Coverage for pySDC/implementations/convergence_controller_classes/estimate_embedded_error.py: 79%

107 statements  

« prev     ^ index     » next       coverage.py v7.6.7, created at 2024-11-16 14:51 +0000

1import numpy as np 

2 

3from pySDC.core.convergence_controller import ConvergenceController, Pars, Status 

4from pySDC.implementations.convergence_controller_classes.store_uold import StoreUOld 

5 

6from pySDC.implementations.sweeper_classes.Runge_Kutta import RungeKutta 

7 

8 

9class EstimateEmbeddedError(ConvergenceController): 

10 """ 

11 The embedded error is obtained by computing two solutions of different accuracy and pretending the more accurate 

12 one is an exact solution from the point of view of the less accurate solution. In practice, we like to compute the 

13 solutions with different order methods, meaning that in SDC we can just subtract two consecutive sweeps, as long as 

14 you make sure your preconditioner is compatible, which you have to just try out... 

15 """ 

16 

17 @classmethod 

18 def get_implementation(cls, flavor='standard', useMPI=False): 

19 """ 

20 Retrieve the implementation for a specific flavor of this class. 

21 

22 Args: 

23 flavor (str): The implementation that you want 

24 

25 Returns: 

26 cls: The child class that implements the desired flavor 

27 """ 

28 if flavor == 'standard': 

29 return cls 

30 elif flavor == 'linearized': 

31 if useMPI: 

32 return EstimateEmbeddedErrorLinearizedMPI 

33 else: 

34 return EstimateEmbeddedErrorLinearizedNonMPI 

35 elif flavor == 'collocation': 

36 return EstimateEmbeddedErrorCollocation 

37 else: 

38 raise NotImplementedError(f'Flavor {flavor} of EstimateEmbeddedError is not implemented!') 

39 

40 def setup(self, controller, params, description, **kwargs): 

41 """ 

42 Add a default value for control order to the parameters and check if we are using a Runge-Kutta sweeper 

43 

44 Args: 

45 controller (pySDC.Controller): The controller 

46 params (dict): Parameters for the convergence controller 

47 description (dict): The description object used to instantiate the controller 

48 

49 Returns: 

50 dict: Updated parameters 

51 """ 

52 sweeper_type = 'SDC' 

53 if RungeKutta in description['sweeper_class'].__mro__: 

54 sweeper_type = 'RK' 

55 elif 'SweeperMPI' in [me.__name__ for me in description['sweeper_class'].__mro__]: 

56 sweeper_type = 'MPI' 

57 return { 

58 "control_order": -80, 

59 "sweeper_type": sweeper_type, 

60 **super().setup(controller, params, description, **kwargs), 

61 } 

62 

63 def dependencies(self, controller, description, **kwargs): 

64 """ 

65 Load the convergence controller that stores the solution of the last sweep unless we are doing Runge-Kutta. 

66 Add the hook for recording the error. 

67 

68 Args: 

69 controller (pySDC.Controller): The controller 

70 description (dict): The description object used to instantiate the controller 

71 

72 Returns: 

73 None 

74 """ 

75 if RungeKutta not in description["sweeper_class"].__bases__: 

76 controller.add_convergence_controller(StoreUOld, description=description) 

77 

78 from pySDC.implementations.hooks.log_embedded_error_estimate import LogEmbeddedErrorEstimate 

79 

80 controller.add_hook(LogEmbeddedErrorEstimate) 

81 return None 

82 

83 def estimate_embedded_error_serial(self, L): 

84 """ 

85 Estimate the serial embedded error, which may need to be modified for a parallel estimate. 

86 

87 Depending on the type of sweeper, the lower order solution is stored in a different place. 

88 

89 Args: 

90 L (pySDC.level): The level 

91 

92 Returns: 

93 dtype_u: The embedded error estimate 

94 """ 

95 if self.params.sweeper_type == "RK": 

96 L.sweep.compute_end_point() 

97 return abs(L.uend - L.sweep.u_secondary) 

98 elif self.params.sweeper_type == "SDC": 

99 # order rises by one between sweeps 

100 return abs(L.uold[-1] - L.u[-1]) 

101 elif self.params.sweeper_type == 'MPI': 

102 comm = L.sweep.comm 

103 return comm.bcast(abs(L.uold[comm.rank + 1] - L.u[comm.rank + 1]), root=comm.size - 1) 

104 else: 

105 raise NotImplementedError( 

106 f"Don't know how to estimate embedded error for sweeper type \ 

107\"{self.params.sweeper_type}\"" 

108 ) 

109 

110 def setup_status_variables(self, controller, **kwargs): 

