Coverage for pySDC/implementations/problem_classes/odeSystem.py: 100%
187 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
1#!/usr/bin/env python3
2# -*- coding: utf-8 -*-
3"""
4Implementation of systems test problem ODEs.
7Reference :
9Van der Houwen, P. J., & Sommeijer, B. P. (1991). Iterated Runge–Kutta methods
10on parallel computers. SIAM journal on scientific and statistical computing,
1112(5), 1000-1028.
12"""
13import numpy as np
15from pySDC.core.errors import ProblemError
16from pySDC.core.problem import Problem, WorkCounter
17from pySDC.implementations.datatype_classes.mesh import mesh
20class ProtheroRobinsonAutonomous(Problem):
21 r"""
22 Implement the Prothero-Robinson problem into autonomous form:
24 .. math::
25 \begin{eqnarray*}
26 \frac{du}{dt} &=& -\frac{u^3-g(v)^3}{\epsilon} + \frac{dg}{dv}, &\quad u(0) = g(0),\\
27 \frac{dv}{dt} &=& 1, &\quad v(0) = 0,
28 \end{eqnarray*}
30 with :math:`\epsilon` a stiffness parameter, that makes the problem more stiff
31 the smaller it is (usual taken value is :math:`\epsilon=1e^{-3}`).
32 Exact solution is given by :math:`u(t)=g(t),\;v(t)=t`, and this implementation uses
33 :math:`g(t)=\cos(t)`.
35 Implement also the non-linear form of this problem:
37 .. math::
38 \frac{du}{dt} = -\frac{u^3-g(v)^3}{\epsilon} + \frac{dg}{dv}, \quad u(0) = g(0).
40 To use an other exact solution, one just have to derivate this class
41 and overload the `g`, `dg` and `dg2` methods. For instance,
42 to use :math:`g(t)=e^{-0.2t}`, define and use the following class:
44 >>> class MyProtheroRobinson(ProtheroRobinsonAutonomous):
45 >>>
46 >>> def g(self, t):
47 >>> return np.exp(-0.2 * t)
48 >>>
49 >>> def dg(self, t):
50 >>> return (-0.2) * np.exp(-0.2 * t)
51 >>>
52 >>> def dg2(self, t):
53 >>> return (-0.2) ** 2 * np.exp(-0.2 * t)
55 Parameters
56 ----------
57 epsilon : float, optional
58 Stiffness parameter. The default is 1e-3.
59 nonLinear : bool, optional
60 Wether or not to use the non-linear form of the problem. The default is False.
61 newton_maxiter : int, optional
62 Maximum number of Newton iteration in solve_system. The default is 200.
63 newton_tol : float, optional
64 Residuum tolerance for Newton iteration in solve_system. The default is 5e-11.
65 stop_at_nan : bool, optional
66 Wheter to stop or not solve_system when getting NAN. The default is True.
68 Reference
69 ---------
70 A. Prothero and A. Robinson, On the stability and accuracy of one-step methods for solving
71 stiff systems of ordinary differential equations, Mathematics of Computation, 28 (1974),
72 pp. 145–162.
