Coverage for pySDC/projects/DAE/problems/simpleDAE.py: 100%
22 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import numpy as np
3from pySDC.projects.DAE.misc.problemDAE import ProblemDAE
6class SimpleDAE(ProblemDAE):
7 r"""
8 Example implementing a smooth linear index-2 differential-algebraic equation (DAE) with known analytical solution.
9 The DAE system is given by
11 .. math::
12 \frac{d u_1 (t)}{dt} = (\alpha - \frac{1}{2 - t}) u_1 (t) + (2-t) \alpha z (t) + \frac{3 - t}{2 - t},
14 .. math::
15 \frac{d u_2 (t)}{dt} = \frac{1 - \alpha}{t - 2} u_1 (t) - u_2 (t) + (\alpha - 1) z (t) + 2 e^{t},
17 .. math::
18 0 = (t + 2) u_1 (t) + (t^{2} - 4) u_2 (t) - (t^{2} + t - 2) e^{t}.
20 The exact solution of this system is
22 .. math::
23 u_1 (t) = u_2 (t) = e^{t},
25 .. math::
26 z (t) = -\frac{e^{t}}{2 - t}.
28 This example is commonly used to test that numerical implementations are functioning correctly. See, for example,
29 page 267 of [1]_.
31 Parameters
32 ----------
33 nvars : int
34 Number of unknowns of the system of DAEs.
35 newton_tol : float
36 Tolerance for Newton solver.
38 References
39 ----------
40 .. [1] U. Ascher, L. R. Petzold. Computer method for ordinary differential equations and differential-algebraic
41 equations. Society for Industrial and Applied Mathematics (1998).
42 """
44 def __init__(self, newton_tol=1e-10):
45 """Initialization routine"""
46 super().__init__(nvars=3, newton_tol=newton_tol)
48 def eval_f(self, u, du, t):
49 r"""
50 Routine to evaluate the implicit representation of the problem, i.e., :math:`F(u, u', t)`.
52 Parameters
53 ----------
54 u : dtype_u
55 Current values of the numerical solution at time t.
56 du : dtype_u
57 Current values of the derivative of the numerical solution at time t.
58 t : float
59 Current time of the numerical solution.
61 Returns
62 -------
63 f : dtype_f
64 Current value of the right-hand side of f (which includes three components).
65 """
66 # Smooth index-2 DAE pg. 267 Ascher and Petzold (also the first example in KDC Minion paper)
67 a = 10.0
68 f = self.dtype_f(self.init)
70 f.diff[:2] = (
71 -du.diff[0] + (a - 1 / (2 - t)) * u.diff[0] + (2 - t) * a * u.alg[0] + (3 - t) / (2 - t) * np.exp(t),
72 -du.diff[1] + (1 - a) / (t - 2) * u.diff[0] - u.diff[1] + (a - 1) * u.alg[0] + 2 * np.exp(t),
73 )
74 f.alg[0] = (t + 2) * u.diff[0] + (t**2 - 4) * u.diff[1] - (t**2 + t - 2) * np.exp(t)
75 self.work_counters['rhs']()
76 return f
78 def u_exact(self, t):
79 """
80 Routine for the exact solution.
82 Parameters
83 ----------
84 t : float
85 The time of the reference solution.
87 Returns
88 -------
89 me : dtype_u
90 The reference solution as mesh object containing three components.
91 """
92 me = self.dtype_u(self.init)
93 me.diff[:2] = (np.exp(t), np.exp(t))
94 me.alg[0] = -np.exp(t) / (2 - t)
95 return me
97 def du_exact(self, t):
98 """
99 Routine for the derivative of the exact solution.
101 Parameters
102 ----------
103 t : float
104 The time of the reference solution.
106 Returns
107 -------
108 me : dtype_u
109 The reference solution as mesh object containing three components.
110 """
112 me = self.dtype_u(self.init)
113 me.diff[:2] = (np.exp(t), np.exp(t))
114 me.alg[0] = (np.exp(t) * (t - 3)) / ((2 - t) ** 2)
115 return me