Coverage for pySDC/projects/DAE/problems/wscc9BusSystem.py: 99%

214 statements  

« prev     ^ index     » next       coverage.py v7.6.9, created at 2024-12-20 14:51 +0000

1import numpy as np 

2from pySDC.projects.DAE.misc.problemDAE import ProblemDAE 

3from pySDC.core.errors import ParameterError 

4 

5 

6def WSCC9Bus(): 

7 """ 

8 Returns the Ybus for the power system. 

9 

10 Returns 

11 ------- 

12 ppc_res : dict 

13 The data with buses, branches, generators (with power flow result) and the Ybus to define the power system. 

14 """ 

15 ppc_res = {} 

16 

17 ppc_res['baseMVA'] = 100 

18 ppc_res['Ybus'] = get_initial_Ybus() 

19 ppc_res['bus'] = np.array( 

20 [ 

21 [ 

22 1.0, 

23 3.0, 

24 0.0, 

25 0.0, 

26 0.0, 

27 0.0, 

28 1.0, 

29 1.0, 

30 0.0, 

31 345.0, 

32 1.0, 

33 1.100000000000000089e00, 

34 9.000000000000000222e-01, 

35 ], 

36 [ 

37 2.0, 

38 2.0, 

39 0.0, 

40 0.0, 

41 0.0, 

42 0.0, 

43 1.0, 

44 9.999999999999998890e-01, 

45 9.668741126628123794e00, 

46 345.0, 

47 1.0, 

48 1.100000000000000089e00, 

49 9.000000000000000222e-01, 

50 ], 

51 [ 

52 3.0, 

53 2.0, 

54 0.0, 

55 0.0, 

56 0.0, 

57 0.0, 

58 1.0, 

59 9.999999999999998890e-01, 

60 4.771073237177319015e00, 

61 345.0, 

62 1.0, 

63 1.100000000000000089e00, 

64 9.000000000000000222e-01, 

65 ], 

66 [ 

67 4.0, 

68 1.0, 

69 0.0, 

70 0.0, 

71 0.0, 

72 0.0, 

73 1.0, 

74 9.870068523919054426e-01, 

75 -2.406643919519410257e00, 

76 345.0, 

77 1.0, 

78 1.100000000000000089e00, 

79 9.000000000000000222e-01, 

80 ], 

81 [ 

82 5.0, 

83 1.0, 

84 90.0, 

85 30.0, 

86 0.0, 

87 0.0, 

88 1.0, 

89 9.754721770850530715e-01, 

90 -4.017264326707549849e00, 

91 345.0, 

92 1.0, 

93 1.100000000000000089e00, 

94 9.000000000000000222e-01, 

95 ], 

96 [ 

97 6.0, 

98 1.0, 

99 0.0, 

100 0.0, 

101 0.0, 

102 0.0, 

103 1.0, 

104 1.003375436452800251e00, 

105 1.925601686828564363e00, 

106 345.0, 

107 1.0, 

108 1.100000000000000089e00, 

109 9.000000000000000222e-01, 

110 ], 

111 [ 

112 7.0, 

113 1.0, 

114 100.0, 

115 35.0, 

116 0.0, 

117 0.0, 

118 1.0, 

119 9.856448817249467975e-01, 

120 6.215445553889322738e-01, 

121 345.0, 

122 1.0, 

123 1.100000000000000089e00, 

124 9.000000000000000222e-01, 

125 ], 

126 [ 

127 8.0, 

128 1.0, 

129 0.0, 

130 0.0, 

131 0.0, 

132 0.0, 

133 1.0, 

134 9.961852458090698637e-01, 

135 3.799120192692319264e00, 

136 345.0, 

137 1.0, 

138 1.100000000000000089e00, 

139 9.000000000000000222e-01, 

140 ], 

141 [ 

142 9.0, 

143 1.0, 

144 125.0, 

145 50.0, 

146 0.0, 

147 0.0, 

148 1.0, 

149 9.576210404299042578e-01, 

150 -4.349933576561006987e00, 

151 345.0, 

152 1.0, 

153 1.100000000000000089e00, 

154 9.000000000000000222e-01, 

155 ], 

156 ] 

157 ) 