73 """
75 dtype_u = mesh
76 dtype_f = mesh
78 def __init__(self, epsilon=1e-3, nonLinear=False, newton_maxiter=200, newton_tol=5e-11, stop_at_nan=True):
79 nvars = 2
80 super().__init__((nvars, None, np.dtype('float64')))
82 self.f = self.f_NONLIN if nonLinear else self.f_LIN
83 self.dgInv = self.dgInv_NONLIN if nonLinear else self.dgInv_LIN
84 self._makeAttributeAndRegister(
85 'epsilon', 'nonLinear', 'newton_maxiter', 'newton_tol', 'stop_at_nan', localVars=locals(), readOnly=True
86 )
87 self.work_counters['newton'] = WorkCounter()
88 self.work_counters['rhs'] = WorkCounter()
90 # -------------------------------------------------------------------------
91 # g function (analytical solution), and its first and second derivative
92 # -------------------------------------------------------------------------
93 def g(self, t):
94 return np.cos(t)
96 def dg(self, t):
97 return -np.sin(t)
99 def dg2(self, t):
100 return -np.cos(t)
102 # -------------------------------------------------------------------------
103 # f(u,t) and Jacobian functions
104 # -------------------------------------------------------------------------
105 def f(self, u, t):
106 raise NotImplementedError()
108 def f_LIN(self, u, t):
109 return -self.epsilon ** (-1) * (u - self.g(t)) + self.dg(t)
111 def f_NONLIN(self, u, t):
112 return -self.epsilon ** (-1) * (u**3 - self.g(t) ** 3) + self.dg(t)
114 def dgInv(self, u, t):
115 raise NotImplementedError()
117 def dgInv_LIN(self, u, t, dt):
118 e = self.epsilon
119 g1, g2 = self.dg(t), self.dg2(t)
120 return np.array([[1 / (dt / e + 1), (dt * g2 + dt * g1 / e) / (dt / e + 1)], [0, 1]])
122 def dgInv_NONLIN(self, u, t, dt):
123 e = self.epsilon
124 g, g1, g2 = self.g(t), self.dg(t), self.dg2(t)
125 return np.array(
126 [[1 / (3 * dt * u**2 / e + 1), (dt * g2 + 3 * dt * g**2 * g1 / e) / (3 * dt * u**2 / e + 1)], [0, 1]]
127 )
129 # -------------------------------------------------------------------------
130 # pySDC required methods
131 # -------------------------------------------------------------------------
132 def u_exact(self, t, u_init=None, t_init=None):
133 r"""
134 Routine to return initial conditions or exact solutions.
136 Parameters
137 ----------
138 t : float
139 Time at which the exact solution is computed.
140 u_init : dtype_u
141 Initial conditions for getting the exact solution.
142 t_init : float
143 The starting time.
145 Returns
146 -------
147 u : dtype_u
148 The exact solution.
149 """
150 u = self.dtype_u(self.init)
151 u[0] = self.g(t)
152 u[1] = t
153 return u
155 def eval_f(self, u, t):
156 """
157 Routine to evaluate the right-hand side of the problem.
159 Parameters
160 ----------
161 u : dtype_u
162 Current values of the numerical solution.
163 t : float
164 Current time of the numerical solution is computed (not used here).
166 Returns
167 -------
168 f : dtype_f
169 The right-hand side of the problem (one component).
170 """
172 f = self.dtype_f(self.init)
173 u, t = u
174 f[0] = self.f(u, t)
175 f[1] = 1
176 self.work_counters['rhs']()
177 return f
179 def solve_system(self, rhs, dt, u0, t):
180 """
181 Simple Newton solver for the nonlinear equation
183 Parameters
184 ----------
185 rhs : dtype_f
186 Right-hand side for the nonlinear system.
187 dt : float
188 Abbrev. for the node-to-node stepsize (or any other factor required).
189 u0 : dtype_u
190 Initial guess for the iterative solver.
191 t : float
192 Time of the updated solution (e.g. for time-dependent BCs).
194 Returns
195 -------
196 u : dtype_u
197 The solution as mesh.
198 """
199 # create new mesh object from u0 and set initial values for iteration
200 u = self.dtype_u(u0)
202 # start newton iteration
203 n, res = 0, np.inf
204 while n < self.newton_maxiter:
205 # evaluate RHS
206 f = self.dtype_u(u)
207 f[0] = self.f(*u)
208 f[1] = 1
210 # form the function g with g(u) = 0
211 g = u - dt * f - rhs
213 # if g is close to 0, then we are done
214 res = np.linalg.norm(g, np.inf)
215 if res < self.newton_tol or np.isnan(res):
216 break
218 # assemble (dg/du)^{-1}
219 dgInv = self.dgInv(u[0], u[1], dt)
220 # newton update: u1 = u0 - g/dg
221 u -= dgInv @ g
223 # increase iteration count and work counter
224 n += 1
225 self.work_counters['newton']()
227 if np.isnan(res) and self.stop_at_nan:
228 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
229 elif np.isnan(res): # pragma: no cover
230 self.logger.warning('Newton got nan after %i iterations...' % n)
232 if n == self.newton_maxiter:
233 raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res))
235 return u
238class Kaps(Problem):
239 r"""
240 Implement the Kaps problem:
242 .. math::
243 \begin{eqnarray*}
244 \frac{du}{dt} &=& -(2+\epsilon^{-1})u + \frac{v^2}{\epsilon}, &\quad u(0) = 1,\\
245 \frac{dv}{dt} &=& u - v(1+v), &\quad v(0) = 1,
246 \end{eqnarray*}
248 with :math:`\epsilon` a stiffness parameter, that makes the problem more stiff
249 the smaller it is (usual taken value is :math:`\epsilon=1e^{-3}`).
