Coverage for pySDC/projects/parallelSDC/GeneralizedFisher_1D_FD_implicit_Jac.py: 100%
12 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
1import scipy.sparse as sp
2import numpy as np
3from scipy.sparse.linalg import spsolve
5from pySDC.implementations.problem_classes.GeneralizedFisher_1D_FD_implicit import generalized_fisher
8# noinspection PyUnusedLocal
9class generalized_fisher_jac(generalized_fisher):
10 def eval_jacobian(self, u):
11 """
12 Evaluation of the Jacobian of the right-hand side
14 Args:
15 u: space values
17 Returns:
18 Jacobian matrix
19 """
21 # noinspection PyTypeChecker
22 dfdu = self.A[1:-1, 1:-1] + sp.diags(self.lambda0**2 - self.lambda0**2 * (self.nu + 1) * u**self.nu, offsets=0)
24 return dfdu
26 def solve_system_jacobian(self, dfdu, rhs, factor, u0, t):
27 """
28 Simple linear solver for (I-dtA)u = rhs
30 Args:
31 dfdu: the Jacobian of the RHS of the ODE
32 rhs: right-hand side for the linear system
33 factor: abbrev. for the node-to-node stepsize (or any other factor required)
34 u0: initial guess for the iterative solver (not used here so far)
35 t: current time (e.g. for time-dependent BCs)
37 Returns:
38 solution as mesh
39 """
41 me = self.dtype_u((self.init[0], self.init[1], np.dtype('complex128')))
42 me[:] = spsolve(sp.eye(self.nvars) - factor * dfdu, rhs)
43 return me