Coverage for pySDC/projects/parallelSDC/Van_der_Pol_implicit_Jac.py: 0%
14 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
1import numpy as np
2import scipy.sparse as sp
3from scipy.sparse.linalg import spsolve
5from pySDC.implementations.problem_classes.Van_der_Pol_implicit import vanderpol
8# noinspection PyUnusedLocal
9class vanderpol_jac(vanderpol):
10 def eval_jacobian(self, u):
11 """
12 Evaluation of the Jacobian of the right-hand side
14 Args:
15 u: space values
17 Returns:
18 Jacobian matrix
19 """
21 x1 = u[0]
22 x2 = u[1]
24 dfdu = np.array([[0, 1], [-2 * self.params.mu * x1 * x2 - 1, self.params.mu * (1 - x1**2)]])
26 return dfdu
28 def solve_system_jacobian(self, dfdu, rhs, factor, u0, t):
29 """
30 Simple linear solver for (I-dtA)u = rhs
32 Args:
33 dfdu: the Jacobian of the RHS of the ODE
34 rhs: right-hand side for the linear system
35 factor: abbrev. for the node-to-node stepsize (or any other factor required)
36 u0: initial guess for the iterative solver (not used here so far)
37 t: current time (e.g. for time-dependent BCs)
39 Returns:
40 solution as mesh
41 """
43 me = self.dtype_u(2)
44 me[:] = spsolve(sp.eye(2) - factor * dfdu, rhs)
45 return me