250 Exact solution is given by :math:`u(t)=e^{-2t},\;v(t)=e^{-t}`.
252 Parameters
253 ----------
254 epsilon : float, optional
255 Stiffness parameter. The default is 1e-3.
256 newton_maxiter : int, optional
257 Maximum number of Newton iteration in solve_system. The default is 200.
258 newton_tol : float, optional
259 Residuum tolerance for Newton iteration in solve_system. The default is 5e-11.
260 stop_at_nan : bool, optional
261 Wheter to stop or not solve_system when getting NAN. The default is True.
263 Reference
264 ---------
265 Van der Houwen, P. J., & Sommeijer, B. P. (1991). Iterated Runge–Kutta methods
266 on parallel computers. SIAM journal on scientific and statistical computing,
267 12(5), 1000-1028.
268 """
270 dtype_u = mesh
271 dtype_f = mesh
273 def __init__(self, epsilon=1e-3, newton_maxiter=200, newton_tol=5e-11, stop_at_nan=True):
274 nvars = 2
275 super().__init__((nvars, None, np.dtype('float64')))
277 self._makeAttributeAndRegister(
278 'epsilon', 'newton_maxiter', 'newton_tol', 'stop_at_nan', localVars=locals(), readOnly=True
279 )
280 self.work_counters['newton'] = WorkCounter()
281 self.work_counters['rhs'] = WorkCounter()
283 def u_exact(self, t, u_init=None, t_init=None):
284 r"""
285 Routine to return initial conditions or exact solutions.
287 Parameters
288 ----------
289 t : float
290 Time at which the exact solution is computed.
291 u_init : dtype_u
292 Initial conditions for getting the exact solution.
293 t_init : float
294 The starting time.
296 Returns
297 -------
298 u : dtype_u
299 The exact solution.
300 """
301 u = self.dtype_u(self.init)
302 u[:] = [np.exp(-2 * t), np.exp(-t)]
303 return u
305 def eval_f(self, u, t):
306 """
307 Routine to evaluate the right-hand side of the problem.
309 Parameters
310 ----------
311 u : dtype_u
312 Current values of the numerical solution.
313 t : float
314 Current time of the numerical solution is computed (not used here).
316 Returns
317 -------
318 f : dtype_f
319 The right-hand side of the problem (one component).
320 """
321 f = self.dtype_f(self.init)
322 eps = self.epsilon
323 x, y = u
325 f[:] = [-(2 + 1 / eps) * x + y**2 / eps, x - y * (1 + y)]
326 self.work_counters['rhs']()
327 return f
329 def solve_system(self, rhs, dt, u0, t):
330 """
