Coverage for pySDC/implementations/transfer_classes/BaseTransferMPI.py: 100%

74 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-09 14:59 +0000

1from mpi4py import MPI 

2 

3from pySDC.core.errors import UnlockError 

4from pySDC.core.base_transfer import BaseTransfer 

5 

6 

7class base_transfer_MPI(BaseTransfer): 

8 """ 

9 Standard base_transfer class 

10 

11 Attributes: 

12 logger: custom logger for sweeper-related logging 

13 params(__Pars): parameter object containing the custom parameters passed by the user 

14 fine (pySDC.Level.level): reference to the fine level 

15 coarse (pySDC.Level.level): reference to the coarse level 

16 """ 

17 

18 def __init__(self, *args, **kwargs): 

19 super().__init__(*args, **kwargs) 

20 self.comm_fine = self.fine.sweep.comm 

21 self.comm_coarse = self.coarse.sweep.comm 

22 

23 if ( 

24 self.comm_fine.size != self.fine.sweep.coll.num_nodes 

25 or self.comm_coarse.size != self.coarse.sweep.coll.num_nodes 

26 ): 

27 raise NotImplementedError( 

28 f'{type(self).__name__} only works when each rank administers one collocation node so far!' 

29 ) 

30 

31 def restrict(self): 

32 """ 

33 Space-time restriction routine 

34 

35 The routine applies the spatial restriction operator to the fine values on the fine nodes, then reevaluates f 

36 on the coarse level. This is used for the first part of the FAS correction tau via integration. The second part 

37 is the integral over the fine values, restricted to the coarse level. Finally, possible tau corrections on the 

38 fine level are restricted as well. 

39 """ 

40 

41 F, G = self.fine, self.coarse 

42 CF, CG = self.comm_fine, self.comm_coarse 

43 SG = G.sweep 

44 PG = G.prob 

45 

46 # only if the level is unlocked at least by prediction 

47 if not F.status.unlocked: 

48 raise UnlockError('fine level is still locked, cannot use data from there') 

49 

50 # restrict fine values in space 

51 tmp_u = self.space_transfer.restrict(F.u[CF.rank + 1]) 

52 

53 # restrict collocation values 

54 G.u[0] = self.space_transfer.restrict(F.u[0]) 

55 recvBuf = [None for _ in range(SG.coll.num_nodes)] 

56 recvBuf[CG.rank] = PG.u_init 

57 for n in range(SG.coll.num_nodes): 

58 CF.Reduce(self.Rcoll[n, CF.rank] * tmp_u, recvBuf[CG.rank], root=n, op=MPI.SUM) 

59 G.u[CG.rank + 1] = recvBuf[CG.rank] 

60 

61 # re-evaluate f on coarse level 

62 G.f[0] = PG.eval_f(G.u[0], G.time) 

63 G.f[CG.rank + 1] = PG.eval_f(G.u[CG.rank + 1], G.time + G.dt * SG.coll.nodes[CG.rank]) 

64 

65 # build coarse level tau correction part 

66 tauG = G.sweep.integrate() 

67 

68 # build fine level tau correction part 

69 tauF = F.sweep.integrate() 

70 

71 # restrict fine level tau correction part in space 

72 tmp_tau = self.space_transfer.restrict(tauF) 

73 

74 # restrict fine level tau correction part in collocation 

75 tauFG = tmp_tau.copy() 

76 for n in range(SG.coll.num_nodes): 

77 recvBuf = tauFG if n == CG.rank else None 

78 CF.Reduce(self.Rcoll[n, CF.rank] * tmp_tau, recvBuf, root=n, op=MPI.SUM) 

79 

80 # build tau correction 

81 G.tau[CG.rank] = tauFG - tauG 

82 

83 if F.tau[CF.rank] is not None: 

84 tmp_tau = self.space_transfer.restrict(F.tau[CF.rank]) 

85 

86 # restrict possible tau correction from fine in collocation 

87 recvBuf = [None for _ in range(SG.coll.num_nodes)] 

88 recvBuf[CG.rank] = PG.u_init 

89 for n in range(SG.coll.num_nodes): 