111 """ 

112 Add the embedded error to the level status 

113 

114 Args: 

115 controller (pySDC.Controller): The controller 

116 """ 

117 self.add_status_variable_to_level('error_embedded_estimate') 

118 self.add_status_variable_to_level('increment') 

119 

120 def post_iteration_processing(self, controller, S, **kwargs): 

121 """ 

122 Estimate the local error here. 

123 

124 If you are doing MSSDC, this is the global error within the block in Gauss-Seidel mode. 

125 In Jacobi mode, I haven't thought about what this is. 

126 

127 Args: 

128 controller (pySDC.Controller): The controller 

129 S (pySDC.Step): The current step 

130 

131 Returns: 

132 None 

133 """ 

134 

135 if S.status.iter > 0 or self.params.sweeper_type == "RK": 

136 for L in S.levels: 

137 L.status.error_embedded_estimate = max([self.estimate_embedded_error_serial(L), np.finfo(float).eps]) 

138 L.status.increment = L.status.error_embedded_estimate * 1 

139 self.debug(f'L.status.error_embedded_estimate={L.status.error_embedded_estimate:.5e}', S) 

140 

141 return None 

142 

143 

144class EstimateEmbeddedErrorLinearizedNonMPI(EstimateEmbeddedError): 

145 def __init__(self, controller, params, description, **kwargs): 

146 """ 

147 Initialisation routine. Add the buffers for communication. 

148 

149 Args: 

150 controller (pySDC.Controller): The controller 

151 params (dict): Parameters for the convergence controller 

152 description (dict): The description object used to instantiate the controller 

153 """ 

154 super().__init__(controller, params, description, **kwargs) 

155 self.buffers = Pars({'e_em_last': 0.0}) 

156 

157 def setup(self, controller, params, description, **kwargs): 

158 """ 

159 Add option for averaging the local errors. 

160 

161 Args: 

162 controller (pySDC.Controller): The controller 

163 params (dict): Parameters for the convergence controller 

164 description (dict): The description object used to instantiate the controller 

165 

166 Returns: 

167 dict: Updated parameters 

168 """ 

169 return { 

170 'averaged': False, 

171 **super().setup(controller, params, description, **kwargs), 

172 } 

173 

174 def reset_buffers_nonMPI(self, controller, **kwargs): 

175 """ 

176 Reset buffers for imitated communication. 

177 

178 Args: 

179 controller (pySDC.controller): The controller 

180 

181 Returns: 

182 None 

183 """ 

184 self.buffers.e_em_last = 0.0 

185 return None 

186 

187 def post_iteration_processing(self, controller, S, **kwargs): 

188 """ 

189 Compute embedded error estimate on the last node of each level 

190 In serial this is the local error, but in block Gauss-Seidel MSSDC this is a semi-global error in each block 

191 

192 Args: 

193 controller (pySDC.Controller): The controller 

194 S (pySDC.Step): The current step 

195 

196 Returns: 

197 None 

198 """ 

199 if len(S.levels) > 1 and len(controller.MS) > 1: 

200 raise NotImplementedError( 

201 "Embedded error estimate only works for serial multi-level or parallel single \ 

202level" 

203 ) 

204 

205 if S.status.iter > 0 or self.params.sweeper_type == "RK": 

206 if self.params.averaged: 

207 averaging = float(S.status.slot + 1) 

208 else: 

209 averaging = 1.0 

210 

211 for L in S.levels: 

212 temp = self.estimate_embedded_error_serial(L) 

213 L.status.error_embedded_estimate = max( 

214 [abs(temp - self.buffers.e_em_last) / averaging, np.finfo(float).eps] 

215 ) 

216 

217 if not self.params.averaged: 

218 self.buffers.e_em_last = temp * 1.0 

219 

220 return None 

221 

222 

223class EstimateEmbeddedErrorLinearizedMPI(EstimateEmbeddedError): 

224 def __init__(self, controller, params, description, **kwargs): 

225 """ 

226 Initialisation routine. Add the buffers for communication. 

227 

228 Args: 

229 controller (pySDC.Controller): The controller 

230 params (dict): Parameters for the convergence controller 

231 description (dict): The description object used to instantiate the controller 

232 """ 

233 super().__init__(controller, params, description, **kwargs) 

234 self.buffers = Pars({'e_em_last': 0.0}) 

235 

236 def post_iteration_processing(self, controller, S, **kwargs): 

237 """ 