331 Simple Newton solver for the nonlinear equation
333 Parameters
334 ----------
335 rhs : dtype_f
336 Right-hand side for the nonlinear system.
337 dt : float
338 Abbrev. for the node-to-node stepsize (or any other factor required).
339 u0 : dtype_u
340 Initial guess for the iterative solver.
341 t : float
342 Current time (e.g. for time-dependent BCs).
344 Returns
345 -------
346 u : dtype_u
347 The solution as mesh.
348 """
349 # create new mesh object from u0 and set initial values for iteration
350 u = self.dtype_u(u0)
351 eps = self.epsilon
353 # start newton iteration
354 n, res = 0, np.inf
355 while n < self.newton_maxiter:
356 x, y = u
357 f = np.array([-(2 + 1 / eps) * x + y**2 / eps, x - y * (1 + y)])
359 # form the function g with g(u) = 0
360 g = u - dt * f - rhs
362 # if g is close to 0, then we are done
363 res = np.linalg.norm(g, np.inf)
364 if res < self.newton_tol or np.isnan(res):
365 break
367 # assemble (dg/du)^(-1)
368 prefactor = 4 * dt**2 * eps * y + 2 * dt**2 * eps + dt**2 + 2 * dt * eps * y + 3 * dt * eps + dt + eps
369 dgInv = (
370 1
371 / prefactor
372 * np.array([[2 * dt * eps * y + dt * eps + eps, 2 * dt * y], [dt * eps, 2 * dt * eps + dt + eps]])
373 )
375 # newton update: u1 = u0 - g/dg
376 u -= dgInv @ g
378 # increase iteration count and work counter
379 n += 1
380 self.work_counters['newton']()
382 if np.isnan(res) and self.stop_at_nan:
383 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
384 elif np.isnan(res): # pragma: no cover
385 self.logger.warning('Newton got nan after %i iterations...' % n)
387 if n == self.newton_maxiter:
388 raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res))
390 return u
393class ChemicalReaction3Var(Problem):
394 r"""
395 Chemical reaction with three components, modeled by the non-linear system:
397 .. math::
398 \frac{d{\bf u}}{dt} =
399 \begin{pmatrix}
400 0.013+1000u_3 & 0 & 0 \\
401 0 & 2500u_3 0 \\
402 0.013 & 0 & 1000u_1 + 2500u_2
403 \end{pmatrix}
404 {\bf u},
406 with initial solution :math:`u(0)=(0.990731920827, 1.009264413846, -0.366532612659e-5)`.
408 Parameters
409 ----------
410 newton_maxiter : int, optional
411 Maximum number of Newton iteration in solve_system. The default is 200.
412 newton_tol : float, optional
413 Residuum tolerance for Newton iteration in solve_system. The default is 5e-11.
414 stop_at_nan : bool, optional
415 Wheter to stop or not solve_system when getting NAN. The default is True.
417 Reference
418 ---------
419 Van der Houwen, P. J., & Sommeijer, B. P. (1991). Iterated Runge–Kutta methods
420 on parallel computers. SIAM journal on scientific and statistical computing,
421 12(5), 1000-1028.
422 """
424 dtype_u = mesh
425 dtype_f = mesh
427 def __init__(self, newton_maxiter=200, newton_tol=5e-11, stop_at_nan=True):
428 nvars = 3
429 u0 = (0.990731920827, 1.009264413846, -0.366532612659e-5)
430 super().__init__((nvars, None, np.dtype('float64')))
432 self._makeAttributeAndRegister(
433 'u0', 'newton_maxiter', 'newton_tol', 'stop_at_nan', localVars=locals(), readOnly=True
434 )
435 self.work_counters['newton'] = WorkCounter()
436 self.work_counters['rhs'] = WorkCounter()
438 def u_exact(self, t, u_init=None, t_init=None):
439 r"""
440 Routine to return initial conditions or to approximate exact solution using ``SciPy``.
442 Parameters
443 ----------
444 t : float
445 Time at which the approximated exact solution is computed.
446 u_init : pySDC.implementations.problem_classes.Lorenz.dtype_u
447 Initial conditions for getting the exact solution.
448 t_init : float
449 The starting time.
451 Returns
452 -------
453 me : dtype_u
454 The approximated exact solution.
455 """
457 me = self.dtype_u(self.init)
459 if t > 0:
461 def eval_rhs(t, u):
462 r"""
463 Evaluate the right hand side, but switch the arguments for ``SciPy``.
465 Args:
466 t (float): Time
467 u (numpy.ndarray): Solution at time t
469 Returns:
470 (numpy.ndarray): Right hand side evaluation
471 """
472 return self.eval_f(u, t)
474 me[:] = self.generate_scipy_reference_solution(eval_rhs, t, u_init, t_init)
475 else:
476 me[:] = self.u0
477 return me
479 def eval_f(self, u, t):
480 """
