level is unlocked at least by prediction
47 if not F.status.unlocked:
48 raise UnlockError('fine level is still locked, cannot use data from there')
50 # restrict fine values in space
51 tmp_u = self.space_transfer.restrict(F.u[CF.rank + 1])
53 # restrict collocation values
54 G.u[0] = self.space_transfer.restrict(F.u[0])
55 recvBuf = [None for _ in range(SG.coll.num_nodes)]
56 recvBuf[CG.rank] = PG.u_init
57 for n in range(SG.coll.num_nodes):
58 CF.Reduce(self.Rcoll[n, CF.rank] * tmp_u, recvBuf[CG.rank], root=n, op=MPI.SUM)
59 G.u[CG.rank + 1] = recvBuf[CG.rank]
61 # re-evaluate f on coarse level
62 G.f[0] = PG.eval_f(G.u[0], G.time)
63 G.f[CG.rank + 1] = PG.eval_f(G.u[CG.rank + 1], G.time + G.dt * SG.coll.nodes[CG.rank])
65 # build coarse level tau correction part
66 tauG = G.sweep.integrate()
68 # build fine level tau correction part
69 tauF = F.sweep.integrate()
71 # restrict fine level tau correction part in space
72 tmp_tau = self.space_transfer.restrict(tauF)
74 # restrict fine level tau correction part in collocation
75 tauFG = tmp_tau.copy()
76 for n in range(SG.coll.num_nodes):
77 recvBuf = tauFG if n == CG.rank else None
78 CF.Reduce(self.Rcoll[n, CF.rank] * tmp_tau, recvBuf, root=n, op=MPI.SUM)
80 # build tau correction
81 G.tau[CG.rank] = tauFG - tauG
83 if F.tau[CF.rank] is not None:
84 tmp_tau = self.space_transfer.restrict(F.tau[CF.rank])
86 # restrict possible tau correction from fine in collocation
87 recvBuf = [None for _ in range(SG.coll.num_nodes)]
88 recvBuf[CG.rank] = PG.u_init
89 for n in range(SG.coll.num_nodes):
90 CF.Reduce(self.Rcoll[n, CF.rank] * tmp_tau, recvBuf[CG.rank], root=n, op=MPI.SUM)
91 G.tau[CG.rank] += recvBuf[CG.rank]
92 else:
93 pass
95 # save u and rhs evaluations for interpolation
96 G.uold[CG.rank + 1] = PG.dtype_u(G.u[CG.rank + 1])
97 G.fold[CG.rank + 1] = PG.dtype_f(G.f[CG.rank + 1])
99 # works as a predictor
100 G.status.unlocked = True
102 return None
104 def prolong(self):
105 """
106 Space-time prolongation routine
108 This routine applies the spatial prolongation routine to the difference between the computed and the restricted
109 values on the coarse level and then adds this difference to the fine values as coarse correction.
110 """
112 # get data for easier access
113 F, G = self.fine, self.coarse
114 CF, CG = self.comm_fine, self.comm_coarse
115 SF = F.sweep
116 PF = F.prob
118 # only of the level is unlocked at least by prediction or restriction
119 if not G.status.unlocked:
120 raise UnlockError('coarse level is still locked, cannot use data from there')
122 # build coarse correction
124 # interpolate values in space first
125 tmp_u = self.space_transfer.prolong(G.u[CF.rank + 1] - G.uold[CF.rank + 1])
127 # interpolate values in collocation
128 recvBuf = [None for _ in range(SF.coll.num_nodes)]
129 recvBuf[CF.rank] = F.u[CF.rank + 1].copy()
130 for n in range(SF.coll.num_nodes):
132 CG.Reduce(self.Pcoll[n, CG.rank] * tmp_u, recvBuf[n], root=n, op=MPI.SUM)
133 F.u[CF.rank + 1] += recvBuf[CF.rank]
135 # re-evaluate f on fine level
136 F.f[CF.rank + 1] = PF.eval_f(F.u[CF.rank + 1], F.time + F.dt * SF.coll.nodes[CF.rank])
138 return None
140 def prolong_f(self):
141 """
142 Space-time prolongation routine w.r.t. the rhs f
144 This routine applies the spatial prolongation routine to the difference between the computed and the restricted
145 values on the coarse level and then adds this difference to the fine values as coarse correction.
146 """
148 # get data for easier access
149 F, G = self.fine, self.coarse
150 CF, CG = self.comm_fine, self.comm_coarse
151 SF = F.sweep
153 # only of the level is unlocked at least by prediction or restriction
154 if not G.status.unlocked:
155 raise UnlockError('coarse level is still locked, cannot use data from there')
157 # build coarse correction
159 # interpolate values in space first
160 tmp_u = self.space_transfer.prolong(G.u[CF.rank + 1] - G.uold[CF.rank + 1])
161 tmp_f = self.space_transfer.prolong(G.f[CF.rank + 1] - G.fold[CF.rank + 1])
163 # interpolate values in collocation
164 recvBuf_u = [None for _ in range(SF.coll.num_nodes)]
165 recvBuf_f = [None for _ in range(SF.coll.num_nodes)]
166 recvBuf_u[CF.rank] = F.u[CF.rank + 1].copy()
167 recvBuf_f[CF.rank] = F.f[CF.rank + 1].copy()
168 for n in range(SF.coll.num_nodes):
170 CG.Reduce(self.Pcoll[n, CG.rank] * tmp_u, recvBuf_u[CF.rank], root=n, op=MPI.SUM)
171 CG.Reduce(self.Pcoll[n, CG.rank] * tmp_f, recvBuf_f[CF.rank], root=n, op=MPI.SUM)
173 F.u[CF.rank + 1] += recvBuf_u[CF.rank]
174 F.f[CF.rank + 1] += recvBuf_f[CF.rank]
176 return None