Coverage for pySDC/implementations/problem_classes/AdvectionEquation_ND_FD.py: 67%
24 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 16:55 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 16:55 +0000
1import numpy as np
3from pySDC.implementations.problem_classes.generic_ND_FD import GenericNDimFinDiff
6# noinspection PyUnusedLocal
7class advectionNd(GenericNDimFinDiff):
8 r"""
9 Example implementing the unforced ND advection equation with periodic
10 or Dirichlet boundary conditions in :math:`[0,1]^N`
12 .. math::
13 \frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x},
15 and initial solution of the form
17 .. math::
18 u({\bf x},0) = \prod_{i=1}^N \sin(f\pi x_i),
20 with :math:`x_i` the coordinate in :math:`i^{th}` dimension.
21 Discretization uses central finite differences.
23 Parameters
24 ----------
25 nvars : int of tuple, optional
26 Spatial resolution (same in all dimensions). Using a tuple allows to
27 consider several dimensions, e.g ``nvars=(16,16)`` for a 2D problem.
28 c : float, optional
29 Advection speed (same in all dimensions).
30 freq : int of tuple, optional
31 Spatial frequency :math:`f` of the initial conditions, can be tuple.
32 stencil_type : str, optional
33 Type of the finite difference stencil.
34 order : int, optional
35 Order of the finite difference discretization.
36 lintol : float, optional
37 Tolerance for spatial solver (GMRES).
38 liniter : int, optional
39 Max. iterations number for GMRES.
40 solver_type : str, optional
41 Solve the linear system directly or using GMRES or CG
42 bc : str, optional
43 Boundary conditions, either ``'periodic'`` or ``'dirichlet'``.
44 sigma : float, optional
45 If ``freq=-1`` and ``ndim=1``, uses a Gaussian initial solution of the form
47 .. math::
48 u(x,0) = e^{
49 \frac{\displaystyle 1}{\displaystyle 2}
50 \left(
51 \frac{\displaystyle x-1/2}{\displaystyle \sigma}
52 \right)^2
53 }
55 Attributes
56 ----------
57 A : sparse matrix (CSC)
58 FD discretization matrix of the ND grad operator.
59 Id : sparse matrix (CSC)
60 Identity matrix of the same dimension as A.
62 Note
63 ----
64 Args can be set as values or as tuples, which will increase the dimension.
65 Do, however, take care that all spatial parameters have the same dimension.
66 """
68 def __init__(
69 self,
70 nvars=512,
71 c=1.0,
72 freq=2,
73 stencil_type='center',
74 order=2,
75 lintol=1e-12,
76 liniter=10000,
77 solver_type='direct',
78 bc='periodic',
79 sigma=6e-2,
80 ):
81 super().__init__(nvars, -c, 1, freq, stencil_type, order, lintol, liniter, solver_type, bc)
83 if solver_type == 'CG': # pragma: no cover
84 self.logger.warning('CG is not usually used for advection equation')
85 self._makeAttributeAndRegister('c', localVars=locals(), readOnly=True)
86 self._makeAttributeAndRegister('sigma', localVars=locals())
88 def u_exact(self, t, **kwargs):
89 r"""
90 Routine to compute the exact solution at time :math:`t`.
92 Parameters
93 ----------
94 t : float
95 Time of the exact solution.
96 **kwargs : dict
97 Additional arguments (that won't be used).
99 Returns
100 -------
101 sol : dtype_u
102 The exact solution.
103 """
104 if 'u_init' in kwargs.keys() or 't_init' in kwargs.keys():
105 self.logger.warning(
106 f'{type(self).__name__} uses an analytic exact solution from t=0. If you try to compute the local error, you will get the global error instead!'
107 )
109 # Initialize pointers and variables
110 ndim, freq, c, sigma, sol = self.ndim, self.freq, self.c, self.sigma, self.u_init
112 if ndim == 1:
113 x = self.grids
114 if freq[0] >= 0:
115 sol[:] = np.sin(np.pi * freq[0] * (x - c * t))
116 elif freq[0] == -1:
117 # Gaussian initial solution
118 sol[:] = np.exp(-0.5 * (((x - (c * t)) % 1.0 - 0.5) / sigma) ** 2)
120 elif ndim == 2:
121 x, y = self.grids
122 sol[:] = np.sin(np.pi * freq[0] * (x - c * t)) * np.sin(np.pi * freq[1] * (y - c * t))
124 elif ndim == 3:
125 x, y, z = self.grids
126 sol[:] = (
127 np.sin(np.pi * freq[0] * (x - c * t))
128 * np.sin(np.pi * freq[1] * (y - c * t))
129 * np.sin(np.pi * freq[2] * (z - c * t))
130 )
132 return sol