90 CF.Reduce(self.Rcoll[n, CF.rank] * tmp_tau, recvBuf[CG.rank], root=n, op=MPI.SUM) 

91 G.tau[CG.rank] += recvBuf[CG.rank] 

92 else: 

93 pass 

94 

95 # save u and rhs evaluations for interpolation 

96 G.uold[CG.rank + 1] = PG.dtype_u(G.u[CG.rank + 1]) 

97 G.fold[CG.rank + 1] = PG.dtype_f(G.f[CG.rank + 1]) 

98 

99 # works as a predictor 

100 G.status.unlocked = True 

101 

102 return None 

103 

104 def prolong(self): 

105 """ 

106 Space-time prolongation routine 

107 

108 This routine applies the spatial prolongation routine to the difference between the computed and the restricted 

109 values on the coarse level and then adds this difference to the fine values as coarse correction. 

110 """ 

111 

112 # get data for easier access 

113 F, G = self.fine, self.coarse 

114 CF, CG = self.comm_fine, self.comm_coarse 

115 SF = F.sweep 

116 PF = F.prob 

117 

118 # only of the level is unlocked at least by prediction or restriction 

119 if not G.status.unlocked: 

120 raise UnlockError('coarse level is still locked, cannot use data from there') 

121 

122 # build coarse correction 

123 

124 # interpolate values in space first 

125 tmp_u = self.space_transfer.prolong(G.u[CF.rank + 1] - G.uold[CF.rank + 1]) 

126 

127 # interpolate values in collocation 

128 recvBuf = [None for _ in range(SF.coll.num_nodes)] 

129 recvBuf[CF.rank] = F.u[CF.rank + 1].copy() 

130 for n in range(SF.coll.num_nodes): 

131 

132 CG.Reduce(self.Pcoll[n, CG.rank] * tmp_u, recvBuf[n], root=n, op=MPI.SUM) 

133 F.u[CF.rank + 1] += recvBuf[CF.rank] 

134 

135 # re-evaluate f on fine level 

136 F.f[CF.rank + 1] = PF.eval_f(F.u[CF.rank + 1], F.time + F.dt * SF.coll.nodes[CF.rank]) 

137 

138 return None 

139 

140 def prolong_f(self): 

141 """ 

142 Space-time prolongation routine w.r.t. the rhs f 

143 

144 This routine applies the spatial prolongation routine to the difference between the computed and the restricted 

145 values on the coarse level and then adds this difference to the fine values as coarse correction. 

146 """ 

147 

148 # get data for easier access 

149 F, G = self.fine, self.coarse 

150 CF, CG = self.comm_fine, self.comm_coarse 

151 SF = F.sweep 

152 

153 # only of the level is unlocked at least by prediction or restriction 

154 if not G.status.unlocked: 

155 raise UnlockError('coarse level is still locked, cannot use data from there') 

156 

157 # build coarse correction 

158 

159 # interpolate values in space first 

160 tmp_u = self.space_transfer.prolong(G.u[CF.rank + 1] - G.uold[CF.rank + 1]) 

161 tmp_f = self.space_transfer.prolong(G.f[CF.rank + 1] - G.fold[CF.rank + 1]) 

162 

163 # interpolate values in collocation 

164 recvBuf_u = [None for _ in range(SF.coll.num_nodes)] 

165 recvBuf_f = [None for _ in range(SF.coll.num_nodes)] 

166 recvBuf_u[CF.rank] = F.u[CF.rank + 1].copy() 

167 recvBuf_f[CF.rank] = F.f[CF.rank + 1].copy() 

168 for n in range(SF.coll.num_nodes): 

169 

170 CG.Reduce(self.Pcoll[n, CG.rank] * tmp_u, recvBuf_u[CF.rank], root=n, op=MPI.SUM) 

171 CG.Reduce(self.Pcoll[n, CG.rank] * tmp_f, recvBuf_f[CF.rank], root=n, op=MPI.SUM) 

172 

173 F.u[CF.rank + 1] += recvBuf_u[CF.rank] 

174 F.f[CF.rank + 1] += recvBuf_f[CF.rank] 

175 

176 return None