Coverage for pySDC/projects/parallelSDC/linearized_implicit_fixed_parallel.py: 97%
37 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import numpy as np
3from pySDC.projects.parallelSDC.linearized_implicit_parallel import linearized_implicit_parallel
6class linearized_implicit_fixed_parallel(linearized_implicit_parallel):
7 """
8 Custom sweeper class, implements Sweeper.py
10 Generic implicit sweeper, expecting lower triangular matrix QI as input
12 Attributes:
13 D: eigenvalues of the QI
14 """
16 def __init__(self, params):
17 """
18 Initialization routine for the custom sweeper
20 Args:
21 params: parameters for the sweeper
22 """
24 if 'fixed_time_in_jacobian' not in params:
25 params['fixed_time_in_jacobian'] = 0
27 # call parent's initialization routine
28 super(linearized_implicit_fixed_parallel, self).__init__(params)
30 assert self.params.fixed_time_in_jacobian in range(self.coll.num_nodes + 1), (
31 "ERROR: fixed_time_in_jacobian is too small or too large, got %s" % self.params.fixed_time_in_jacobian
32 )
34 self.D, self.V = np.linalg.eig(self.coll.Qmat[1:, 1:])
35 self.Vi = np.linalg.inv(self.V)
37 def update_nodes(self):
38 """
39 Update the u- and f-values at the collocation nodes -> corresponds to a single sweep over all nodes
41 Returns:
42 None
43 """
45 # get current level and problem description
46 L = self.level
47 P = L.prob
49 # only if the level has been touched before
50 assert L.status.unlocked
52 # get number of collocation nodes for easier access
53 M = self.coll.num_nodes
55 # form Jacobian at fixed time
56 jtime = self.params.fixed_time_in_jacobian
57 dfdu = P.eval_jacobian(L.u[jtime])
59 # form collocation problem
60 Gu = self.integrate()
61 for m in range(M):
62 Gu[m] -= L.u[m + 1] - L.u[0]
64 # transform collocation problem forward
65 Guv = []
66 for m in range(M):
67 Guv.append(P.dtype_u((P.init[0], P.init[1], np.dtype('complex128')), val=0.0 + 0.0j))
68 for j in range(M):
69 Guv[m] += self.Vi[m, j] * Gu[j]
71 # solve implicit system with Jacobian (just this one, does not change with the nodes)
72 uv = []
73 for m in range(M): # hell yeah, this is parallel!!
74 uv.append(
75 P.solve_system_jacobian(dfdu, Guv[m], L.dt * self.D[m], L.u[m + 1], L.time + L.dt * self.coll.nodes[m])
76 )
78 # transform soultion backward
79 for m in range(M):
80 tmp = P.dtype_u((P.init[0], P.init[1], np.dtype('complex128')), val=0.0 + 0.0j)
81 for j in range(M):
82 tmp += self.V[m, j] * uv[j]
83 L.u[m + 1][:] += np.real(tmp)
85 # evaluate f
86 for m in range(M): # hell yeah, this is parallel!!
87 L.f[m + 1] = P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m])
89 # indicate presence of new values at this level
90 L.status.updated = True
92 return None