Coverage for pySDC/implementations/sweeper_classes/Multistep.py: 95%

83 statements  

« prev     ^ index     » next       coverage.py v7.6.7, created at 2024-11-16 14:51 +0000

1from pySDC.core.sweeper import Sweeper, _Pars 

2 

3 

4class Cache(object): 

5 """ 

6 Class for managing solutions and right hand side evaluations of previous steps for the MultiStep "sweeper". 

7 

8 Attributes: 

9 - u (list): Contains solution from previous steps 

10 - f (list): Contains right hand side evaluations from previous steps 

11 - t (list): Contains time of previous steps 

12 """ 

13 

14 def __init__(self, num_steps): 

15 """ 

16 Initialization routing 

17 

18 Args: 

19 num_steps (int): Number of entries for the cache 

20 """ 

21 self.num_steps = num_steps 

22 self.u = [None] * num_steps 

23 self.f = [None] * num_steps 

24 self.t = [None] * num_steps 

25 

26 def update(self, t, u, f): 

27 """ 

28 Add a new value to the cache and remove the oldest one. 

29 

30 Args: 

31 t (float): Time of new step 

32 u (dtype_u): Solution of new step 

33 f (dtype_f): Right hand side evaluation at new step 

34 """ 

35 self.u[:-1] = self.u[1:] 

36 self.f[:-1] = self.f[1:] 

37 self.t[:-1] = self.t[1:] 

38 

39 self.u[-1] = u 

40 self.f[-1] = f 

41 self.t[-1] = t 

42 

43 def __str__(self): 

44 """ 

45 Print the contents of the cache for debugging purposes. 

46 """ 

47 string = '' 

48 for i in range(self.num_steps): 

49 string = f'{string} t={self.t[i]}: u={self.u[i]}, f={self.f[i]}' 

50 

51 return string 

52 

53 

54class MultiStep(Sweeper): 

55 alpha = None 

56 beta = None 

57 

58 def __init__(self, params): 

59 """ 

60 Initialization routine for the base sweeper. 

61 

62 Multistep methods work by constructing Euleresque steps with the right hand side composed of a weighted sum of solutions and right hand side evaluations at previous steps. 

63 The coefficients in the weighted sum for the solutions are called alpha and the ones for the right hand sides are called beta in this implementation. 

64 So for an N step method, there need to be N alpha values and N + 1 beta values, where the last one is on the left hand side for implicit methods. 

65 The first element in the coefficients belongs to the value furthest in the past and vice versa. Values from previous time steps are stored in a `Cache` object. 

66 Be careful with the sign of the alpha values. You can look at the implementations of the Euler methods for guidance. 

67 

68 Class attributes: 

69 alpha (list): Coefficients for the solutions of previous steps 

70 beta (list): Coefficients for the right hand side evaluations 

71 

72 Args: 

73 params (dict): parameter object 

74 """ 

75 import logging 

76 from pySDC.core.collocation import CollBase 

77 

78 # set up logger 

79 self.logger = logging.getLogger('sweeper') 

80 

81 self.params = _Pars(params) 

82 

83 # check if some parameters are set which only apply to actual sweepers 

84 for key in ['initial_guess', 'collocation_class', 'num_nodes', 'quad_type']: 

85 if key in params: 

86 self.logger.warning(f'"{key}" will be ignored by multistep sweeper') 

87 

88 # we need a dummy collocation object to instantiate the levels. 