158 ppc_res['branch'] = np.array( 

159 [ 

160 [ 

161 1.0, 

162 4.0, 

163 0.0, 

164 5.759999999999999842e-02, 

165 0.0, 

166 250.0, 

167 250.0, 

168 250.0, 

169 0.0, 

170 0.0, 

171 1.0, 

172 -360.0, 

173 360.0, 

174 7.195470158922189796e01, 

175 2.406895777275899206e01, 

176 -7.195470158922189796e01, 

177 -2.075304453873995314e01, 

178 ], 

179 [ 

180 4.0, 

181 5.0, 

182 1.700000000000000122e-02, 

183 9.199999999999999845e-02, 

184 1.580000000000000016e-01, 

185 250.0, 

186 250.0, 

187 250.0, 

188 0.0, 

189 0.0, 

190 1.0, 

191 -360.0, 

192 360.0, 

193 3.072828027973678999e01, 

194 -5.858508226424568033e-01, 

195 -3.055468555805444453e01, 

196 -1.368795049942141873e01, 

197 ], 

198 [ 

199 5.0, 

200 6.0, 

201 3.899999999999999994e-02, 

202 1.700000000000000122e-01, 

203 3.579999999999999849e-01, 

204 150.0, 

205 150.0, 

206 150.0, 

207 0.0, 

208 0.0, 

209 1.0, 

210 -360.0, 

211 360.0, 

212 -5.944531444194475966e01, 

213 -1.631204950057851022e01, 

214 6.089386583276659337e01, 

215 -1.242746953108854591e01, 

216 ], 

217 [ 

218 3.0, 

219 6.0, 

220 0.0, 

221 5.859999999999999931e-02, 

222 0.0, 

223 300.0, 

224 300.0, 

225 300.0, 

226 0.0, 

227 0.0, 

228 1.0, 

229 -360.0, 

230 360.0, 

231 8.499999999999997158e01, 

232 -3.649025534209526800e00, 

233 -8.499999999999997158e01, 

234 7.890678351196221740e00, 

235 ], 

236 [ 

237 6.0, 

238 7.0, 

239 1.190000000000000085e-02, 

240 1.008000000000000007e-01, 

241 2.089999999999999913e-01, 

242 150.0, 

243 150.0, 

244 150.0, 

245 0.0, 

246 0.0, 

247 1.0, 

248 -360.0, 

249 360.0, 

250 2.410613416723325741e01, 

251 4.536791179891427994e00, 

252 -2.401064777894146474e01, 

253 -2.440076244077697609e01, 

254 ], 

255 [ 

256 7.0, 

257 8.0, 

258 8.500000000000000611e-03, 

259 7.199999999999999456e-02, 

260 1.489999999999999936e-01, 

261 250.0, 

262 250.0, 

263 250.0, 

264 0.0, 

265 0.0, 

266 1.0, 

267 -360.0, 

268 360.0, 

269 -7.598935222105758669e01, 

270 -1.059923755922268285e01, 

271 7.649556434279409700e01, 

272 2.562394697223899231e-01, 

273 ], 

274 [ 

275 8.0, 

276 2.0, 

277 0.0, 

278 6.250000000000000000e-02, 

279 0.0, 

280 250.0, 

281 250.0, 

282 250.0, 

283 0.0, 

284 0.0, 

285 1.0, 

286 -360.0, 

287 360.0, 

288 -1.629999999999997158e02, 

289 2.276189879408803574e00, 

290 1.629999999999997442e02, 

291 1.446011953112515869e01, 

292 ], 

293 [ 

294 8.0, 

295 9.0, 

296 3.200000000000000067e-02, 

297 1.610000000000000042e-01, 

298 3.059999999999999942e-01, 

299 250.0, 

300 250.0, 

301 250.0, 

302 0.0, 

303 0.0, 

304 1.0, 

305 -360.0, 

306 360.0, 

307 8.650443565720313188e01, 

308 -2.532429349130207452e00, 

309 -8.403988686535042518e01, 

310 -1.428198298779915731e01, 

311 ], 

312 [ 

313 9.0, 

314 4.0, 

315 1.000000000000000021e-02, 

316 8.500000000000000611e-02, 

317 1.759999999999999898e-01, 

318 250.0, 

319 250.0, 

320 250.0, 

321 0.0, 

322 0.0, 

323 1.0, 

324 -360.0, 

325 360.0, 

326 -4.096011313464404680e01, 

327 -3.571801701219811775e01, 

328 4.122642130948177197e01, 

329 2.133889536138378062e01, 

330 ], 

331 ] 

332 ) 

333 ppc_res['gen'] = np.array( 

334 [ 

335 [ 

336 1.0, 

337 71.0, 

338 24.0, 

339 300.0, 

340 -300.0, 

341 1.0, 

342 100.0, 

343 1.0, 

344 250.0, 

345 10.0, 

346 0.0, 

347 0.0, 

348 0.0, 

349 0.0, 

350 0.0, 

351 0.0, 

352 0.0, 

353 0.0, 

354 0.0, 

355 0.0, 

356 0.0, 

357 ], 

358 [ 

359 2.0, 

360 163.0, 

361 14.0, 

362 300.0, 

363 -300.0, 

364 1.0, 

365 100.0, 

366 1.0, 

367 300.0, 

368 10.0, 

369 0.0, 

370 0.0, 

371 0.0, 

372 0.0, 

373 0.0, 

374 0.0, 

375 0.0, 

376 0.0, 

377 0.0, 

378 0.0, 

379 0.0, 

380 ], 

381 [ 

382 3.0, 

383 85.0, 

384 -3.0, 

385 300.0, 

386 -300.0, 

387 1.0, 

388 100.0, 

389 1.0, 

390 270.0, 

391 10.0, 

392 0.0, 

393 0.0, 

394 0.0, 

395 0.0, 

396 0.0, 

397 0.0, 

398 0.0, 

399 0.0, 

400 0.0, 

401 0.0, 

402 0.0, 

403 ], 

404 ] 

405 ) 

406 

407 return ppc_res 

408 

409 

410def get_initial_Ybus(): 

411 ybus = np.array( 

412 [ 

413 [0 - 17.36111111111111j, 0 + 0j, 0 + 0j, 0 + 17.36111111111111j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j], 

414 [0 + 0j, 0 - 16j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 16j, 0 + 0j], 

415 [0 + 0j, 0 + 0j, 0 - 17.06484641638225j, 0 + 0j, 0 + 0j, 0 + 17.06484641638225j, 0 + 0j, 0 + 0j, 0 + 0j], 

416 [ 

417 0 + 17.36111111111111j, 

418 0 + 0j, 

419 0 + 0j, 

420 3.307378962025306 - 39.30888872611897j, 

421 -1.942191248714727 + 10.51068205186793j, 

422 0 + 0j, 

423 0 + 0j, 

424 0 + 0j, 

425 -1.36518771331058 + 11.60409556313993j, 

426 ], 

427 [ 

428 0 + 0j, 

429 0 + 0j, 

430 0 + 0j, 

431 -1.942191248714727 + 10.51068205186793j, 

432 3.224200387138842 - 15.84092701422946j, 

433 -1.282009138424115 + 5.588244962361526j, 

434 0 + 0j, 

435 0 + 0j, 

436 0 + 0j, 

437 ], 

438 [ 

439 0 + 0j, 

440 0 + 0j, 

441 0 + 17.06484641638225j, 

442 0 + 0j, 

443 -1.282009138424115 + 5.588244962361526j, 

444 2.437096619314212 - 32.15386180510696j, 

445 -1.155087480890097 + 9.784270426363173j, 

446 0 + 0j, 

447 0 + 0j, 

448 ], 

449 [ 

450 0 + 0j, 

451 0 + 0j, 

452 0 + 0j, 

453 0 + 0j, 

454 0 + 0j, 

455 -1.155087480890097 + 9.784270426363173j, 

456 2.772209954136233 - 23.30324902327162j, 

457 -1.617122473246136 + 13.69797859690844j, 

458 0 + 0j, 

459 ], 

460 [ 

461 0 + 0j, 

462 0 + 16j, 

463 0 + 0j, 

464 0 + 0j, 

465 0 + 0j, 

466 0 + 0j, 

467 -1.617122473246136 + 13.69797859690844j, 

468 2.804726852537284 - 35.44561313021703j, 

469 -1.187604379291148 + 5.975134533308591j, 

470 ], 

471 [ 

472 0 + 0j, 

473 0 + 0j, 

474 0 + 0j, 

475 -1.36518771331058 + 11.60409556313993j, 

476 0 + 0j, 

477 0 + 0j, 

478 0 + 0j, 

479 -1.187604379291148 + 5.975134533308591j, 

480 2.552792092601728 - 17.33823009644852j, 

481 ], 

482 ], 

483 dtype=complex, 

484 ) 