481 Routine to evaluate the right-hand side of the problem.
483 Parameters
484 ----------
485 u : dtype_u
486 Current values of the numerical solution.
487 t : float
488 Current time of the numerical solution is computed (not used here).
490 Returns
491 -------
492 f : dtype_f
493 The right-hand side of the problem (one component).
494 """
495 f = self.dtype_f(self.init)
496 c1, c2, c3 = u
498 f[:] = -np.array([0.013 * c1 + 1000 * c3 * c1, 2500 * c3 * c2, 0.013 * c1 + 1000 * c1 * c3 + 2500 * c2 * c3])
499 self.work_counters['rhs']()
500 return f
502 def solve_system(self, rhs, dt, u0, t):
503 """
504 Simple Newton solver for the nonlinear equation
506 Parameters
507 ----------
508 rhs : dtype_f
509 Right-hand side for the nonlinear system.
510 dt : float
511 Abbrev. for the node-to-node stepsize (or any other factor required).
512 u0 : dtype_u
513 Initial guess for the iterative solver.
514 t : float
515 Current time (e.g. for time-dependent BCs).
517 Returns
518 -------
519 u : dtype_u
520 The solution as mesh.
521 """
522 # create new mesh object from u0 and set initial values for iteration
523 u = self.dtype_u(u0)
525 # start newton iteration
526 n, res = 0, np.inf
527 while n < self.newton_maxiter:
528 c1, c2, c3 = u
529 f = -np.array([0.013 * c1 + 1000 * c3 * c1, 2500 * c3 * c2, 0.013 * c1 + 1000 * c1 * c3 + 2500 * c2 * c3])
531 # form the function g with g(u) = 0
532 g = u - dt * f - rhs
534 # if g is close to 0, then we are done
535 res = np.linalg.norm(g, np.inf)
536 if res < self.newton_tol or np.isnan(res):
537 break
539 # assemble (dg/du)^(-1)
540 dgInv = np.array(
541 [
542 [
543 (
544 2500000000.0 * c1 * c3**2 * dt**3
545 + 32500.0 * c1 * c3 * dt**3
546 + 3500000.0 * c1 * c3 * dt**2
547 + 13.0 * c1 * dt**2
548 + 1000.0 * c1 * dt
549 + 2500000.0 * c2 * c3 * dt**2
550 + 32.5 * c2 * dt**2
551 + 2500.0 * c2 * dt
552 + 2500000.0 * c3**2 * dt**2
553 + 32.5 * c3 * dt**2
554 + 3500.0 * c3 * dt
555 + 0.013 * dt
556 + 1.0
557 )
558 / (
559 2500000000.0 * c1 * c3**2 * dt**3
560 + 32500.0 * c1 * c3 * dt**3
561 + 3500000.0 * c1 * c3 * dt**2
562 + 13.0 * c1 * dt**2
563 + 1000.0 * c1 * dt
564 + 2500000000.0 * c2 * c3**2 * dt**3
565 + 65000.0 * c2 * c3 * dt**3
566 + 5000000.0 * c2 * c3 * dt**2
567 + 0.4225 * c2 * dt**3
568 + 65.0 * c2 * dt**2
569 + 2500.0 * c2 * dt
570 + 2500000000.0 * c3**3 * dt**3
571 + 65000.0 * c3**2 * dt**3
572 + 6000000.0 * c3**2 * dt**2
573 + 0.4225 * c3 * dt**3
574 + 91.0 * c3 * dt**2
575 + 4500.0 * c3 * dt
576 + 0.000169 * dt**2
577 + 0.026 * dt
578 + 1.0
579 ),
580 (2500000000.0 * c1 * c3**2 * dt**3 + 32500.0 * c1 * c3 * dt**3 + 2500000.0 * c1 * c3 * dt**2)
581 / (
582 2500000000.0 * c1 * c3**2 * dt**3
583 + 32500.0 * c1 * c3 * dt**3
