Coverage for pySDC/projects/DAE/problems/transistorAmplifier.py: 97%
59 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import warnings
2import numpy as np
3from scipy.interpolate import interp1d
5from pySDC.projects.DAE.misc.problemDAE import ProblemDAE
6from pySDC.implementations.datatype_classes.mesh import mesh
9# Helper function
10def _transistor(u_in):
11 return 1e-6 * (np.exp(u_in / 0.026) - 1)
14class OneTransistorAmplifier(ProblemDAE):
15 r"""
16 The one transistor amplifier example from pg. 377 in [1]_. The problem is an index-1 differential-algebraic equation
17 (DAE) having the equations
19 .. math::
20 \frac{U_e (t)}{R_0} - \frac{U_1 (t)}{R_0} + C_1 (\frac{d U_2 (t)}{dt} - \frac{d U_1 (t)}{dt}) = 0,
22 .. math::
23 \frac{U_b}{R_2} - U_2 (t) (\frac{1}{R_1} + \frac{1}{R_2}) + C_1 (\frac{d U_1 (t)}{dt} - \frac{d U_2 (t)}{dt}) - 0.01 f(U_2 (t) - U_3 (t)) = 0,
25 .. math::
26 f(U_2 (t) - U_3 (t)) - \frac{U_3 (t)}{R_3} - C_2 \frac{d U_3 (t)}{dt} = 0,
28 .. math::
29 \frac{U_b}{R_4} - \frac{U_4 (t)}{R_4} + C_3 (\frac{d U_5 (t)}{dt} - \frac{d U_4 (t)}{dt}) - 0.99 f(U_2 (t) - U_3 (t)) = 0,
31 .. math::
32 -\frac{U_5 (t)}{R_5} + C_3 (\frac{d U_4 (t)}{dt} - \frac{d U_5 (t)}{dt}) = 0,
34 with
36 .. math::
37 f(U(t)) = 10^{-6} (exp(\frac{U (t)}{0.026}) - 1).
39 The initial signal :math:`U_e (t)` is defined as
41 .. math::
42 U_e (t) = 0.4 \sin(200 \pi t).
44 Constants are fixed as :math:`U_b = 6`, :math:`R_0 = 1000`, :math:`R_k = 9000` for :math:`k=1,..,5`,
45 `C_j = j \cdot 10^{-6}` for :math:`j=1,2,3`.They are also defined in the method `eval_f`.
47 Parameters
48 ----------
49 nvars : int
50 Number of unknowns of the system of DAEs.
51 newton_tol : float
52 Tolerance for Newton solver.
54 Attributes
55 ----------
56 t_end: float
57 The end time at which the reference solution is determined.
59 References
60 ----------
61 .. [1] E. Hairer, G. Wanner. Solving ordinary differential equations II: Stiff and differential-algebraic problems.
62 Springer (2009).
63 """
65 dtype_u = mesh
66 dtype_f = mesh
68 def __init__(self, newton_tol):
69 super().__init__(nvars=5, newton_tol=newton_tol)
70 # load reference solution
71 # data file must be generated and stored under misc/data and self.t_end = t[-1]
72 # data = np.load(r'pySDC/projects/DAE/misc/data/one_trans_amp.npy')
73 # x = data[:, 0]
74 # # The last column contains the input signal
75 # y = data[:, 1:-1]
76 # self.u_ref = interp1d(x, y, kind='cubic', axis=0, fill_value='extrapolate')
77 self.t_end = 0.0
79 def eval_f(self, u, du, t):
80 r"""