89 self.coll = CollBase(num_nodes=1, quad_type='RADAU-RIGHT') 

90 

91 # This will be set as soon as the sweeper is instantiated at the level 

92 self.__level = None 

93 

94 self.parallelizable = False 

95 

96 # proprietary variables for the multistep methods 

97 self.steps = len(self.alpha) 

98 self.cache = Cache(self.steps) 

99 

100 def predict(self): 

101 """ 

102 Add the initial conditions to the cache if needed. 

103 

104 Default prediction for the sweepers, only copies the values to all collocation nodes 

105 and evaluates the RHS of the ODE there 

106 """ 

107 lvl = self.level 

108 

109 if all(me is None for me in self.cache.t): 

110 prob = lvl.prob 

111 lvl.f[0] = prob.eval_f(lvl.u[0], lvl.time) 

112 self.cache.update(lvl.time, lvl.u[0], lvl.f[0]) 

113 

114 lvl.status.unlocked = True 

115 lvl.status.updated = True 

116 

117 def compute_residual(self, stage=None): 

118 """ 

119 Do nothing. 

120 

121 Args: 

122 stage (str): The current stage of the step the level belongs to 

123 """ 

124 lvl = self.level 

125 lvl.status.residual = 0.0 

126 lvl.status.updated = False 

127 

128 return None 

129 

130 def compute_end_point(self): 

131 """ 

132 The solution is stored in the single node that we have. 

133 """ 

134 self.level.uend = self.level.u[-1] 

135 

136 def update_nodes(self): 

137 """ 

138 Compute the solution to the current step. If the cache is not filled, we compute a provisional solution with a different method. 

139 """ 

140 

141 lvl = self.level 

142 prob = lvl.prob 

143 time = lvl.time + lvl.dt 

144 

145 if None in self.cache.t: 

146 self.generate_starting_values() 

147 

148 else: 

149 # build the right hand side from the previous solutions 

150 rhs = prob.dtype_u(prob.init) 

151 dts = [self.cache.t[i + 1] - self.cache.t[i] for i in range(self.steps - 1)] + [ 

152 time - self.cache.t[-1] 

153 ] # TODO: Does this work for adaptive step sizes? 

154 for i in range(len(self.alpha)): 

155 rhs -= self.alpha[i] * self.cache.u[i] 

156 rhs += dts[i] * self.beta[i] * self.cache.f[i] 

157 

158 # compute the solution to the current step "implicit Euler style" 

159 lvl.u[1] = prob.solve_system(rhs, lvl.dt * self.beta[-1], self.cache.u[-1], time) 

160 

161 lvl.f[1] = prob.eval_f(lvl.u[1], time) 

162 self.cache.update(time, lvl.u[1], lvl.f[1]) 

163 

164 def generate_starting_values(self): 

165 """ 

166 Compute solutions to the steps when not enough previous values are available for the multistep method. 

167 The initial conditions are added in `predict` since this is not bespoke behaviour to any method. 

168 """ 

169 raise NotImplementedError( 

170 "No implementation for generating solutions when not enough previous values are available!" 

171 ) 

172 

173 

174class AdamsBashforthExplicit1Step(MultiStep): 

175 """ 

176 This is just forward Euler. 

177 """ 

178 

179 alpha = [-1.0] 

180 beta = [1.0, 0.0] 

181 

182 

183class BackwardEuler(MultiStep): 

184 """ 

185 Almost as old, impressive and beloved as Koelner Dom. 

186 """ 

187 

188 alpha = [-1.0] 

189 beta = [0.0, 1.0] 

190 

191 

192class AdamsMoultonImplicit1Step(MultiStep): 

193 """ 

194 Trapezoidal method dressed up as a multistep method. 

195 """ 

196 

197 alpha = [-1.0] 

198 beta = [0.5, 0.5] 

199 

200 

201class AdamsMoultonImplicit2Step(MultiStep): 

202 """ 

203 Third order implicit scheme 

204 """ 

205 

206 alpha = [0.0, -1.0] 

207 beta = [-1.0 / 12.0, 8.0 / 12.0, 5.0 / 12.0] 

208 

209 def generate_starting_values(self): 

210 """ 

211 Generate starting value by trapezoidal rule. 

212 """ 

213 lvl = self.level 

214 prob = lvl.prob 

215 time = lvl.time + lvl.dt 

216 

217 # do trapezoidal rule 

218 rhs = lvl.u[0] + lvl.dt / 2 * lvl.f[0] 

219 

220 lvl.u[1] = prob.solve_system(rhs, lvl.dt / 2.0, lvl.u[0], time)