584 + 3500000.0 * c1 * c3 * dt**2
585 + 13.0 * c1 * dt**2
586 + 1000.0 * c1 * dt
587 + 2500000000.0 * c2 * c3**2 * dt**3
588 + 65000.0 * c2 * c3 * dt**3
589 + 5000000.0 * c2 * c3 * dt**2
590 + 0.4225 * c2 * dt**3
591 + 65.0 * c2 * dt**2
592 + 2500.0 * c2 * dt
593 + 2500000000.0 * c3**3 * dt**3
594 + 65000.0 * c3**2 * dt**3
595 + 6000000.0 * c3**2 * dt**2
596 + 0.4225 * c3 * dt**3
597 + 91.0 * c3 * dt**2
598 + 4500.0 * c3 * dt
599 + 0.000169 * dt**2
600 + 0.026 * dt
601 + 1.0
602 ),
603 (
604 -2500000000.0 * c1 * c3**2 * dt**3
605 - 32500.0 * c1 * c3 * dt**3
606 - 3500000.0 * c1 * c3 * dt**2
607 - 13.0 * c1 * dt**2
608 - 1000.0 * c1 * dt
609 )
610 / (
611 2500000000.0 * c1 * c3**2 * dt**3
612 + 32500.0 * c1 * c3 * dt**3
613 + 3500000.0 * c1 * c3 * dt**2
614 + 13.0 * c1 * dt**2
615 + 1000.0 * c1 * dt
616 + 2500000000.0 * c2 * c3**2 * dt**3
617 + 65000.0 * c2 * c3 * dt**3
618 + 5000000.0 * c2 * c3 * dt**2
619 + 0.4225 * c2 * dt**3
620 + 65.0 * c2 * dt**2
621 + 2500.0 * c2 * dt
622 + 2500000000.0 * c3**3 * dt**3
623 + 65000.0 * c3**2 * dt**3
624 + 6000000.0 * c3**2 * dt**2
625 + 0.4225 * c3 * dt**3
626 + 91.0 * c3 * dt**2
627 + 4500.0 * c3 * dt
628 + 0.000169 * dt**2
629 + 0.026 * dt
630 + 1.0
631 ),
632 ],
633 [
634 (6250000000.0 * c2 * c3 * dt**2 + 81250.0 * c2 * dt**2)
635 / (
636 6250000000.0 * c1 * c3 * dt**2
637 + 2500000.0 * c1 * dt
638 + 6250000000.0 * c2 * c3 * dt**2
639 + 81250.0 * c2 * dt**2
640 + 6250000.0 * c2 * dt
641 + 6250000000.0 * c3**2 * dt**2
642 + 81250.0 * c3 * dt**2
643 + 8750000.0 * c3 * dt
644 + 32.5 * dt
645 + 2500.0
646 ),
647 (
648 2500000.0 * c1 * dt
649 + 6250000000.0 * c2 * c3 * dt**2
650 + 81250.0 * c2 * dt**2
651 + 6250000.0 * c2 * dt
652 + 2500000.0 * c3 * dt
653 + 32.5 * dt
654 + 2500.0
655 )
656 / (
657 6250000000.0 * c1 * c3 * dt**2
658 + 2500000.0 * c1 * dt
659 + 6250000000.0 * c2 * c3 * dt**2
660 + 81250.0 * c2 * dt**2
661 + 6250000.0 * c2 * dt
662 + 6250000000.0 * c3**2 * dt**2
663 + 81250.0 * c3 * dt**2
664 + 8750000.0 * c3 * dt
665 + 32.5 * dt
666 + 2500.0
667 ),
668 (-6250000000.0 * c2 * c3 * dt**2 - 81250.0 * c2 * dt**2 - 6250000.0 * c2 * dt)
669 / (
670 6250000000.0 * c1 * c3 * dt**2
671 + 2500000.0 * c1 * dt
672 + 6250000000.0 * c2 * c3 * dt**2
673 + 81250.0 * c2 * dt**2
674 + 6250000.0 * c2 * dt
675 + 6250000000.0 * c3**2 * dt**2
676 + 81250.0 * c3 * dt**2
677 + 8750000.0 * c3 * dt
678 + 32.5 * dt
679 + 2500.0
680 ),
681 ],
682 [
683 (-2500000.0 * c3**2 * dt**2 - 32.5 * c3 * dt**2 - 1000.0 * c3 * dt - 0.013 * dt)
684 / (
685 2500000.0 * c1 * c3 * dt**2
686 + 1000.0 * c1 * dt
687 + 2500000.0 * c2 * c3 * dt**2
688 + 32.5 * c2 * dt**2
689 + 2500.0 * c2 * dt
690 + 2500000.0 * c3**2 * dt**2
691 + 32.5 * c3 * dt**2