238 Compute embedded error estimate on the last node of each level 

239 In serial this is the local error, but in block Gauss-Seidel MSSDC this is a semi-global error in each block 

240 

241 Args: 

242 controller (pySDC.Controller): The controller 

243 S (pySDC.Step): The current step 

244 

245 Returns: 

246 None 

247 """ 

248 comm = kwargs['comm'] 

249 

250 if S.status.iter > 0 or self.params.sweeper_type == "RK": 

251 for L in S.levels: 

252 # get accumulated local errors from previous steps 

253 if not S.status.first: 

254 if not S.status.prev_done: 

255 self.buffers.e_em_last = self.recv(comm, S.status.slot - 1) 

256 else: 

257 self.buffers.e_em_last = 0.0 

258 

259 # estimate accumulated local error 

260 temp = self.estimate_embedded_error_serial(L) 

261 

262 # estimate local error as difference of accumulated errors 

263 L.status.error_embedded_estimate = max([abs(temp - self.buffers.e_em_last), np.finfo(float).eps]) 

264 

265 # send the accumulated local errors forward 

266 if not S.status.last: 

267 self.send(comm, dest=S.status.slot + 1, data=temp, blocking=True) 

268 

269 return None 

270 

271 

272class EstimateEmbeddedErrorCollocation(ConvergenceController): 

273 """ 

274 Estimates an embedded error based on changing the underlying quadrature rule. The error estimate is stored as 

275 `error_embedded_estimate_collocation` in the status of the level. Note that we only compute the estimate on the 

276 finest level. The error is stored as a tuple with the first index denoting to which iteration it belongs. This 

277 is useful since the error estimate is not available immediately after, but only when the next collocation problem 

278 is converged to make sure the two solutions are of different accuracy. 

279 

280 Changing the collocation method between iterations happens using the `AdaptiveCollocation` convergence controller. 

281 Please refer to that for documentation on how to use this. Just pass the parameters for that convergence controller 

282 as `adaptive_coll_params` to the parameters for this one and they will be passed on when the `AdaptiveCollocation` 

283 convergence controller is automatically added while loading dependencies. 

284 """ 

285 

286 def setup(self, controller, params, description, **kwargs): 

287 """ 

288 Add a default value for control order to the parameters 

289 

290 Args: 

291 controller (pySDC.Controller): The controller 

292 params (dict): Parameters for the convergence controller 

293 description (dict): The description object used to instantiate the controller 

294 

295 Returns: 

296 dict: Updated parameters 

297 """ 

298 defaults = { 

299 "control_order": 210, 

300 "adaptive_coll_params": {}, 

301 **super().setup(controller, params, description, **kwargs), 

302 } 

303 return defaults 

304 

305 def dependencies(self, controller, description, **kwargs): 

306 """ 

307 Load the `AdaptiveCollocation` convergence controller to switch between collocation problems between iterations. 

308 

309 Args: 

310 controller (pySDC.Controller): The controller 

311 description (dict): The description object used to instantiate the controller 

312 """ 

313 from pySDC.implementations.convergence_controller_classes.adaptive_collocation import AdaptiveCollocation 

314 

315 controller.add_convergence_controller( 

316 AdaptiveCollocation, params=self.params.adaptive_coll_params, description=description 

317 ) 

318 from pySDC.implementations.hooks.log_embedded_error_estimate import LogEmbeddedErrorEstimate 

319 

320 controller.add_hook(LogEmbeddedErrorEstimate) 

321 

322 def post_iteration_processing(self, controller, step, **kwargs): 

323 """ 

324 Compute the embedded error as the difference between the interpolated and the current solution on the finest 

325 level. 

326 

327 Args: 

328 controller (pySDC.Controller.controller): The controller 

329 step (pySDC.Step.step): The current step 

330 """ 

331 if step.status.done: 

332 lvl = step.levels[0] 

333 lvl.sweep.compute_end_point() 

334 self.status.u += [lvl.uend] 

335 self.status.iter += [step.status.iter] 

336 

337 if len(self.status.u) > 1: 

338 lvl.status.error_embedded_estimate_collocation = ( 

339 self.status.iter[-2], 

340 max([np.finfo(float).eps, abs(self.status.u[-1] - self.status.u[-2])]), 

341 ) 

342 

343 def setup_status_variables(self, *args, **kwargs): 

344 """ 

345 Add the embedded error variable to the levels and add a status variable for previous steps. 

346 

347 Args: 

348 controller (pySDC.Controller): The controller 

349 """ 

350 self.status = Status(['u', 'iter']) 

351 self.status.u = [] # the solutions of converged collocation problems 

352 self.status.iter = [] # the iteration in which the solution converged 

353 

354 self.add_status_variable_to_level('error_embedded_estimate_collocation')