485 

486 return ybus 

487 

488 

489def get_event_Ybus(): 

490 ybus = np.array( 

491 [ 

492 [0 - 17.36111111111111j, 0 + 0j, 0 + 0j, 0 + 17.36111111111111j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j], 

493 [0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j], 

494 [0 + 0j, 0 + 0j, 0 - 17.06484641638225j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 0j, 0 + 17.06484641638225j], 

495 [ 

496 0 + 17.36111111111111j, 

497 0 + 0j, 

498 0 + 0j, 

499 3.307378962025306 - 39.30888872611897j, 

500 -1.36518771331058 + 11.60409556313993j, 

501 -1.942191248714727 + 10.51068205186793j, 

502 0 + 0j, 

503 0 + 0j, 

504 0 + 0j, 

505 ], 

506 [ 

507 0 + 0j, 

508 0 + 0j, 

509 0 + 0j, 

510 -1.36518771331058 + 11.60409556313993j, 

511 2.552792092601728 - 17.33823009644852j, 

512 0 + 0j, 

513 -1.187604379291148 + 5.975134533308591j, 

514 0 + 0j, 

515 0 + 0j, 

516 ], 

517 [ 

518 0 + 0j, 

519 0 + 0j, 

520 0 + 0j, 

521 -1.942191248714727 + 10.51068205186793j, 

522 0 + 0j, 

523 3.224200387138842 - 15.84092701422946j, 

524 0 + 0j, 

525 0 + 0j, 

526 -1.282009138424115 + 5.588244962361526j, 

527 ], 

528 [ 

529 0 + 0j, 

530 0 + 0j, 

531 0 + 0j, 

532 0 + 0j, 

533 -1.187604379291148 + 5.975134533308591j, 

534 0 + 0j, 

535 2.804726852537284 - 19.44561313021703j, 

536 -1.617122473246136 + 13.69797859690844j, 

537 0 + 0j, 

538 ], 

539 [ 

540 0 + 0j, 

541 0 + 0j, 

542 0 + 0j, 

543 0 + 0j, 

544 0 + 0j, 

545 0 + 0j, 

546 -1.617122473246136 + 13.69797859690844j, 

547 2.772209954136233 - 23.30324902327162j, 

548 -1.155087480890097 + 9.784270426363173j, 

549 ], 

550 [ 

551 0 + 0j, 

552 0 + 0j, 

553 0 + 17.06484641638225j, 

554 0 + 0j, 

555 0 + 0j, 

556 -1.282009138424115 + 5.588244962361526j, 

557 0 + 0j, 

558 -1.155087480890097 + 9.784270426363173j, 

559 2.437096619314212 - 32.15386180510696j, 

560 ], 

561 ], 

562 dtype=complex, 

563 ) 

564 

565 return ybus 

566 

567 

568# def get_YBus(ppc): 

569 

570# ppci = ext2int(ppc) 

571# Ybus, yf, yt = makeYbus(ppci['baseMVA'],ppci['bus'],ppci['branch']) 

572 

573# return ppc['Ybus']() 

574 

575 

576class WSCC9BusSystem(ProblemDAE): 

577 r""" 

578 Example implementing the WSCC 9 Bus system [1]_. For this complex model, the equations can be found in [2]_, and 

579 sub-transient and turbine parameters are taken from [3]_. The network data of the system are taken from MATPOWER [4]_. 

580 

581 Parameters 

582 ---------- 

583 nvars : int 

584 Number of unknowns of the system of DAEs (not used here, since it is set up inside this class). 

585 newton_tol : float 

586 Tolerance for Newton solver. 

587 

588 Attributes 

589 ---------- 

590 mpc : dict 

591 Contains the data for the buses, branches, generators, and the Ybus. 

592 m : int 

593 Number of machines used in the network. 

594 n : int 

595 Number of buses used in the network. 

596 baseMVA : float 

597 Base value of the apparent power. 

598 ws : float 

599 Generator synchronous speed in rad per second. 

600 ws_vector : np.1darray 

601 Vector containing ``ws``. 

602 MD : np.2darray 

603 Machine data. 

604 ED : np.2darray 

605 Excitation data. 

606 TD : np.2darray 

607 Turbine data. 

608 bus : np.2darray 

609 Data for the buses. 

610 branch : np.2darray 

611 Data for the branches in the power system. 

612 gen : np.2darray 

613 Data for generators in the system. 

614 Ybus : np.2darray 

615 Ybus. 

616 YBus_line6_8_outage : np.2darray 

617 Contains the data for the line outage in the power system, where line at bus6 is outaged. 

618 psv_max : float 

619 Maximum valve position. 

620 IC1 : list 

621 Contains the :math:`8`-th row of the ``bus`` matrix. 

622 IC2 : list 

623 Contains the :math:`9`-th row of the ``bus`` matrix. 

624 IC3 : list 

625 Generator values divided by ``baseMVA``. 

626 IC4 : list 

627 Generator values divided by ``baseMVA``. 

628 IC5 : list 

629 Loads divided by ``baseMVA``. 

630 IC6 : list 

631 Loads divided by ``baseMVA``. 

632 genP : list 

633 Contains data for one generator from the ``mpc``. 

634 IC : list 

635 Contains all the values of `IC1, IC2, IC3, IC4, IC5, IC6`. 

636 PL : list 

637 Contains the :math:`5`-th column of ``IC``. 

638 QL : list 

639 Contains the :math:`6`-th column of ``IC``. 

640 PG : np.1darray 

641 Contains the :math:`3`-rd column of ``IC``. 

642 QG : np.1darray 

643 Contains the :math:`4`-th column of ``IC``. 

644 TH0 : np.1darray 

645 Initial condition for angle of bus voltage in rad. 

646 V0 : np.1darray 

647 Contains the :math:`1`-st column of ``IC``, initial condition for magnitude of bus voltage in per unit. 

648 VG0 : np.1darray 

649 Initial condition for complex voltage phasor. 

650 THG0 : np.1darray 

651 Initial condition for angle of the bus voltage in rad. 

652 H : np.1darray 

653 Shaft inertia constant in second. 

654 Xd : np.1darray 

655 d-axis reactance in per unit. 

