Coverage for pySDC/implementations/problem_classes/odeScalar.py: 100%
53 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1#!/usr/bin/env python3
2# -*- coding: utf-8 -*-
3"""
4Implementation of scalar test problem ODEs.
7Reference :
9Van der Houwen, P. J., & Sommeijer, B. P. (1991). Iterated Runge–Kutta methods
10on parallel computers. SIAM journal on scientific and statistical computing,
1112(5), 1000-1028.
12"""
13import numpy as np
15from pySDC.core.errors import ProblemError
16from pySDC.core.problem import Problem, WorkCounter
17from pySDC.implementations.datatype_classes.mesh import mesh
20class ProtheroRobinson(Problem):
21 r"""
22 Implement the Prothero-Robinson problem:
24 .. math::
25 \frac{du}{dt} = -\frac{u-g(t)}{\epsilon} + \frac{dg}{dt}, \quad u(0) = g(0).,
27 with :math:`\epsilon` a stiffness parameter, that makes the problem more stiff
28 the smaller it is (usual taken value is :math:`\epsilon=1e^{-3}`).
29 Exact solution is given by :math:`u(t)=g(t)`, and this implementation uses
30 :math:`g(t)=\cos(t)`.
32 Implement also the non-linear form of this problem:
34 .. math::
35 \frac{du}{dt} = -\frac{u^3-g(t)^3}{\epsilon} + \frac{dg}{dt}, \quad u(0) = g(0).
37 To use an other exact solution, one just have to derivate this class
38 and overload the `g` and `dg` methods. For instance,
39 to use :math:`g(t)=e^{-0.2*t}`, define and use the following class:
41 >>> class MyProtheroRobinson(ProtheroRobinson):
42 >>>
43 >>> def g(self, t):
44 >>> return np.exp(-0.2 * t)
45 >>>
46 >>> def dg(self, t):
47 >>> return (-0.2) * np.exp(-0.2 * t)
49 Parameters
50 ----------
51 epsilon : float, optional
52 Stiffness parameter. The default is 1e-3.
53 nonLinear : bool, optional
54 Wether or not to use the non-linear form of the problem. The default is False.
55 newton_maxiter : int, optional
56 Maximum number of Newton iteration in solve_system. The default is 200.
57 newton_tol : float, optional
58 Residuum tolerance for Newton iteration in solve_system. The default is 5e-11.
59 stop_at_nan : bool, optional
60 Wheter to stop or not solve_system when getting NAN. The default is True.
62 Reference
63 ---------
64 A. Prothero and A. Robinson, On the stability and accuracy of one-step methods for solving
65 stiff systems of ordinary differential equations, Mathematics of Computation, 28 (1974),
66 pp. 145–162.
67 """
69 dtype_u = mesh
70 dtype_f = mesh
72 def __init__(self, epsilon=1e-3, nonLinear=False, newton_maxiter=200, newton_tol=5e-11, stop_at_nan=True):
73 nvars = 1
74 super().__init__((nvars, None, np.dtype('float64')))
76 self.f = self.f_NONLIN if nonLinear else self.f_LIN
77 self.jac = self.jac_NONLIN if nonLinear else self.jac_LIN
78 self._makeAttributeAndRegister(
79 'epsilon', 'nonLinear', 'newton_maxiter', 'newton_tol', 'stop_at_nan', localVars=locals(), readOnly=True
80 )
81 self.work_counters['newton'] = WorkCounter()
82 self.work_counters['rhs'] = WorkCounter()
84 # -------------------------------------------------------------------------
85 # g function (analytical solution), and its first derivative
86 # -------------------------------------------------------------------------
87 def g(self, t):
88 return np.cos(t)
90 def dg(self, t):
91 return -np.sin(t)
93 # -------------------------------------------------------------------------
94 # f(u,t) and Jacobian functions
95 # -------------------------------------------------------------------------
96 def f(self, u, t):
97 raise NotImplementedError()
99 def f_LIN(self, u, t):
100 return -self.epsilon ** (-1) * (u - self.g(t)) + self.dg(t)
102 def f_NONLIN(self, u, t):
103 return -self.epsilon ** (-1) * (u**3 - self.g(t) ** 3) + self.dg(t)
105 def jac(self, u, t):
106 raise NotImplementedError()
108 def jac_LIN(self, u, t):
109 return -self.epsilon ** (-1)
111 def jac_NONLIN(self, u, t):
112 return -self.epsilon ** (-1) * 3 * u**2
114 # -------------------------------------------------------------------------
115 # pySDC required methods
116 # -------------------------------------------------------------------------
117 def u_exact(self, t, u_init=None, t_init=None):
118 r"""
119 Routine to return initial conditions or exact solution.
121 Parameters
122 ----------
123 t : float
124 Time at which the exact solution is computed.
125 u_init : dtype_u
126 Initial conditions for getting the exact solution.
127 t_init : float
128 The starting time.
130 Returns
131 -------
132 u : dtype_u
133 The exact solution.
134 """
135 u = self.dtype_u(self.init)
136 u[:] = self.g(t)
137 return u
139 def eval_f(self, u, t):
140 """
141 Routine to evaluate the right-hand side of the problem.
143 Parameters
144 ----------
145 u : dtype_u
146 Current values of the numerical solution.
147 t : float
148 Current time of the numerical solution is computed (not used here).
150 Returns
151 -------
152 f : dtype_f
153 The right-hand side of the problem (one component).
154 """
156 f = self.dtype_f(self.init)
157 f[:] = self.f(u, t)
158 self.work_counters['rhs']()
159 return f
161 def solve_system(self, rhs, dt, u0, t):
162 """
163 Simple Newton solver for the nonlinear equation
165 Parameters
166 ----------
167 rhs : dtype_f
168 Right-hand side for the nonlinear system.
169 dt : float
170 Abbrev. for the node-to-node stepsize (or any other factor required).
171 u0 : dtype_u
172 Initial guess for the iterative solver.
173 t : float
174 Time of the updated solution (e.g. for time-dependent BCs).
176 Returns
177 -------
178 u : dtype_u
179 The solution as mesh.
180 """
181 # create new mesh object from u0 and set initial values for iteration
182 u = self.dtype_u(u0)
184 # start newton iteration
185 n, res = 0, np.inf
186 while n < self.newton_maxiter:
187 # form the function g with g(u) = 0
188 g = u - dt * self.f(u, t) - rhs
190 # if g is close to 0, then we are done
191 res = np.linalg.norm(g, np.inf)
192 if res < self.newton_tol or np.isnan(res):
193 break
195 # assemble dg/du
196 dg = 1 - dt * self.jac(u, t)
198 # newton update: u1 = u0 - g/dg
199 u -= dg ** (-1) * g
201 # increase iteration count and work counter
202 n += 1
203 self.work_counters['newton']()
205 if np.isnan(res) and self.stop_at_nan:
206 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
207 elif np.isnan(res): # pragma: no cover
208 self.logger.warning('Newton got nan after %i iterations...' % n)
210 if n == self.newton_maxiter:
211 raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res))
213 return u