81 Routine to evaluate the implicit representation of the problem, i.e., :math:`F(u, u', t)`.
83 Parameters
84 ----------
85 u : dtype_u
86 Current values of the numerical solution at time t.
87 du : dtype_u
88 Current values of the derivative of the numerical solution at time t.
89 t : float
90 Current time of the numerical solution.
92 Returns
93 -------
94 f : dtype_f
95 Current value of the right-hand side of f (which includes five components).
96 """
97 u_b = 6.0
98 u_e = 0.4 * np.sin(200 * np.pi * t)
99 alpha = 0.99
100 r_0 = 1000
101 r_k = 9000
102 c_1, c_2, c_3 = 1e-6, 2e-6, 3e-6
103 f = self.dtype_f(self.init)
104 f[:] = (
105 (u_e - u[0]) / r_0 + c_1 * (du[1] - du[0]),
106 (u_b - u[1]) / r_k - u[1] / r_k + c_1 * (du[0] - du[1]) - (1 - alpha) * _transistor(u[1] - u[2]),
107 _transistor(u[1] - u[2]) - u[2] / r_k - c_2 * du[2],
108 (u_b - u[3]) / r_k + c_3 * (du[4] - du[3]) - alpha * _transistor(u[1] - u[2]),
109 -u[4] / r_k + c_3 * (du[3] - du[4]),
110 )
111 self.work_counters['rhs']()
112 return f
114 def u_exact(self, t):
115 """
116 Approximation of the exact solution generated by spline interpolation of an extremely accurate numerical
117 reference solution.
119 Parameters
120 ----------
121 t : float
122 The time of the reference solution.
124 Returns
125 -------
126 me : dtype_u
127 The reference solution as mesh object containing five components and fixed initial conditions.
128 """
129 me = self.dtype_u(self.init)
131 if t == 0:
132 me[:] = (0, 3, 3, 6, 0)
133 elif t < self.t_end:
134 me[:] = self.u_ref(t)
135 else:
136 self.logger.warning("Requested time exceeds domain of the reference solution. Returning zero.")
137 me[:] = (0, 0, 0, 0, 0)
138 return me
141class TwoTransistorAmplifier(ProblemDAE):
142 r"""
143 The two transistor amplifier example from page 108 in [1]_. The problem is an index-1 differential-algebraic equation
144 (DAE) having the equations
146 .. math::
147 \frac{U_e (t)}{R_0} - \frac{U_1 (t)}{R_0} + C_1 (\frac{d U_2 (t)}{dt} - \frac{d U_1 (t)}{dt}) = 0,
149 .. math::
150 \frac{U_b}{R_2} - U_2 (t) (\frac{1}{R_1} + \frac{1}{R_2}) + C_1 (\frac{d U_1 (t)}{dt} - \frac{d U_2 (t)}{dt}) - (\alpha - 1) f(U_2 (t) - U_3 (t)) = 0,
152 .. math::
153 f(U_2 (t) - U_3 (t)) - \frac{U_3 (t)}{R_3} - C_2 \frac{d U_3 (t)}{dt} = 0,
155 .. math::
156 \frac{U_b}{R_4} - \frac{U_4 (t)}{R_4} + C_3 (\frac{d U_5 (t)}{dt} - \frac{d U_4 (t)}{dt}) - \alpha f(U_2 (t) - U_3 (t)) = 0,
158 .. math::
159 \frac{U_b}{R_6} - U_5 (t) (\frac{1}{R_5} + \frac{1}{R_6}) + C_3 (\frac{d U_4 (t)}{dt} - \frac{d U_5 (t)}{dt}) + (\alpha - 1) f(U_5 (t) - U_6 (t)) = 0,
161 .. math::
162 f(U_5 (t) - U_6 (t)) - \frac{U_6 (t)}{R_7} - C_4 \frac{d U_6 (t)}{dt} = 0,
164 .. math::
165 \frac{U_b}{R_8} - \frac{U_7 (t)}{R_8} - C_5 (\frac{d U_7 (t)}{dt} - \frac{d U_8 (t)}{dt}) - \alpha f(U_5 (t) - U_6 (t)) = 0,
167 .. math::
168 \frac{U_8 (t)}{R_9} - C_5 (\frac{d U_7 (t)}{dt} - \frac{d U_7 (t)}{dt}) = 0,
170 with
172 .. math::
173 f(U_i (t) - U_j (t)) = \beta (\exp(\frac{U_i (t) - U_j (t)}{U_F}) - 1).
175 The initial signal :math:`U_e (t)` is defined as
177 .. math::
178 U_e (t) = 0.1 \sin(200 \pi t).
180 Constants are fixed as :math:`U_b = 6`, :math:`U_F = 0.026`, :math:`\alpha = 0.99`, :math:`\beta = 10^{-6}`, :math:`R_0 = 1000`,
181 :math:`R_k = 9000` for :math:`k=1,..,9`, `C_j = j \cdot 10^{-6}` for :math:`j=1,..,5`. They are also defined in the
182 method `eval_f`.
