Coverage for pySDC/implementations/problem_classes/GrayScott_2D_PETSc_periodic.py: 99%
305 statements
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-20 14:51 +0000
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-20 14:51 +0000
1import numpy as np
2from petsc4py import PETSc
4from pySDC.core.problem import Problem
5from pySDC.implementations.datatype_classes.petsc_vec import petsc_vec, petsc_vec_imex, petsc_vec_comp2
8class GS_full(object):
9 r"""
10 Helper class to generate residual and Jacobian matrix for ``PETSc``'s nonlinear solver SNES.
12 Parameters
13 ----------
14 da : DMDA object
15 Object of ``PETSc``.
16 prob : problem instance
17 Contains problem information for ``PETSc``.
18 factor : float
19 Temporal factor :math:`\Delta t Q_\Delta`.
20 dx : float
21 Grid spacing in x direction.
22 dy : float
23 Grid spacing in y direction.
25 Attributes
26 ----------
27 localX : PETSc vector object
28 Local vector for ``PETSc``.
29 """
31 def __init__(self, da, prob, factor, dx, dy):
32 """Initialization routine"""
33 assert da.getDim() == 2
34 self.da = da
35 self.prob = prob
36 self.factor = factor
37 self.dx = dx
38 self.dy = dy
39 self.localX = da.createLocalVec()
41 def formFunction(self, snes, X, F):
42 r"""
43 Function to evaluate the residual for the Newton solver. This function should be equal to the RHS
44 in the solution.
46 Parameters
47 ----------
48 snes : PETSc solver object
49 Nonlinear solver object.
50 X : PETSc vector object
51 Input vector.
52 F : PETSc vector object
53 Output vector :math:`F(X)`.
55 Returns
56 -------
57 None
58 Overwrites F.
59 """
60 self.da.globalToLocal(X, self.localX)
61 x = self.da.getVecArray(self.localX)
62 f = self.da.getVecArray(F)
63 (xs, xe), (ys, ye) = self.da.getRanges()
64 for j in range(ys, ye):
65 for i in range(xs, xe):
66 u = x[i, j] # center
67 u_e = x[i + 1, j] # east
68 u_w = x[i - 1, j] # west
69 u_s = x[i, j + 1] # south
70 u_n = x[i, j - 1] # north
71 u_xx = u_e - 2 * u + u_w
72 u_yy = u_n - 2 * u + u_s
73 f[i, j, 0] = x[i, j, 0] - (
74 self.factor
75 * (
76 self.prob.Du * (u_xx[0] / self.dx**2 + u_yy[0] / self.dy**2)
77 - x[i, j, 0] * x[i, j, 1] ** 2
78 + self.prob.A * (1 - x[i, j, 0])
79 )
80 )
81 f[i, j, 1] = x[i, j, 1] - (
82 self.factor
83 * (
84 self.prob.Dv * (u_xx[1] / self.dx**2 + u_yy[1] / self.dy**2)
85 + x[i, j, 0] * x[i, j, 1] ** 2
86 - self.prob.B * x[i, j, 1]
87 )
88 )
90 def formJacobian(self, snes, X, J, P):
91 """
92 Function to return the Jacobian matrix.
94 Parameters
95 ----------
96 snes : PETSc solver object
97 Nonlinear solver object.
98 X : PETSc vector object
99 Input vector.
100 J : PETSc matrix object
101 Current Jacobian matrix.
102 P : PETSc matrix object
103 New Jacobian matrix.
105 Returns
106 -------
107 PETSc.Mat.Structure.SAME_NONZERO_PATTERN
108 Matrix status.
109 """
110 self.da.globalToLocal(X, self.localX)
111 x = self.da.getVecArray(self.localX)
112 P.zeroEntries()
113 row = PETSc.Mat.Stencil()
114 col = PETSc.Mat.Stencil()
115 (xs, xe), (ys, ye) = self.da.getRanges()
117 for j in range(ys, ye):
118 for i in range(xs, xe):
119 # diagnoal 2-by-2 block (for u and v)
120 row.index = (i, j)
121 col.index = (i, j)
122 row.field = 0
123 col.field = 0
124 val = 1.0 - self.factor * (
125 self.prob.Du * (-2.0 / self.dx**2 - 2.0 / self.dy**2) - x[i, j, 1] ** 2 - self.prob.A
126 )
127 P.setValueStencil(row, col, val)
128 row.field = 0
129 col.field = 1
130 val = self.factor * 2.0 * x[i, j, 0] * x[i, j, 1]
131 P.setValueStencil(row, col, val)
132 row.field = 1
133 col.field = 1
134 val = 1.0 - self.factor * (
135 self.prob.Dv * (-2.0 / self.dx**2 - 2.0 / self.dy**2) + 2.0 * x[i, j, 0] * x[i, j, 1] - self.prob.B
136 )
137 P.setValueStencil(row, col, val)
138 row.field = 1
139 col.field = 0
140 val = -self.factor * x[i, j, 1] ** 2
141 P.setValueStencil(row, col, val)
143 # coupling through finite difference part
144 col.index = (i, j - 1)
145 col.field = 0
146 row.field = 0
147 P.setValueStencil(row, col, -self.factor * self.prob.Du / self.dx**2)
148 col.field = 1
149 row.field = 1
150 P.setValueStencil(row, col, -self.factor * self.prob.Dv / self.dy**2)
151 col.index = (i, j + 1)
152 col.field = 0
153 row.field = 0
154 P.setValueStencil(row, col, -self.factor * self.prob.Du / self.dx**2)
155 col.field = 1
156 row.field = 1
157 P.setValueStencil(row, col, -self.factor * self.prob.Dv / self.dy**2)
158 col.index = (i - 1, j)
159 col.field = 0
160 row.field = 0
161 P.setValueStencil(row, col, -self.factor * self.prob.Du / self.dx**2)
162 col.field = 1
163 row.field = 1
164 P.setValueStencil(row, col, -self.factor * self.prob.Dv / self.dy**2)
165 col.index = (i + 1, j)
166 col.field = 0
167 row.field = 0
168 P.setValueStencil(row, col, -self.factor * self.prob.Du / self.dx**2)
169 col.field = 1
170 row.field = 1
171 P.setValueStencil(row, col, -self.factor * self.prob.Dv / self.dy**2)
173 P.assemble()
174 if J != P:
175 J.assemble() # matrix-free operator
176 return PETSc.Mat.Structure.SAME_NONZERO_PATTERN
179class GS_reaction(object):
180 r"""
