Coverage for pySDC/projects/DAE/problems/pendulum2D.py: 88%
25 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1from pySDC.projects.DAE.misc.problemDAE import ProblemDAE
4class Pendulum2D(ProblemDAE):
5 r"""
6 Example implementing the well known 2D pendulum as a first order differential-algebraic equation (DAE) of index 3.
7 The DAE system is given by the equations
9 .. math::
10 \frac{dp}{dt} = u,
12 .. math::
13 \frac{dq}{dt} = v,
15 .. math::
16 m\frac{du}{dt} = -p \lambda,
18 .. math::
19 m\frac{dv}{dt} = -q \lambda - g,
21 .. math::
22 0 = p^2 + q^2 - l^2
24 for :math:`l=1` and :math:`m=1`. The pendulum is used in most introductory literature on DAEs, for example on page 8
25 of [1]_.
27 Parameters
28 ----------
29 nvars : int
30 Number of unknowns of the system of DAEs.
31 newton_tol : float
32 Tolerance for Newton solver.
34 Attributes
35 ----------
36 t_end: float
37 The end time at which the reference solution is determined.
39 References
40 ----------
41 .. [1] E. Hairer, C. Lubich, M. Roche. The numerical solution of differential-algebraic systems by Runge-Kutta methods.
42 Lect. Notes Math. (1989).
43 """
45 def __init__(self, newton_tol):
46 """Initialization routine"""
47 super().__init__(nvars=5, newton_tol=newton_tol)
48 # load reference solution
49 # data file must be generated and stored under misc/data and self.t_end = t[-1]
50 # data = np.load(r'pySDC/projects/DAE/misc/data/pendulum.npy')
51 # t = data[:, 0]
52 # solution = data[:, 1:]
53 # self.u_ref = interp1d(t, solution, kind='cubic', axis=0, fill_value='extrapolate')
54 self.t_end = 0.0
56 def eval_f(self, u, du, t):
57 r"""
58 Routine to evaluate the implicit representation of the problem, i.e., :math:`F(u, u', t)`.
60 Parameters
61 ----------
62 u : dtype_u
63 Current values of the numerical solution at time t.
64 du : dtype_u
65 Current values of the derivative of the numerical solution at time t.
66 t : float
67 Current time of the numerical solution.
69 Returns
70 -------
71 f : dtype_f
72 Current value of the right-hand side of f (which includes five components).
73 """
74 g = 9.8
75 # The last element of u is a Lagrange multiplier. Not sure if this needs to be time dependent, but must model the
76 # weight somehow
77 f = self.dtype_f(self.init)
78 f.diff[:4] = (
79 du.diff[0] - u.diff[2],
80 du.diff[1] - u.diff[3],
81 du.diff[2] + u.alg[0] * u.diff[0],
82 du.diff[3] + u.alg[0] * u.diff[1] + g,
83 )
84 f.alg[0] = u.diff[0] ** 2 + u.diff[1] ** 2 - 1
85 self.work_counters['rhs']()
86 return f
88 def u_exact(self, t):
89 """
90 Approximation of the exact solution generated by spline interpolation of an extremely accurate numerical reference solution.
92 Parameters
93 ----------
94 t : float
95 The time of the reference solution.
97 Returns
98 -------
99 me : dtype_u
100 The reference solution as mesh object. It contains fixed initial conditions at initial time.
101 """
102 me = self.dtype_u(self.init)
103 if t == 0:
104 me.diff[:4] = (-1, 0, 0, 0)
105 me.alg[0] = 0
106 elif t < self.t_end:
107 u_ref = self.u_ref(t)
108 me.diff[:4] = u_ref[:4]
109 me.alg[0] = u_ref[5]
110 else:
111 self.logger.warning("Requested time exceeds domain of the reference solution. Returning zero.")
112 me.diff[:4] = (0, 0, 0, 0)
113 me.alg[0] = 0
114 return me