656 Xdp : np.1darray 

657 Transient d-axis reactance in per unit. 

658 Xdpp : np.1darray 

659 Sub-transient d-axis reactance in per unit. 

660 Xq : np.1darray 

661 q-axis reactance in per unit. 

662 Xqp : np.1darray 

663 Transient q-axis reactance in per unit. 

664 Xqpp : np.1darray 

665 Sub-transient q-axis reactance in per unit. 

666 Td0p : np.1darray 

667 d-axis time constant associated with :math:`E_q'` in second. 

668 Td0pp : np.1darray 

669 d-axis time constant associated with :math:`\psi_{1d}` in second. 

670 Tq0p : np.1darray 

671 q-axis time constant associated with :math:`E_d'` in second. 

672 Tq0pp : np.1darray 

673 q-axis time constant associated with :math:`\psi_{2q}` in second. 

674 Rs : np.1darray 

675 Stator resistance in per unit. 

676 Xls : np.1darray 

677 Parameter :math:`X_{\ell s}`. 

678 Dm : np.1darray 

679 Rotor angle in rad. 

680 KA : np.1darray 

681 Amplifier gain. 

682 TA : np.1darray 

683 Amplifier time constant in second. 

684 KE : np.1darray 

685 Separate or self-excited constant. 

686 TE : np.1darray 

687 Parameter :math:`T_E`. 

688 KF : np.1darray 

689 Parameter _math:`K_F`. 

690 TF : np.1darray 

691 Parameter :math:`T_F`. 

692 Ax : np.1darray 

693 Constant :math:`A_x` of the saturation function :math:`S_{E_i}`. 

694 Bx : np.1darray 

695 Constant :math:`B_x` of the saturation function :math:`S_{E_i}`. 

696 TCH : np.1darray 

697 Incremental steam chest time constant in second. 

698 TSV : np.1darray 

699 Steam valve time constant in second. 

700 RD : np.1darray 

701 Speed regulation quantity in Hz/per unit. 

702 MH : float 

703 Factor :math:`\frac{2 H_i}{w_s}`. 

704 QG : np.1darray 

705 Used to compute :math:`I_{phasor}`. 

706 Vphasor : np.1darray 

707 Complex voltage phasor. 

708 Iphasor : np.1darray 

709 Complex current phasor. 

710 E0 : np.1darray 

711 Initial internal voltage of the synchronous generator. 

712 Em : np.1darray 

713 Absolute values of ``E0``. 

714 D0 : np.1darray 

715 Initial condition for rotor angle in rad. 

716 Id0 : np.1darray 

717 Initial condition for d-axis current in per unit. 

718 Iq0 : np.1darray 

719 Initial condition for q-axis current in per unit. 

720 Edp0 : np.1darray 

721 Initial condition for d-axis transient internal voltages in per unit. 

722 Si2q0 : np.1darray 

723 Initial condition for damper winding 2q flux linkages in per unit. 

724 Eqp0 : np.1darray 

725 Initial condition for q-axis transient internal voltages in per unit. 

726 Si1d0 : np.1darray 

727 Initial condition for damper winding 1d flux linkages in per unit. 

728 Efd0 : np.1darray 

729 Initial condition for field winding fd flux linkages in per unit. 

730 TM0 : np.1darray 

731 Initial condition for mechanical input torque in per unit. 

732 VR0 : np.1darray 

733 Initial condition for exciter input in per unit. 

734 RF0 : np.1darray 

735 Initial condition for exciter feedback in per unit. 

736 Vref : np.1darray 

737 Reference voltage input in per unit. 

738 PSV0 : np.1darray 

739 Initial condition for steam valve position in per unit. 

740 PC : np.1darray 

741 Initial condition for control power input in per unit. 

742 alpha : int 

743 Active load parameter. 

744 beta : int 

745 Reactive load parameter. 

746 bb1, aa1 : list of ndarrays 

747 Used to access on specific values of ``TH``. 

748 bb2, aa2 : list of ndarrays 

749 Used to access on specific values of ``TH``. 

750 t_switch : float 

751 Time the event found by detection. 

752 nswitches : int 

753 Number of events found by detection. 

754 

755 References 

756 ---------- 

757 .. [1] WSCC 9-Bus System - Illinois Center for a Smarter Electric Grid. https://icseg.iti.illinois.edu/wscc-9-bus-system/ 

758 .. [2] P. W. Sauer, M. A. Pai. Power System Dynamics and Analysis. John Wiley & Sons (2008). 

759 .. [3] I. Abdulrahman. MATLAB-Based Programs for Power System Dynamics Analysis. IEEE Open Access Journal of Power and Energy. 

760 Vol. 7, No. 1, pp. 59–69 (2020). 

761 .. [4] R. D. Zimmerman, C. E. Murillo-Sánchez, R. J. Thomas. MATPOWER: Steady-State Operations, Planning, and Analysis Tools 

762 for Power Systems Research and Education. IEEE Transactions on Power Systems. Vol. 26, No. 1, pp. 12–19 (2011). 

