Coverage for pySDC/implementations/problem_classes/AdvectionDiffusionEquation_1D_FFT.py: 100%
63 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 16:55 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 16:55 +0000
1import numpy as np
3from pySDC.core.errors import ParameterError, ProblemError
4from pySDC.core.problem import Problem, WorkCounter
5from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh
8# noinspection PyUnusedLocal
9class advectiondiffusion1d_imex(Problem):
10 r"""
11 Example implementing the unforced one-dimensional advection diffusion equation
13 .. math::
14 \frac{\partial u(x,t)}{\partial t} = - c \frac{\partial u(x,t)}{\partial x} + \nu \frac{\partial^2 u(x,t)}{\partial x^2}
16 with periodic boundary conditions in :math:`[-\frac{L}{2}, \frac{L}{2}]` in spectral space. The advection part
17 :math:`- c \frac{\partial u(x,t)}{\partial x}` is treated explicitly, whereas the diffusion part
18 :math:`\nu \frac{\partial^2 u(x,t)}{\partial x^2}` will be treated numerically in an implicit way. The exact solution is
19 given by
21 .. math::
22 u(x, t) = \sin(\omega (x - c t)) \exp(-t \nu \omega^2)
24 for :math:`\omega=2 \pi k`, where :math:`k` denotes the wave number. Fast Fourier transform is used for the spatial
25 discretization.
27 Parameters
28 ----------
29 nvars : int, optional
30 Number of points in spatial discretization.
31 c : float, optional
32 Advection speed :math:`c`.
33 freq : int, optional
34 Wave number :math:`k`.
35 nu : float, optional
36 Diffusion coefficient :math:`\nu`.
37 L : float, optional
38 Denotes the period of the function to be approximated for the Fourier transform.
40 Attributes
41 ----------
42 xvalues : np.1darray
43 Contains the grid points in space.
44 ddx : np.1darray
45 Spectral operator for gradient.
46 lap : np.1darray
47 Spectral operator for Laplacian.
48 """
50 dtype_u = mesh
51 dtype_f = imex_mesh
53 def __init__(self, nvars=256, c=1.0, freq=-1, nu=0.02, L=1.0):
54 """Initialization routine"""
56 # invoke super init, passing number of dofs, dtype_u and dtype_f
57 super().__init__(init=(nvars, None, np.dtype('float64')))
58 self._makeAttributeAndRegister('nvars', 'c', 'freq', 'nu', 'L', localVars=locals(), readOnly=True)
60 # we assert that nvars looks very particular here.. this will be necessary for coarsening in space later on
61 if (self.nvars) % 2 != 0:
62 raise ProblemError('setup requires nvars = 2^p')
64 self.xvalues = np.array([i * self.L / self.nvars - self.L / 2.0 for i in range(self.nvars)])
66 kx = np.zeros(self.init[0] // 2 + 1)
67 for i in range(0, len(kx)):
68 kx[i] = 2 * np.pi / self.L * i
70 self.ddx = kx * 1j
71 self.lap = -(kx**2)
73 self.work_counters['rhs'] = WorkCounter()
75 def eval_f(self, u, t):
76 """
77 Routine to evaluate the right-hand side of the problem.
79 Parameters
80 ----------
81 u : dtype_u
82 Current values of the numerical solution.
83 t : float
84 Current time at which the numerical solution is computed.
86 Returns
87 -------
88 f : dtype_f
89 The right-hand side of the problem.
90 """
92 f = self.dtype_f(self.init)
93 tmp_u = np.fft.rfft(u)
94 tmp_impl = self.nu * self.lap * tmp_u
95 tmp_expl = -self.c * self.ddx * tmp_u
96 f.impl[:] = np.fft.irfft(tmp_impl)
97 f.expl[:] = np.fft.irfft(tmp_expl)
99 self.work_counters['rhs']()
100 return f
102 def solve_system(self, rhs, factor, u0, t):
103 """
