Coverage for pySDC/implementations/problem_classes/AcousticAdvection_1D_FD_imex.py: 100%
52 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
1import numpy as np
2from scipy.sparse.linalg import spsolve
4from pySDC.core.errors import ParameterError
5from pySDC.core.problem import Problem, WorkCounter
6from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh
7from pySDC.implementations.problem_classes.acoustic_helpers.buildWave1DMatrix import (
8 getWave1DMatrix,
9 getWave1DAdvectionMatrix,
10)
13# noinspection PyUnusedLocal
14class acoustic_1d_imex(Problem):
15 r"""
16 This class implements the one-dimensional acoustics advection equation on a periodic domain :math:`[0, 1]`
17 fully investigated in [1]_. The equations are given by
19 .. math::
20 \frac{\partial u}{\partial t} + c_s \frac{\partial p}{\partial x} + U \frac{\partial u}{\partial x} = 0,
22 .. math::
23 \frac{\partial p}{\partial t} + c_s \frac{\partial u}{\partial x} + U \frac{\partial p}{\partial x} = 0.
25 For initial data :math:`u(x, 0) \equiv 0` and :math:`p(x, 0) = p_0 (x)` the analytical solution is
27 .. math::
28 u(x, t) = \frac{1}{2} p_0 (x - (U + c_s) t) - \frac{1}{2} p_0 (x - (U - c_s) t),
30 .. math::
31 p(x, t) = \frac{1}{2} p_0 (x - (U + c_s) t) + \frac{1}{2} p_0 (x - (U - c_s) t).
33 The problem is implemented in the way that is used for IMEX time-stepping.
35 Parameters
36 ----------
37 nvars : int, optional
38 Number of degrees of freedom.
39 cs : float, optional
40 Sound velocity :math:`c_s`.
41 cadv : float, optional
42 Advection speed :math:`U`.
43 order_adv : int, optional
44 Order of which the advective derivative is discretized.
45 waveno : int, optional
46 The wave number.
48 Attributes
49 ----------
50 mesh : np.1darray
51 1d mesh.
52 dx : float
53 Mesh size.
54 Dx : scipy.csc_matrix
55 Matrix for the advection operator.
56 Id : scipy.csc_matrix
57 Sparse identity matrix.
58 A : scipy.csc_matrix
59 Matrix for the wave operator.
61 References
62 ----------
63 .. [1] D. Ruprecht, R. Speck. Spectral deferred corrections with fast-wave slow-wave splitting.
64 SIAM J. Sci. Comput. Vol. 38 No. 4 (2016).
65 """
67 dtype_u = mesh
68 dtype_f = imex_mesh
70 def __init__(self, nvars=None, cs=0.5, cadv=0.1, order_adv=5, waveno=5):
71 """Initialization routine"""
73 if nvars is None:
74 nvars = (2, 300)
76 # invoke super init, passing number of dofs
77 super().__init__((nvars, None, np.dtype('float64')))
78 self._makeAttributeAndRegister('nvars', 'cs', 'cadv', 'order_adv', 'waveno', localVars=locals(), readOnly=True)
80 self.mesh = np.linspace(0.0, 1.0, self.nvars[1], endpoint=False)
81 self.dx = self.mesh[1] - self.mesh[0]
83 self.Dx = -self.cadv * getWave1DAdvectionMatrix(self.nvars[1], self.dx, self.order_adv)
84 self.Id, A = getWave1DMatrix(self.nvars[1], self.dx, ['periodic', 'periodic'], ['periodic', 'periodic'])
85 self.A = -self.cs * A
87 self.work_counters['rhs'] = WorkCounter()
89 def solve_system(self, rhs, factor, u0, t):
90 r"""
91 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`.
93 Parameters
94 ----------
95 rhs : dtype_f
96 Right-hand side for the linear system.
97 factor : float
98 Abbrev. for the node-to-node stepsize (or any other factor required).
99 u0 : dtype_u
100 Initial guess for the iterative solver (not used here so far).
101 t : float
102 Current time (e.g. for time-dependent BCs).
104 Returns
105 -------
106 me : dtype_u
107 The solution as mesh.
108 """
110 M = self.Id - factor * self.A
112 b = np.concatenate((rhs[0, :], rhs[1, :]))
114 sol = spsolve(M, b)
116 me = self.dtype_u(self.init)
117 me[0, :], me[1, :] = np.split(sol, 2)
119 return me
121 def __eval_fexpl(self, u, t):
122 """
123 Helper routine to evaluate the explicit part of the right-hand side.
125 Parameters
126 ----------
127 u : dtype_u
128 Current values of the numerical solution.
129 t : float
130 Current time of the numerical solution is computed (not used here).
132 Returns
133 -------
134 fexpl : dtype_f
135 Explicit part of the right-hand side.
136 """
138 b = np.concatenate((u[0, :], u[1, :]))
139 sol = self.Dx.dot(b)
141 fexpl = self.dtype_u(self.init)
142 fexpl[0, :], fexpl[1, :] = np.split(sol, 2)
144 return fexpl
146 def __eval_fimpl(self, u, t):
147 """
148 Helper routine to evaluate the implicit part of the right-hand side.
150 Parameters
151 ----------
152 u : dtype_u
153 Current values of the numerical solution.
154 t : float
155 Current time of the numerical solution is computed (not used here).
157 Returns
158 -------
159 fimpl : dtype_f
160 Implicit part of the right-hand side.
161 """
163 b = np.concatenate((u[:][0, :], u[:][1, :]))
164 sol = self.A.dot(b)
166 fimpl = self.dtype_u(self.init, val=0.0)
167 fimpl[0, :], fimpl[1, :] = np.split(sol, 2)
169 return fimpl
171 def eval_f(self, u, t):
172 """
173 Routine to evaluate both parts of the right-hand side of the problem.
175 Parameters
176 ----------
177 u : dtype_u
178 Current values of the numerical solution.
179 t : float
180 Current time of the numerical solution is computed.
182 Returns
183 -------
184 f : dtype_f
185 The right-hand side divided into two parts.
186 """
188 f = self.dtype_f(self.init)
189 f.impl = self.__eval_fimpl(u, t)
190 f.expl = self.__eval_fexpl(u, t)
192 self.work_counters['rhs']()
193 return f
195 def u_exact(self, t):
196 r"""
197 Routine to compute the exact solution at time :math:`t`.
199 Parameters
200 ----------
201 t : float
202 Time of the exact solution.
204 Returns
205 -------
206 me : dtype_u
207 The exact solution.
208 """
210 def u_initial(x, k):
211 return np.sin(k * 2.0 * np.pi * x) + np.sin(2.0 * np.pi * x)
213 me = self.dtype_u(self.init)
214 me[0, :] = 0.5 * u_initial(self.mesh - (self.cadv + self.cs) * t, self.waveno) - 0.5 * u_initial(
215 self.mesh - (self.cadv - self.cs) * t, self.waveno
216 )
217 me[1, :] = 0.5 * u_initial(self.mesh - (self.cadv + self.cs) * t, self.waveno) + 0.5 * u_initial(
218 self.mesh - (self.cadv - self.cs) * t, self.waveno
219 )
220 return me