763 """ 

764 

765 def __init__(self, newton_tol=1e-10): 

766 """Initialization routine""" 

767 m, n = 3, 9 

768 nvars = 11 * m + 2 * m + 2 * n 

769 # invoke super init, passing number of dofs 

770 super().__init__(nvars=nvars, newton_tol=newton_tol) 

771 self._makeAttributeAndRegister('m', 'n', localVars=locals()) 

772 self.mpc = WSCC9Bus() 

773 

774 self.baseMVA = self.mpc['baseMVA'] 

775 self.ws = 2 * np.pi * 60 

776 self.ws_vector = self.ws * np.ones(self.m) 

777 

778 # Machine data (MD) as a 2D NumPy array 

779 self.MD = np.array( 

780 [ 

781 [23.640, 6.4000, 3.0100], # 1 - H 

782 [0.1460, 0.8958, 1.3125], # 2 - Xd 

783 [0.0608, 0.1198, 0.1813], # 3 - Xdp 

784 [0.0489, 0.0881, 0.1133], # 4 - Xdpp 

785 [0.0969, 0.8645, 1.2578], # 5 - Xq 

786 [0.0969, 0.1969, 0.2500], # 6 - Xqp 

787 [0.0396, 0.0887, 0.0833], # 7 - Xqpp 

788 [8.960000000000001, 6.0000, 5.8900], # 8 - Tdop 

789 [0.1150, 0.0337, 0.0420], # 9 - Td0pp 

790 [0.3100, 0.5350, 0.6000], # 10 - Tqop 

791 [0.0330, 0.0780, 0.1875], # 11 - Tq0pp 

792 [0.0041, 0.0026, 0.0035], # 12 - RS 

793 [0.1200, 0.1020, 0.0750], # 13 - Xls 

794 [ 

795 0.1 * (2 * 23.64) / self.ws, 

796 0.2 * (2 * 6.4) / self.ws, 

797 0.3 * (2 * 3.01) / self.ws, 

798 ], # 14 - Dm (ws should be defined) 

799 ] 

800 ) 

801 

802 # Excitation data (ED) as a 2D NumPy array 

803 self.ED = np.array( 

804 [ 

805 20.000 * np.ones(self.m), # 1 - KA 

806 0.2000 * np.ones(self.m), # 2 - TA 

807 1.0000 * np.ones(self.m), # 3 - KE 

808 0.3140 * np.ones(self.m), # 4 - TE 

809 0.0630 * np.ones(self.m), # 5 - KF 

810 0.3500 * np.ones(self.m), # 6 - TF 

811 0.0039 * np.ones(self.m), # 7 - Ax 

812 1.5550 * np.ones(self.m), # 8 - Bx 

813 ] 

814 ) 

815 

816 # Turbine data (TD) as a 2D NumPy array 

817 self.TD = np.array( 

818 [ 

819 0.10 * np.ones(self.m), # 1 - TCH 

820 0.05 * np.ones(self.m), # 2 - TSV 

821 0.05 * np.ones(self.m), # 3 - RD 

822 ] 

823 ) 

824 

825 self.bus = self.mpc['bus'] 

826 self.branch = self.mpc['branch'] 

827 self.gen = self.mpc['gen'] 

828 self.YBus = get_initial_Ybus() 

829 

830 temp_mpc = self.mpc 

831 temp_mpc['branch'] = np.delete( 

832 temp_mpc['branch'], 6, 0 

833 ) # note that this is correct but not necessary, because we have the event Ybus already 

834 self.YBus_line6_8_outage = get_event_Ybus() 

835 

836 # excitation limiter vmax 

837 # self.vmax = 2.1 

838 self.psv_max = 1.0 

839 

840 self.IC1 = [row[7] for row in self.bus] # Column 8 in MATLAB is indexed as 7 in Python (0-based index) 

841 self.IC2 = [row[8] for row in self.bus] # Column 9 in MATLAB is indexed as 8 in Python 

842 

843 n_prev, m_prev = self.n, self.m 

844 self.n = len(self.bus) # Number of rows in 'bus' list; self.n already defined above?! 

845 self.m = len(self.gen) # Number of rows in 'gen' list; self.m already defined above?! 

846 if n_prev != 9 or m_prev != 3: 

847 raise ParameterError("Number of rows in bus or gen not equal to initialised n or m!") 

848 

849 gen0 = [0] * self.n 

850 for i in range(self.m): 

851 gen0[i] = self.gen[i][1] 

852 self.genP = gen0 

853 self.IC3 = [val / self.baseMVA for val in self.genP] 

854 

855 gen0 = [0] * self.n 

856 for i in range(self.m): 

857 gen0[i] = self.gen[i][2] 

858 genQ = gen0 

859 for i in range(self.n): 

860 genQ[i] += self.bus[i][5] # Column 6 in MATLAB is indexed as 5 in Python 

861 self.IC4 = [val / self.baseMVA for val in genQ] 

862 

863 self.IC5 = [row[2] for row in self.bus] # Column 3 in MATLAB is indexed as 2 in Python 

864 self.IC5 = [val / self.baseMVA for val in self.IC5] 

865 

866 self.IC6 = [row[3] for row in self.bus] # Column 4 in MATLAB is indexed as 3 in Python 

867 self.IC6 = [val / self.baseMVA for val in self.IC6] 

868 

869 self.IC = list(zip(self.IC1, self.IC2, self.IC3, self.IC4, self.IC5, self.IC6)) 

870 

871 self.PL = [row[4] for row in self.IC] # Column 5 in MATLAB is indexed as 4 in Python 

872 self.QL = [row[5] for row in self.IC] # Column 6 in MATLAB is indexed as 5 in Python 

873 

874 self.PG = np.array([row[2] for row in self.IC]) # Column 3 in MATLAB is indexed as 2 in Python 

875 self.QG = np.array([row[3] for row in self.IC]) # Column 4 in MATLAB is indexed as 3 in Python 

876 

877 self.TH0 = np.array([row[1] * np.pi / 180 for row in self.IC]) 

878 self.V0 = np.array([row[0] for row in self.IC]) 

879 self.VG0 = self.V0[: self.m] 

880 self.THG0 = self.TH0[: self.m] 

881 

882 # Extracting values from the MD array 

883 self.H = self.MD[0, :] 

884 self.Xd = self.MD[1, :] 

885 self.Xdp = self.MD[2, :] 

886 self.Xdpp = self.MD[3, :] 

887 self.Xq = self.MD[4, :] 