104 Simple FFT solver for the diffusion part.
106 Parameters
107 ----------
108 rhs : dtype_f
109 Right-hand side for the linear system.
110 factor : float
111 Abbrev. for the node-to-node stepsize (or any other factor required).
112 u0 : dtype_u
113 Initial guess for the iterative solver (not used here so far).
114 t : float
115 Current time (e.g. for time-dependent BCs).
117 Returns
118 -------
119 me : dtype_u
120 The solution as mesh.
121 """
123 me = self.dtype_u(self.init)
124 tmp = np.fft.rfft(rhs) / (1.0 - self.nu * factor * self.lap)
125 me[:] = np.fft.irfft(tmp)
127 return me
129 def u_exact(self, t):
130 r"""
131 Routine to compute the exact solution at time :math:`t`.
133 Parameters
134 ----------
135 t : float
136 Time of the exact solution.
138 Returns
139 -------
140 me : dtype_u
141 The exact solution.
142 """
144 me = self.dtype_u(self.init, val=0.0)
145 if self.freq > 0:
146 omega = 2.0 * np.pi * self.freq
147 me[:] = np.sin(omega * (self.xvalues - self.c * t)) * np.exp(-t * self.nu * omega**2)
148 elif self.freq == 0:
149 np.random.seed(1)
150 me[:] = np.random.rand(self.nvars)
151 else:
152 t00 = 0.08
153 if self.nu > 0:
154 nbox = int(np.ceil(np.sqrt(4.0 * self.nu * (t00 + t) * 37.0 / (self.L**2))))
155 for k in range(-nbox, nbox + 1):
156 for i in range(self.init[0]):
157 x = self.xvalues[i] - self.c * t + k * self.L
158 me[i] += np.sqrt(t00) / np.sqrt(t00 + t) * np.exp(-(x**2) / (4.0 * self.nu * (t00 + t)))
159 else:
160 raise ParameterError("There is no exact solution implemented for negative frequency and negative nu!")
161 return me
164class advectiondiffusion1d_implicit(advectiondiffusion1d_imex):
165 r"""
166 Example implementing the unforced one-dimensional advection diffusion equation
168 .. math::
169 \frac{\partial u(x,t)}{\partial t} = - c \frac{\partial u(x,t)}{\partial x} + \nu \frac{\partial^2 u(x,t)}{\partial x^2}
171 with periodic boundary conditions in :math:`[-\frac{L}{2}, \frac{L}{2}]` in spectral space. This class implements the
172 problem solving it with fully-implicit time-stepping. The exact solution is given by
174 .. math::
175 u(x, t) = \sin(\omega (x - c t)) \exp(-t \nu \omega^2)
177 for :math:`\omega=2 \pi k`, where :math:`k` denotes the wave number. Fast Fourier transform is used for the spatial
178 discretization.
180 Note
181 ----
182 This class has the same attributes as the class it inherits from.
183 """
185 dtype_u = mesh
186 dtype_f = mesh
188 def eval_f(self, u, t):
189 """
190 Routine to evaluate the right-hand side of the problem.
192 Parameters
193 ----------
194 u : dtype_u
195 Current values of the numerical solution.
196 t : float
197 Current time at which the numerical solution is computed.
199 Returns
200 -------
201 f : dtype_f
202 The right-hand side of the problem.
203 """
205 f = self.dtype_f(self.init)
206 tmp_u = np.fft.rfft(u)
207 tmp = self.nu * self.lap * tmp_u - self.c * self.ddx * tmp_u
208 f[:] = np.fft.irfft(tmp)
210 self.work_counters['rhs']
211 return f
213 def solve_system(self, rhs, factor, u0, t):
214 """
215 Simple FFT solver for the diffusion and advection part (both are linear!).
217 Parameters
218 ----------
219 rhs : dtype_f
220 Right-hand side for the linear system.
221 factor : float
222 Abbrev. for the node-to-node stepsize (or any other factor required).
223 u0 : dtype_u
224 Initial guess for the iterative solver (not used here so far).
225 t : float
226 Current time (e.g. for time-dependent BCs).
228 Returns
229 -------
230 me : dtype_u
231 The solution as mesh.
232 """
234 me = self.dtype_u(self.init)
235 tmp = np.fft.rfft(rhs) / (1.0 - factor * (self.nu * self.lap - self.c * self.ddx))
236 me[:] = np.fft.irfft(tmp)
238 return me