Coverage for pySDC/implementations/problem_classes/OuterSolarSystem.py: 100%
58 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-16 14:51 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-16 14:51 +0000
1import numpy as np
3from pySDC.core.problem import Problem
4from pySDC.implementations.datatype_classes.particles import particles, acceleration
7# noinspection PyUnusedLocal
8class outer_solar_system(Problem):
9 r"""
10 The :math:`N`-body problem describes the mutual influence of the motion of :math:`N` bodies. Formulation of the problem is
11 based on Newton's second law. Therefore, the :math:`N`-body problem is formulated as
13 .. math::
14 m_i \frac{d^2 {\bf r}_i}{d t^2} = \sum_{j=1, i\neq j}^N G \frac{m_i m_j}{|{\bf r}_i - {\bf r}_j|^3}({\bf r}_i - {\bf r}_j),
16 where :math:`m_i` is the :math:`i`-th mass point with position described by the vector :math:`{\bf r}_i`, and :math:`G`
17 is the gravitational constant. If only the sun influences the motion of the bodies gravitationally, the equations become
19 .. math::
20 m_i \frac{d^2 {\bf r}_i}{d t^2} = G \frac{m_1}{|{\bf r}_i - {\bf r}_1|^3}({\bf r}_i - {\bf r}_1).
22 This class implements the outer solar system consisting of the six outer planets: the sun, Jupiter, Saturn, Uranus,
23 Neptune, and Pluto, i.e., :math:`N=6`.
25 Parameters
26 ----------
27 sun_only : bool, optional
28 If False, only the sun is taken into account for the influence of the motion.
30 Attributes
31 ----------
32 G : float
33 Gravitational constant.
34 """
36 dtype_u = particles
37 dtype_f = acceleration
39 G = 2.95912208286e-4
41 def __init__(self, sun_only=False):
42 """Initialization routine"""
44 # invoke super init, passing nparts
45 super().__init__(((3, 6), None, np.dtype('float64')))
46 self._makeAttributeAndRegister('sun_only', localVars=locals())
48 def eval_f(self, u, t):
49 """
50 Routine to compute the right-hand side of the problem.
52 Parameters
53 ----------
54 u : dtype_u
55 The particles.
56 t (float): Current time at which the particles are computed (not used here).
58 Returns
59 -------
60 me : dtype_f
61 The right-hand side of the problem.
62 """
63 me = self.dtype_f(self.init, val=0.0)
65 # compute the acceleration due to gravitational forces
66 # ... only with respect to the sun
67 if self.sun_only:
68 for i in range(1, self.init[0][-1]):
69 dx = u.pos[:, i] - u.pos[:, 0]
70 r = np.sqrt(np.dot(dx, dx))
71 df = self.G * dx / (r**3)
72 me[:, i] -= u.m[0] * df
74 # ... or with all planets involved
75 else:
76 for i in range(self.init[0][-1]):
77 for j in range(i):
78 dx = u.pos[:, i] - u.pos[:, j]
79 r = np.sqrt(np.dot(dx, dx))
80 df = self.G * dx / (r**3)
81 me[:, i] -= u.m[j] * df
82 me[:, j] += u.m[i] * df
84 return me
86 def u_exact(self, t):
87 r"""
88 Routine to compute the exact/initial trajectory at time :math:`t`.
90 Parameters
91 ----------
92 t : float
93 Time of the exact/initial trajectory.
95 Returns
96 -------
97 me : dtype_u
98 The exact/initial position and velocity.
99 """
100 assert t == 0.0, 'error, u_exact only works for the initial time t0=0'
101 me = self.dtype_u(self.init)
103 me.pos[:, 0] = [0.0, 0.0, 0.0]
104 me.pos[:, 1] = [-3.5025653, -3.8169847, -1.5507963]
105 me.pos[:, 2] = [9.0755314, -3.0458353, -1.6483708]
106 me.pos[:, 3] = [8.3101420, -16.2901086, -7.2521278]
107 me.pos[:, 4] = [11.4707666, -25.7294829, -10.8169456]
108 me.pos[:, 5] = [-15.5387357, -25.2225594, -3.1902382]
110 me.vel[:, 0] = [0.0, 0.0, 0.0]
111 me.vel[:, 1] = [0.00565429, -0.00412490, -0.00190589]
112 me.vel[:, 2] = [0.00168318, 0.00483525, 0.00192462]
113 me.vel[:, 3] = [0.00354178, 0.00137102, 0.00055029]
114 me.vel[:, 4] = [0.00288930, 0.00114527, 0.00039677]
115 me.vel[:, 5] = [0.00276725, -0.0017072, -0.00136504]
117 me.m[0] = 1.00000597682 # Sun
118 me.m[1] = 0.000954786104043 # Jupiter
119 me.m[2] = 0.000285583733151 # Saturn
120 me.m[3] = 0.0000437273164546 # Uranus
121 me.m[4] = 0.0000517759138449 # Neptune
122 me.m[5] = 1.0 / 130000000.0 # Pluto
124 return me
126 def eval_hamiltonian(self, u):
127 """
128 Routine to compute the Hamiltonian.
130 Parameters
131 ----------
132 u : dtype_u
133 The particles.
135 Returns
136 -------
137 ham : float
138 The Hamiltonian.
139 """
141 ham = 0
143 for i in range(self.init[0][-1]):
144 ham += 0.5 * u.m[i] * np.dot(u.vel[:, i], u.vel[:, i])
146 for i in range(self.init[0][-1]):
147 for j in range(i):
148 dx = u.pos[:, i] - u.pos[:, j]
149 r = np.sqrt(np.dot(dx, dx))
150 ham -= self.G * u.m[i] * u.m[j] / r
152 return ham