888 self.Xqp = self.MD[5, :] 

889 self.Xqpp = self.MD[6, :] 

890 self.Td0p = self.MD[7, :] 

891 self.Td0pp = self.MD[8, :] 

892 self.Tq0p = self.MD[9, :] 

893 self.Tq0pp = self.MD[10, :] 

894 self.Rs = self.MD[11, :] 

895 self.Xls = self.MD[12, :] 

896 self.Dm = self.MD[13, :] 

897 

898 # Extracting values from the ED array 

899 self.KA = self.ED[0, :] 

900 self.TA = self.ED[1, :] 

901 self.KE = self.ED[2, :] 

902 self.TE = self.ED[3, :] 

903 self.KF = self.ED[4, :] 

904 self.TF = self.ED[5, :] 

905 self.Ax = self.ED[6, :] 

906 self.Bx = self.ED[7, :] 

907 

908 # Extracting values from the TD array 

909 self.TCH = self.TD[0, :] 

910 self.TSV = self.TD[1, :] 

911 self.RD = self.TD[2, :] 

912 

913 # Calculate MH 

914 self.MH = 2 * self.H / self.ws 

915 

916 # Represent QG as complex numbers 

917 self.QG = self.QG.astype(complex) 

918 

919 # Convert VG0 and THG0 to complex phasors 

920 self.Vphasor = self.VG0 * np.exp(1j * self.THG0) 

921 

922 # Calculate Iphasor 

923 self.Iphasor = np.conj(np.divide(self.PG[:m] + 1j * self.QG[:m], self.Vphasor)) 

924 

925 # Calculate E0 

926 self.E0 = self.Vphasor + (self.Rs + 1j * self.Xq) * self.Iphasor 

927 

928 # Calculate Em, D0, Id0, and Iq0 

929 self.Em = np.abs(self.E0) 

930 self.D0 = np.angle(self.E0) 

931 self.Id0 = np.real(self.Iphasor * np.exp(-1j * (self.D0 - np.pi / 2))) 

932 self.Iq0 = np.imag(self.Iphasor * np.exp(-1j * (self.D0 - np.pi / 2))) 

933 

934 # Calculate Edp0, Si2q0, Eqp0, and Si1d0 

935 self.Edp0 = (self.Xq - self.Xqp) * self.Iq0 

936 self.Si2q0 = (self.Xls - self.Xq) * self.Iq0 

937 self.Eqp0 = self.Rs * self.Iq0 + self.Xdp * self.Id0 + self.V0[: self.m] * np.cos(self.D0 - self.TH0[: self.m]) 

938 self.Si1d0 = self.Eqp0 - (self.Xdp - self.Xls) * self.Id0 

939 

940 # Calculate Efd0 and TM0 

941 self.Efd0 = self.Eqp0 + (self.Xd - self.Xdp) * self.Id0 

942 self.TM0 = ( 

943 ((self.Xdpp - self.Xls) / (self.Xdp - self.Xls)) * self.Eqp0 * self.Iq0 

944 + ((self.Xdp - self.Xdpp) / (self.Xdp - self.Xls)) * self.Si1d0 * self.Iq0 

945 + ((self.Xqpp - self.Xls) / (self.Xqp - self.Xls)) * self.Edp0 * self.Id0 

946 - ((self.Xqp - self.Xqpp) / (self.Xqp - self.Xls)) * self.Si2q0 * self.Id0 

947 + (self.Xqpp - self.Xdpp) * self.Id0 * self.Iq0 

948 ) 

949 

950 # Calculate VR0 and RF0 

951 self.VR0 = (self.KE + self.Ax * np.exp(self.Bx * self.Efd0)) * self.Efd0 

952 self.RF0 = (self.KF / self.TF) * self.Efd0 

953 

954 # Calculate Vref and PSV0 

955 self.Vref = self.V0[: self.m] + self.VR0 / self.KA 

956 self.PSV0 = self.TM0 

957 self.PC = self.PSV0 

958 

959 self.alpha = 2 

960 self.beta = 2 

961 

962 self.bb1, self.aa1 = np.meshgrid(np.arange(0, self.m), np.arange(0, self.n)) 

963 self.bb1, self.aa1 = self.bb1.astype(int), self.aa1.astype(int) 

964 

965 # Create matrix grid to eliminate for-loops (load buses) 

966 self.bb2, self.aa2 = np.meshgrid(np.arange(self.m, self.n), np.arange(0, self.n)) 

967 self.bb2, self.aa2 = self.bb2.astype(int), self.aa2.astype(int) 

968 

969 self.t_switch = None 

970 self.nswitches = 0 

971 

972 def eval_f(self, u, du, t): 

973 r""" 

974 Routine to evaluate the implicit representation of the problem, i.e., :math:`F(u, u', t)`. 

975 

976 Parameters 

977 ---------- 

978 u : dtype_u 

979 Current values of the numerical solution at time t. 

980 du : dtype_u 

981 Current values of the derivative of the numerical solution at time t. 

982 t : float 

983 Current time of the numerical solution. 

984 

985 Returns 

986 ------- 

987 f : dtype_f 

988 The right-hand side of f (contains two components). 

989 """ 

990 

991 dEqp, dSi1d, dEdp = du.diff[0 : self.m], du.diff[self.m : 2 * self.m], du.diff[2 * self.m : 3 * self.m] 

992 dSi2q, dDelta = du.diff[3 * self.m : 4 * self.m], du.diff[4 * self.m : 5 * self.m] 

993 dw, dEfd, dRF = ( 

994 du.diff[5 * self.m : 6 * self.m], 

995 du.diff[6 * self.m : 7 * self.m], 

996 du.diff[7 * self.m : 8 * self.m], 

997 ) 

998 dVR, dTM, dPSV = ( 

999 du.diff[8 * self.m : 9 * self.m], 

1000 du.diff[9 * self.m : 10 * self.m], 

1001 du.diff[10 * self.m : 11 * self.m], 

1002 ) 

