Coverage for pySDC/implementations/problem_classes/polynomial_test_problem.py: 97%

36 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-09 14:59 +0000

1import numpy as np 

2 

3from pySDC.core.problem import Problem 

4from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh 

5 

6 

7class polynomial_testequation(Problem): 

8 """ 

9 Dummy problem for tests only! In particular, the `solve_system` function just returns the exact solution instead of 

10 solving an appropriate system. This class is indented to be used for tests of operations that are exact on polynomials. 

11 """ 

12 

13 dtype_u = mesh 

14 dtype_f = mesh 

15 xp = np 

16 

17 def __init__(self, degree=1, seed=26266, useGPU=False): 

18 """Initialization routine""" 

19 

20 if useGPU: 

21 import cupy as cp 

22 from pySDC.implementations.datatype_classes.cupy_mesh import cupy_mesh 

23 

24 type(self).xp = cp 

25 type(self).dtype_u = cupy_mesh 

26 type(self).dtype_f = cupy_mesh 

27 

28 # invoke super init, passing number of dofs, dtype_u and dtype_f 

29 super().__init__(init=(1, None, np.dtype('float64'))) 

30 

31 self.rng = np.random.RandomState(seed=seed) 

32 self.poly = np.polynomial.Polynomial(self.rng.rand(degree)) 

33 self._makeAttributeAndRegister('degree', 'seed', localVars=locals(), readOnly=True) 

34 

35 def eval_f(self, u, t): 

36 """ 

37 Derivative of the polynomial. 

38 

39 Parameters 

40 ---------- 

41 u : dtype_u 

42 Current values of the numerical solution. 

43 t : float 

44 Current time of the numerical solution is computed. 

45 

46 Returns 

47 ------- 

48 f : dtype_f 

49 The right-hand side of the problem. 

50 """ 

51 

52 f = self.dtype_f(self.init) 

53 f[:] = self.xp.array(self.poly.deriv(m=1)(t)) 

54 return f 

55 

56 def solve_system(self, rhs, factor, u0, t): 

57 """ 

58 Just return the exact solution... 

59 

60 Parameters 

61 ---------- 

62 rhs : dtype_f 

63 Right-hand side for the linear system. 

64 factor : float 

65 Abbrev. for the local stepsize (or any other factor required). 

66 u0 : dtype_u 

67 Initial guess for the iterative solver. 

68 t : float 

69 Current time (e.g. for time-dependent BCs). 

70 

71 Returns 

72 ------- 

73 me : dtype_u 

74 The solution as mesh. 

75 """ 

76 

77 return self.u_exact(t) 

78 

79 def u_exact(self, t, **kwargs): 

80 """ 

81 Evaluate the polynomial. 

82 

83 Parameters 

84 ---------- 

85 t : float 

86 Time of the exact solution. 

87 u_init : pySDC.problem.testequation0d.dtype_u 

88 Initial solution. 

89 t_init : float 

90 The initial time. 

91 

92 Returns 

93 ------- 

94 me : dtype_u 

95 The exact solution. 

96 """ 

97 me = self.dtype_u(self.init) 

98 me[:] = self.xp.array(self.poly(t)) 

99 return me 

100 

101 

102class polynomial_testequation_IMEX(polynomial_testequation): 

103 """ 

104 IMEX version of the polynomial test problem that assigns half the derivative to the implicit part and the other half to the explicit part. 

105 Keep in mind that you still cannot Really perform any solves. 

106 """ 

107 

108 dtype_f = imex_mesh 

109 

110 def eval_f(self, u, t): 

111 """ 

112 Derivative of the polynomial. 

113 

114 Parameters 

115 ---------- 

116 u : dtype_u 

117 Current values of the numerical solution. 

118 t : float 

119 Current time of the numerical solution is computed. 

120 

121 Returns 

122 ------- 

123 f : dtype_f 

124 The right-hand side of the problem. 

125 """ 

126 

127 f = self.dtype_f(self.init) 

128 derivative = self.xp.array(self.poly.deriv(m=1)(t)) 

129 f.impl[:] = derivative / 2 

130 f.expl[:] = derivative / 2 

131 return f