692 + 3500.0 * c3 * dt
693 + 0.013 * dt
694 + 1.0
695 ),
696 (-2500000.0 * c3**2 * dt**2 - 32.5 * c3 * dt**2 - 2500.0 * c3 * dt)
697 / (
698 2500000.0 * c1 * c3 * dt**2
699 + 1000.0 * c1 * dt
700 + 2500000.0 * c2 * c3 * dt**2
701 + 32.5 * c2 * dt**2
702 + 2500.0 * c2 * dt
703 + 2500000.0 * c3**2 * dt**2
704 + 32.5 * c3 * dt**2
705 + 3500.0 * c3 * dt
706 + 0.013 * dt
707 + 1.0
708 ),
709 (2500000.0 * c3**2 * dt**2 + 32.5 * c3 * dt**2 + 3500.0 * c3 * dt + 0.013 * dt + 1.0)
710 / (
711 2500000.0 * c1 * c3 * dt**2
712 + 1000.0 * c1 * dt
713 + 2500000.0 * c2 * c3 * dt**2
714 + 32.5 * c2 * dt**2
715 + 2500.0 * c2 * dt
716 + 2500000.0 * c3**2 * dt**2
717 + 32.5 * c3 * dt**2
718 + 3500.0 * c3 * dt
719 + 0.013 * dt
720 + 1.0
721 ),
722 ],
723 ]
724 )
726 # newton update: u1 = u0 - g/dg
727 u -= dgInv @ g
729 # increase iteration count and work counter
730 n += 1
731 self.work_counters['newton']()
733 if np.isnan(res) and self.stop_at_nan:
734 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
735 elif np.isnan(res): # pragma: no cover
736 self.logger.warning('Newton got nan after %i iterations...' % n)
738 if n == self.newton_maxiter:
739 raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res))
741 return u
744class JacobiElliptic(Problem):
745 r"""
746 Implement the Jacobi Elliptic non-linear problem:
748 .. math::
749 \begin{eqnarray*}
750 \frac{du}{dt} &=& vw, &\quad u(0) = 0, \\
751 \frac{dv}{dt} &=& -uw, &\quad v(0) = 1, \\
752 \frac{dw}{dt} &=& -0.51uv, &\quad w(0) = 1.
753 \end{eqnarray*}
755 Parameters
756 ----------
757 newton_maxiter : int, optional
758 Maximum number of Newton iteration in solve_system. The default is 200.
759 newton_tol : float, optional
760 Residuum tolerance for Newton iteration in solve_system. The default is 5e-11.
761 stop_at_nan : bool, optional
762 Wheter to stop or not solve_system when getting NAN. The default is True.
764 Reference
765 ---------
766 Van Der Houwen, P. J., Sommeijer, B. P., & Van Der Veen, W. A. (1995).
767 Parallel iteration across the steps of high-order Runge-Kutta methods for
768 nonstiff initial value problems. Journal of computational and applied
769 mathematics, 60(3), 309-329.
770 """
772 dtype_u = mesh
773 dtype_f = mesh
775 def __init__(self, newton_maxiter=200, newton_tol=5e-11, stop_at_nan=True):
776 nvars = 3
777 u0 = (0.0, 1.0, 1.0)
778 super().__init__((nvars, None, np.dtype('float64')))
780 self._makeAttributeAndRegister(
781 'u0', 'newton_maxiter', 'newton_tol', 'stop_at_nan', localVars=locals(), readOnly=True
782 )
783 self.work_counters['newton'] = WorkCounter()
784 self.work_counters['rhs'] = WorkCounter()
786 def u_exact(self, t, u_init=None, t_init=None):
787 r"""