1003 

1004 Eqp, Si1d, Edp = u.diff[0 : self.m], u.diff[self.m : 2 * self.m], u.diff[2 * self.m : 3 * self.m] 

1005 Si2q, Delta = u.diff[3 * self.m : 4 * self.m], u.diff[4 * self.m : 5 * self.m] 

1006 w, Efd, RF = u.diff[5 * self.m : 6 * self.m], u.diff[6 * self.m : 7 * self.m], u.diff[7 * self.m : 8 * self.m] 

1007 VR, TM, PSV = ( 

1008 u.diff[8 * self.m : 9 * self.m], 

1009 u.diff[9 * self.m : 10 * self.m], 

1010 u.diff[10 * self.m : 11 * self.m], 

1011 ) 

1012 

1013 Id, Iq = u.alg[0 : self.m], u.alg[self.m : 2 * self.m] 

1014 V = u.alg[2 * self.m : 2 * self.m + self.n] 

1015 TH = u.alg[2 * self.m + self.n : 2 * self.m + 2 * self.n] 

1016 

1017 # line outage disturbance: 

1018 if t >= 0.05: 

1019 self.YBus = self.YBus_line6_8_outage 

1020 

1021 self.Yang = np.angle(self.YBus) 

1022 self.Yabs = np.abs(self.YBus) 

1023 

1024 COI = np.sum(w * self.MH) / np.sum(self.MH) 

1025 

1026 # Voltage-dependent active loads PL2, and voltage-dependent reactive loads QL2 

1027 PL2 = np.array(self.PL) 

1028 QL2 = np.array(self.QL) 

1029 

1030 V = V.T 

1031 

1032 # Vectorized calculations 

1033 Vectorized_angle1 = ( 

1034 np.array([TH.take(indices) for indices in self.bb1.T]) 

1035 - np.array([TH.take(indices) for indices in self.aa1.T]) 

1036 - self.Yang[: self.m, : self.n] 

1037 ) 

1038 Vectorized_mag1 = (V[: self.m] * V[: self.n].reshape(-1, 1)).T * self.Yabs[: self.m, : self.n] 

1039 

1040 sum1 = np.sum(Vectorized_mag1 * np.cos(Vectorized_angle1), axis=1) 

1041 sum2 = np.sum(Vectorized_mag1 * np.sin(Vectorized_angle1), axis=1) 

1042 

1043 VG = V[: self.m] 

1044 THG = TH[: self.m] 

1045 Angle_diff = Delta - THG 

1046 

1047 Vectorized_angle2 = ( 

1048 np.array([TH.take(indices) for indices in self.bb2.T]) 

1049 - np.array([TH.take(indices) for indices in self.aa2.T]) 

1050 - self.Yang[self.m : self.n, : self.n] 

1051 ) 

1052 Vectorized_mag2 = (V[self.m : self.n] * V[: self.n].reshape(-1, 1)).T * self.Yabs[self.m : self.n, : self.n] 

1053 

1054 sum3 = np.sum(Vectorized_mag2 * np.cos(Vectorized_angle2), axis=1) 

1055 sum4 = np.sum(Vectorized_mag2 * np.sin(Vectorized_angle2), axis=1) 

1056 

1057 # Initialise f 

1058 f = self.dtype_f(self.init) 

1059 

1060 t_switch = np.inf if self.t_switch is None else self.t_switch 

1061 

1062 # Equations as list 

1063 eqs = [] 

1064 eqs.append( 

1065 (1.0 / self.Td0p) 

1066 * ( 

1067 -Eqp 

1068 - (self.Xd - self.Xdp) 

1069 * ( 

1070 Id 

1071 - ((self.Xdp - self.Xdpp) / (self.Xdp - self.Xls) ** 2) * (Si1d + (self.Xdp - self.Xls) * Id - Eqp) 

1072 ) 

1073 + Efd 

1074 ) 

1075 - dEqp 

1076 ) # (1) 

1077 eqs.append((1.0 / self.Td0pp) * (-Si1d + Eqp - (self.Xdp - self.Xls) * Id) - dSi1d) # (2) 

1078 eqs.append( 

1079 (1.0 / self.Tq0p) 

1080 * ( 

1081 -Edp 

1082 + (self.Xq - self.Xqp) 

1083 * ( 

1084 Iq 

1085 - ((self.Xqp - self.Xqpp) / (self.Xqp - self.Xls) ** 2) * (Si2q + (self.Xqp - self.Xls) * Iq + Edp) 

1086 ) 

1087 ) 

1088 - dEdp 

1089 ) # (3) 

1090 eqs.append((1.0 / self.Tq0pp) * (-Si2q - Edp - (self.Xqp - self.Xls) * Iq) - dSi2q) # (4) 

1091 eqs.append(w - COI - dDelta) # (5) 

1092 eqs.append( 

1093 (self.ws / (2.0 * self.H)) 

1094 * ( 

1095 TM 

1096 - ((self.Xdpp - self.Xls) / (self.Xdp - self.Xls)) * Eqp * Iq 

1097 - ((self.Xdp - self.Xdpp) / (self.Xdp - self.Xls)) * Si1d * Iq 

1098 - ((self.Xqpp - self.Xls) / (self.Xqp - self.Xls)) * Edp * Id 

1099 + ((self.Xqp - self.Xqpp) / (self.Xqp - self.Xls)) * Si2q * Id 

1100 - (self.Xqpp - self.Xdpp) * Id * Iq 

1101 - self.Dm * (w - self.ws) 

1102 ) 

1103 - dw 

1104 ) # (6) 

1105 eqs.append((1.0 / self.TE) * ((-(self.KE + self.Ax * np.exp(self.Bx * Efd))) * Efd + VR) - dEfd) # (7) 

1106 eqs.append((1.0 / self.TF) * (-RF + (self.KF / self.TF) * Efd) - dRF) # (8) 

1107 eqs.append( 

1108 (1.0 / self.TA) 

1109 * (-VR + self.KA * RF - ((self.KA * self.KF) / self.TF) * Efd + self.KA * (self.Vref - V[: self.m])) 

1110 - dVR 

1111 ) # (9) 

1112 

1113 # Limitation of valve position Psv with limiter start 

1114 if PSV[0] >= self.psv_max or t >= t_switch: 

