Coverage for pySDC/projects/DAE/run/accuracy_check_MPI.py: 100%
56 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import numpy as np
2from mpi4py import MPI
4from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI
5from pySDC.projects.DAE.misc.hooksDAE import (
6 LogGlobalErrorPostStepDifferentialVariable,
7 LogGlobalErrorPostStepAlgebraicVariable,
8)
9from pySDC.helpers.stats_helper import get_sorted
12def run(dt, num_nodes, use_MPI, semi_implicit, residual_type, index_case, initial_guess='spread', comm=None):
13 r"""
14 Prepares the controller with all the description needed. Here, the function decides to choose the correct sweeper
15 for the test.
17 Parameters
18 ----------
19 dt : float
20 Time step size chosen for simulation.
21 num_nodes : int
22 Number of collocation nodes.
23 use_MPI : bool
24 If True, the MPI sweeper classes are used.
25 semi_implicit : bool
26 Modules are loaded either for fully-implicit case or semi-implicit case.
27 residual_type : str
28 Choose how to compute the residual.
29 index_case : int
30 Denotes the index case of a DAE to be tested here, can be either ``1`` or ``2``.
31 initial_guess : str, optional
32 Type of initial guess for simulation.
33 comm : mpi4py.MPI.COMM_WORLD
34 Communicator.
35 """
37 if not semi_implicit:
38 if use_MPI:
39 from pySDC.projects.DAE.sweepers.fullyImplicitDAEMPI import FullyImplicitDAEMPI as sweeper
41 else:
42 from pySDC.projects.DAE.sweepers.fullyImplicitDAE import FullyImplicitDAE as sweeper
44 else:
45 if use_MPI:
46 from pySDC.projects.DAE.sweepers.semiImplicitDAEMPI import SemiImplicitDAEMPI as sweeper
48 else:
49 from pySDC.projects.DAE.sweepers.semiImplicitDAE import SemiImplicitDAE as sweeper
51 if index_case == 1:
52 from pySDC.projects.DAE.problems.discontinuousTestDAE import DiscontinuousTestDAE as problem
54 t0 = 1.0
55 Tend = 1.5
57 elif index_case == 2:
58 from pySDC.projects.DAE.problems.simpleDAE import SimpleDAE as problem
60 t0 = 0.0
61 Tend = 0.4
63 else:
64 raise NotImplementedError(f"DAE case of index {index_case} is not implemented!")
66 # initialize level parameters
67 level_params = {
68 'restol': 1e-12,
69 'residual_type': residual_type,
70 'dt': dt,
71 }
73 # initialize problem parameters
74 problem_params = {
75 'newton_tol': 1e-6,
76 }
78 # initialize sweeper parameters
79 sweeper_params = {
80 'quad_type': 'RADAU-RIGHT',
81 'num_nodes': num_nodes,
82 'QI': 'MIN-SR-S', # use a diagonal Q_Delta here!
83 'initial_guess': initial_guess,
84 }
86 # check if number of processes requested matches with number of nodes
87 if comm is not None:
88 sweeper_params.update({'comm': comm})
89 assert (
90 sweeper_params['num_nodes'] == comm.Get_size()
91 ), f"Number of nodes does not match with number of processes! Expected {sweeper_params['num_nodes']}, got {comm.Get_size()}!"
93 # initialize step parameters
94 step_params = {
95 'maxiter': 20,
96 }
98 # initialize controller parameters
99 controller_params = {
100 'logger_level': 30,
101 'hook_class': [LogGlobalErrorPostStepDifferentialVariable, LogGlobalErrorPostStepAlgebraicVariable],
102 }
104 # fill description dictionary for easy step instantiation
105 description = {
106 'problem_class': problem,
107 'problem_params': problem_params,
108 'sweeper_class': sweeper,
109 'sweeper_params': sweeper_params,
110 'level_params': level_params,
111 'step_params': step_params,
112 }
114 # instantiate controller
115 controller = controller_nonMPI(num_procs=1, controller_params=controller_params, description=description)
116 P = controller.MS[0].levels[0].prob
118 uinit = P.u_exact(t0)
120 # call main function to get things done...
121 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend)
122 controller.MS[0].levels[0].sweep.compute_end_point()
124 residual = controller.MS[0].levels[0].status.residual
126 return uend, residual, stats
129def check_order(comm):
130 num_nodes = comm.Get_size()
131 use_MPI = True
132 residual_type = 'full_abs'
133 for semi_implicit in [False, True]:
134 for index_case in [1, 2]:
135 dt_list = np.logspace(-1.7, -1.0, num=5)
137 errorsDiff, errorsAlg = np.zeros(len(dt_list)), np.zeros(len(dt_list))
138 for i, dt in enumerate(dt_list):
139 _, _, stats = run(
140 dt=dt,
141 num_nodes=num_nodes,
142 use_MPI=use_MPI,
143 semi_implicit=semi_implicit,
144 residual_type=residual_type,
145 index_case=index_case,
146 comm=comm,
147 )
149 errorsDiff[i] = max(
150 np.array(
151 get_sorted(stats, type='e_global_differential_post_step', sortby='time', recomputed=False)
152 )[:, 1]
153 )
154 errorsAlg[i] = max(
155 np.array(get_sorted(stats, type='e_global_algebraic_post_step', sortby='time', recomputed=False))[
156 :, 1
157 ]
158 )
160 # only process with index 0 should plot
161 if comm.Get_rank() == 0:
162 orderDiff = np.mean(
163 [
164 np.log(errorsDiff[i] / errorsDiff[i - 1]) / np.log(dt_list[i] / dt_list[i - 1])
165 for i in range(1, len(dt_list))
166 ]
167 )
168 orderAlg = np.mean(
169 [
170 np.log(errorsAlg[i] / errorsAlg[i - 1]) / np.log(dt_list[i] / dt_list[i - 1])
171 for i in range(1, len(dt_list))
172 ]
173 )
175 refOrderDiff = 2 * comm.Get_size() - 1
176 refOrderAlg = 2 * comm.Get_size() - 1 if index_case == 1 else comm.Get_size()
177 assert np.isclose(
178 orderDiff, refOrderDiff, atol=1e0
179 ), f"Expected order {refOrderDiff} in differential variable, got {orderDiff}"
180 assert np.isclose(
181 orderAlg, refOrderAlg, atol=1e0
182 ), f"Expected order {refOrderAlg} in algebraic variable, got {orderAlg}"
185if __name__ == "__main__":
186 comm = MPI.COMM_WORLD
187 check_order(comm)