184 Parameters
185 ----------
186 nvars : int
187 Number of unknowns of the system of DAEs.
188 newton_tol : float
189 Tolerance for Newton solver.
191 Attributes
192 ----------
193 t_end: float
194 The end time at which the reference solution is determined.
196 References
197 ----------
198 .. [1] E. Hairer, C. Lubich, M. Roche. The numerical solution of differential-algebraic systems by Runge-Kutta methods.
199 Lect. Notes Math. (1989).
200 """
202 dtype_u = mesh
203 dtype_f = mesh
205 def __init__(self, newton_tol):
206 super().__init__(nvars=8, newton_tol=newton_tol)
207 # load reference solution
208 # data file must be generated and stored under misc/data and self.t_end = t[-1]
209 # data = np.load(r'pySDC/projects/DAE/misc/data/two_trans_amp.npy')
210 # x = data[:, 0]
211 # The last column contains the input signal
212 # y = data[:, 1:-1]
213 # self.u_ref = interp1d(x, y, kind='cubic', axis=0, fill_value='extrapolate')
214 self.t_end = 0.0
216 def eval_f(self, u, du, t):
217 r"""
218 Routine to evaluate the implicit representation of the problem, i.e., :math:`F(u, u', t)`.
220 Parameters
221 ----------
222 u : dtype_u
223 Current values of the numerical solution at time t.
224 du : dtype_u
225 Current values of the derivative of the numerical solution at time t.
226 t : float
227 Current time of the numerical solution.
229 Returns
230 -------
231 f : dtype_f
232 Current value of the right-hand side of f (which includes eight components).
233 """
234 u_b = 6.0
235 u_e = 0.1 * np.sin(200 * np.pi * t)
236 alpha = 0.99
237 r_0 = 1000.0
238 r_k = 9000.0
239 c_1, c_2, c_3, c_4, c_5 = 1e-6, 2e-6, 3e-6, 4e-6, 5e-6
240 f = self.dtype_f(self.init)
241 f[:] = (
242 (u_e - u[0]) / r_0 - c_1 * (du[0] - du[1]),
243 (u_b - u[1]) / r_k - u[1] / r_k + c_1 * (du[0] - du[1]) + (alpha - 1) * _transistor(u[1] - u[2]),
244 _transistor(u[1] - u[2]) - u[2] / r_k - c_2 * du[2],
245 (u_b - u[3]) / r_k - c_3 * (du[3] - du[4]) - alpha * _transistor(u[1] - u[2]),
246 (u_b - u[4]) / r_k - u[4] / r_k + c_3 * (du[3] - du[4]) + (alpha - 1) * _transistor(u[4] - u[5]),
247 _transistor(u[4] - u[5]) - u[5] / r_k - c_4 * du[5],
248 (u_b - u[6]) / r_k - c_5 * (du[6] - du[7]) - alpha * _transistor(u[4] - u[5]),
249 -u[7] / r_k + c_5 * (du[6] - du[7]),
250 )
251 self.work_counters['rhs']()
252 return f
254 def u_exact(self, t):
255 """
256 Dummy exact solution that should only be used to get initial conditions for the problem. This makes
257 initialisation compatible with problems that have a known analytical solution. Could be used to output a
258 reference solution if generated/available.
260 Parameters
261 ----------
262 t : float
263 The time of the reference solution.
265 Returns
266 -------
267 me : dtype_u
268 The reference solution as mesh object containing eight components and fixed initial conditions.
269 """
270 me = self.dtype_u(self.init)
272 if t == 0:
273 me[:] = (0, 3, 3, 6, 3, 3, 6, 0)
274 elif t < self.t_end:
275 me[:] = self.u_ref(t)
276 else:
277 self.logger.warning("Requested time exceeds domain of the reference solution. Returning zero.")
278 me[:] = (0, 0, 0, 0, 0, 0, 0, 0)
279 return me