1115 _temp_dPSV_g1 = (1.0 / self.TSV[1]) * ( 

1116 -PSV[1] + self.PSV0[1] - (1.0 / self.RD[1]) * (w[1] / self.ws - 1) 

1117 ) - dPSV[1] 

1118 _temp_dPSV_g2 = (1.0 / self.TSV[2]) * ( 

1119 -PSV[2] + self.PSV0[2] - (1.0 / self.RD[2]) * (w[2] / self.ws - 1) 

1120 ) - dPSV[2] 

1121 eqs.append(np.array([dPSV[0], _temp_dPSV_g1, _temp_dPSV_g2])) 

1122 else: 

1123 eqs.append((1.0 / self.TSV) * (-PSV + self.PSV0 - (1.0 / self.RD) * (w / self.ws - 1)) - dPSV) 

1124 # Limitation of valve position Psv with limiter end 

1125 

1126 eqs.append((1.0 / self.TCH) * (-TM + PSV) - dTM) # (10) 

1127 eqs.append( 

1128 self.Rs * Id 

1129 - self.Xqpp * Iq 

1130 - ((self.Xqpp - self.Xls) / (self.Xqp - self.Xls)) * Edp 

1131 + ((self.Xqp - self.Xqpp) / (self.Xqp - self.Xls)) * Si2q 

1132 + VG * np.sin(Angle_diff) 

1133 ) # (12) 

1134 eqs.append( 

1135 self.Rs * Iq 

1136 + self.Xdpp * Id 

1137 - ((self.Xdpp - self.Xls) / (self.Xdp - self.Xls)) * Eqp 

1138 - ((self.Xdp - self.Xdpp) / (self.Xdp - self.Xls)) * Si1d 

1139 + VG * np.cos(Angle_diff) 

1140 ) # (13) 

1141 eqs.append((Id * VG.T * np.sin(Angle_diff) + Iq * VG.T * np.cos(Angle_diff)) - PL2[0 : self.m] - sum1) # (14) 

1142 eqs.append((Id * VG.T * np.cos(Angle_diff) - Iq * VG.T * np.sin(Angle_diff)) - QL2[0 : self.m] - sum2) # (15) 

1143 eqs.append(-PL2[self.m : self.n] - sum3) # (16) 

1144 eqs.append(-QL2[self.m : self.n] - sum4) # (17) 

1145 eqs_flatten = [item for sublist in eqs for item in sublist] 

1146 

1147 f.diff[: 11 * self.m] = eqs_flatten[0 : 11 * self.m] 

1148 f.alg[: 2 * self.n + 2 * self.m] = eqs_flatten[11 * self.m :] 

1149 return f 

1150 

1151 def u_exact(self, t): 

1152 r""" 

1153 Returns the initial conditions at time :math:`t=0`. 

1154 

1155 Parameters 

1156 ---------- 

1157 t : float 

1158 Time of the initial conditions. 

1159 

1160 Returns 

1161 ------- 

1162 me : dtype_u 

1163 Initial conditions. 

1164 """ 

1165 assert t == 0, 'ERROR: u_exact only valid for t=0' 

1166 

1167 me = self.dtype_u(self.init) 

1168 me.diff[0 : self.m] = self.Eqp0 

1169 me.diff[self.m : 2 * self.m] = self.Si1d0 

1170 me.diff[2 * self.m : 3 * self.m] = self.Edp0 

1171 me.diff[3 * self.m : 4 * self.m] = self.Si2q0 

1172 me.diff[4 * self.m : 5 * self.m] = self.D0 

1173 me.diff[5 * self.m : 6 * self.m] = self.ws_vector 

1174 me.diff[6 * self.m : 7 * self.m] = self.Efd0 

1175 me.diff[7 * self.m : 8 * self.m] = self.RF0 

1176 me.diff[8 * self.m : 9 * self.m] = self.VR0 

1177 me.diff[9 * self.m : 10 * self.m] = self.TM0 

1178 me.diff[10 * self.m : 11 * self.m] = self.PSV0 

1179 me.alg[0 : self.m] = self.Id0 

1180 me.alg[self.m : 2 * self.m] = self.Iq0 

1181 me.alg[2 * self.m : 2 * self.m + self.n] = self.V0 

1182 me.alg[2 * self.m + self.n : 2 * self.m + 2 * self.n] = self.TH0 

1183 return me 

1184 

1185 def get_switching_info(self, u, t): 

1186 r""" 

1187 Provides information about the state function of the problem. When the state function changes its sign, 

1188 typically an event occurs. So the check for an event should be done in the way that the state function 

1189 is checked for a sign change. If this is the case, the intermediate value theorem states a root in this 

1190 step. 

1191 

1192 The state function for this problem is given by 

1193 

1194 .. math:: 

1195 h(P_{SV,1}(t)) = P_{SV,1}(t) - P_{SV,1, max} 

1196 

1197 for :math:`P_{SV,1,max}=1.0`. 

1198 

1199 Parameters 

1200 ---------- 

1201 u : dtype_u 

1202 Current values of the numerical solution at time :math:`t`. 

1203 t : float 

1204 Current time of the numerical solution. 

1205 

1206 Returns 

1207 ------- 

1208 switch_detected : bool 

1209 Indicates whether a discrete event is found or not. 

1210 m_guess : int 

1211 The index before the sign changes. 

1212 state_function : list 

1213 Defines the values of the state function at collocation nodes where it changes the sign. 

1214 """ 

1215 

1216 switch_detected = False 

1217 m_guess = -100 

1218 for m in range(1, len(u)): 

1219 h_prev_node = u[m - 1].diff[10 * self.m] - self.psv_max 

1220 h_curr_node = u[m].diff[10 * self.m] - self.psv_max 

1221 if h_prev_node < 0 and h_curr_node >= 0: 

1222 switch_detected = True 

1223 m_guess = m - 1 

1224 break 

1225 

1226 state_function = [u[m].diff[10 * self.m] - self.psv_max for m in range(len(u))] 

1227 return switch_detected, m_guess, state_function 

1228 

1229 def count_switches(self): 

1230 """ 

1231 Setter to update the number of switches if one is found. 

1232 """ 

1233 self.nswitches += 1