Coverage for pySDC/projects/DAE/problems/problematicF.py: 100%
22 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import numpy as np
3from pySDC.projects.DAE.misc.problemDAE import ProblemDAE
4from pySDC.implementations.datatype_classes.mesh import mesh
7class ProblematicF(ProblemDAE):
8 r"""
9 Standard example of a very simple fully implicit index-2 differential algebraic equation (DAE) that is not
10 numerically solvable for certain choices of the parameter :math:`\eta`. The DAE system is given by
12 .. math::
13 \frac{d y(t)}{dt} + \eta t \frac{d z(t)}{dt} + (1 + \eta) z (t) = g (t).
15 .. math::
16 y (t) + \eta t z (t) = f(t),
18 See, for example, page 264 of [1]_.
20 Parameters
21 ----------
22 nvars : int
23 Number of unknowns of the system of DAEs.
24 newton_tol : float
25 Tolerance for Newton solver.
27 Attributes
28 ----------
29 eta : float
30 Specific parameter of the problem.
32 References
33 ----------
34 .. [1] U. Ascher, L. R. Petzold. Computer method for ordinary differential equations and differential-algebraic
35 equations. Society for Industrial and Applied Mathematics (1998).
36 """
38 dtype_u = mesh
39 dtype_f = mesh
41 def __init__(self, newton_tol, eta=1):
42 """Initialization routine"""
43 super().__init__(nvars=2, newton_tol=newton_tol)
44 self._makeAttributeAndRegister('eta', localVars=locals())
46 def eval_f(self, u, du, t):
47 r"""
48 Routine to evaluate the implicit representation of the problem, i.e., :math:`F(u, u', t)`.
50 Parameters
51 ----------
52 u : dtype_u
53 Current values of the numerical solution at time t.
54 du : dtype_u
55 Current values of the derivative of the numerical solution at time t.
56 t : float
57 Current time of the numerical solution.
59 Returns
60 -------
61 f : dtype_f
62 Current value of the right-hand side of f (which includes two components).
63 """
64 f = self.dtype_f(self.init)
65 f[:] = (
66 u[0] + self.eta * t * u[1] - np.sin(t),
67 du[0] + self.eta * t * du[1] + (1 + self.eta) * u[1] - np.cos(t),
68 )
69 self.work_counters['rhs']()
70 return f
72 def u_exact(self, t):
73 """
74 Routine for the exact solution.
76 Parameters
77 ----------
78 t : float
79 The time of the reference solution.
81 Returns
82 -------
83 me : dtype_u
84 The reference solution as mesh object containing two components.
85 """
86 me = self.dtype_u(self.init)
87 me[:] = (np.sin(t), 0)
88 return me
90 def du_exact(self, t):
91 """
92 Routine for the derivative of the exact solution.
94 Parameters
95 ----------
96 t : float
97 The time of the reference solution.
99 Returns
100 -------
101 me : dtype_u
102 The reference solution as mesh object containing two components.
103 """
105 me = self.dtype_u(self.init)
106 me[:] = (np.cos(t), 0)
107 return me