788 Routine to return initial conditions or to approximate exact solution using ``SciPy``.
790 Parameters
791 ----------
792 t : float
793 Time at which the approximated exact solution is computed.
794 u_init : pySDC.implementations.problem_classes.Lorenz.dtype_u
795 Initial conditions for getting the exact solution.
796 t_init : float
797 The starting time.
799 Returns
800 -------
801 me : dtype_u
802 The approximated exact solution.
803 """
805 me = self.dtype_u(self.init)
807 if t > 0:
809 def eval_rhs(t, u):
810 r"""
811 Evaluate the right hand side, but switch the arguments for ``SciPy``.
813 Args:
814 t (float): Time
815 u (numpy.ndarray): Solution at time t
817 Returns:
818 (numpy.ndarray): Right hand side evaluation
819 """
820 return self.eval_f(u, t)
822 me[:] = self.generate_scipy_reference_solution(eval_rhs, t, u_init, t_init)
823 else:
824 me[:] = self.u0
825 return me
827 def eval_f(self, u, t):
828 """
829 Routine to evaluate the right-hand side of the problem.
831 Parameters
832 ----------
833 u : dtype_u
834 Current values of the numerical solution.
835 t : float
836 Current time of the numerical solution is computed (not used here).
838 Returns
839 -------
840 f : dtype_f
841 The right-hand side of the problem (one component).
842 """
843 f = self.dtype_f(self.init)
844 u1, u2, u3 = u
846 f[:] = np.array([u2 * u3, -u1 * u3, -0.51 * u1 * u2])
847 self.work_counters['rhs']()
848 return f
850 def solve_system(self, rhs, dt, u0, t):
851 """
852 Simple Newton solver for the nonlinear equation
854 Parameters
855 ----------
856 rhs : dtype_f
857 Right-hand side for the nonlinear system.
858 dt : float
859 Abbrev. for the node-to-node stepsize (or any other factor required).
860 u0 : dtype_u
861 Initial guess for the iterative solver.
862 t : float
863 Current time (e.g. for time-dependent BCs).
865 Returns
866 -------
867 u : dtype_u
868 The solution as mesh.
869 """
870 # create new mesh object from u0 and set initial values for iteration
871 u = self.dtype_u(u0)
873 # start newton iteration
874 n, res = 0, np.inf
875 while n < self.newton_maxiter:
876 u1, u2, u3 = u
877 f = np.array([u2 * u3, -u1 * u3, -0.51 * u1 * u2])
879 # form the function g with g(u) = 0
880 g = u - dt * f - rhs
882 # if g is close to 0, then we are done
883 res = np.linalg.norm(g, np.inf)
884 if res < self.newton_tol or np.isnan(res):
885 break
887 # assemble (dg/du)^(-1)
888 dgInv = np.array(
889 [
890 [
891 0.51 * dt**2 * u1**2 - 1.0,
892 0.51 * dt**2 * u1 * u2 - 1.0 * dt * u3,
893 1.0 * dt**2 * u1 * u3 - 1.0 * dt * u2,
894 ],
895 [
896 -0.51 * dt**2 * u1 * u2 + 1.0 * dt * u3,
897 -0.51 * dt**2 * u2**2 - 1.0,
898 1.0 * dt**2 * u2 * u3 + 1.0 * dt * u1,
899 ],
900 [
901 -0.51 * dt**2 * u1 * u3 + 0.51 * dt * u2,
902 0.51 * dt**2 * u2 * u3 + 0.51 * dt * u1,
903 -1.0 * dt**2 * u3**2 - 1.0,
904 ],
905 ]
906 )
907 dgInv /= (
908 1.02 * dt**3 * u1 * u2 * u3 + 0.51 * dt**2 * u1**2 - 0.51 * dt**2 * u2**2 - 1.0 * dt**2 * u3**2 - 1.0
909 )
911 # newton update: u1 = u0 - g/dg
912 u -= dgInv @ g
914 # increase iteration count and work counter
915 n += 1
916 self.work_counters['newton']()
918 if np.isnan(res) and self.stop_at_nan:
919 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
920 elif np.isnan(res): # pragma: no cover
921 self.logger.warning('Newton got nan after %i iterations...' % n)
923 if n == self.newton_maxiter:
924 raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res))
926 return u