181 Helper class to generate residual and Jacobian matrix for ``PETSc``'s nonlinear solver SNES.
183 Parameters
184 ----------
185 da : DMDA object
186 Object of PETSc.
187 prob : problem instance
188 Contains problem information for ``PETSc``.
189 factor : float
190 Temporal factor :math:`\Delta t Q_\Delta`.
192 Attributes
193 ----------
194 localX : PETSc vector object
195 Local vector for ``PETSc``.
196 """
198 def __init__(self, da, prob, factor):
199 """Initialization routine"""
200 assert da.getDim() == 2
201 self.da = da
202 self.prob = prob
203 self.factor = factor
204 self.localX = da.createLocalVec()
206 def formFunction(self, snes, X, F):
207 r"""
208 Function to evaluate the residual for the Newton solver. This function should be equal to the RHS
209 in the solution.
211 Parameters
212 ----------
213 snes : PETSc solver object
214 Nonlinear solver object.
215 X : PETSc vector object
216 Input vector.
217 F : PETSc vector object
218 Output vector :math:`F(X)`.
220 Returns
221 -------
222 None
223 Overwrites F.
224 """
225 self.da.globalToLocal(X, self.localX)
226 x = self.da.getVecArray(self.localX)
227 f = self.da.getVecArray(F)
228 (xs, xe), (ys, ye) = self.da.getRanges()
229 for j in range(ys, ye):
230 for i in range(xs, xe):
231 f[i, j, 0] = x[i, j, 0] - (
232 self.factor * (-x[i, j, 0] * x[i, j, 1] ** 2 + self.prob.A * (1 - x[i, j, 0]))
233 )
234 f[i, j, 1] = x[i, j, 1] - (self.factor * (x[i, j, 0] * x[i, j, 1] ** 2 - self.prob.B * x[i, j, 1]))
236 def formJacobian(self, snes, X, J, P):
237 """
238 Function to return the Jacobian matrix.
240 Parameters
241 ----------
242 snes : PETSc solver object
243 Nonlinear solver object.
244 X : PETSc vector object
245 Input vector.
246 J : PETSc matrix object
247 Current Jacobian matrix.
248 P : PETSc matrix object
249 New Jacobian matrix.
251 Returns
252 -------
253 PETSc.Mat.Structure.SAME_NONZERO_PATTERN
254 Matrix status.
255 """
256 self.da.globalToLocal(X, self.localX)
257 x = self.da.getVecArray(self.localX)
258 P.zeroEntries()
259 row = PETSc.Mat.Stencil()
260 col = PETSc.Mat.Stencil()
261 (xs, xe), (ys, ye) = self.da.getRanges()
262 for j in range(ys, ye):
263 for i in range(xs, xe):
264 row.index = (i, j)
265 col.index = (i, j)
266 row.field = 0
267 col.field = 0
268 P.setValueStencil(row, col, 1.0 - self.factor * (-x[i, j, 1] ** 2 - self.prob.A))
269 row.field = 0
270 col.field = 1
271 P.setValueStencil(row, col, self.factor * 2.0 * x[i, j, 0] * x[i, j, 1])
272 row.field = 1
273 col.field = 1
274 P.setValueStencil(row, col, 1.0 - self.factor * (2.0 * x[i, j, 0] * x[i, j, 1] - self.prob.B))
275 row.field = 1
276 col.field = 0
277 P.setValueStencil(row, col, -self.factor * x[i, j, 1] ** 2)
279 P.assemble()
280 if J != P:
281 J.assemble() # matrix-free operator
282 return PETSc.Mat.Structure.SAME_NONZERO_PATTERN
285class petsc_grayscott_multiimplicit(Problem):
286 r"""
287 The Gray-Scott system [1]_ describes a reaction-diffusion process of two substances :math:`u` and :math:`v`,
288 where they diffuse over time. During the reaction :math:`u` is used up with overall decay rate :math:`B`,
289 whereas :math:`v` is produced with feed rate :math:`A`. :math:`D_u,\, D_v` are the diffusion rates for
290 :math:`u,\, v`. This process is described by the two-dimensional model using periodic boundary conditions
292 .. math::
293 \frac{\partial u}{\partial t} = D_u \Delta u - u v^2 + A (1 - u),
295 .. math::
296 \frac{\partial v}{\partial t} = D_v \Delta v + u v^2 - B u
298 for :math:`x \in \Omega:=[0, 100]`. The spatial solve of the problem is realized by ``PETSc`` [2]_, [3]_. For time-stepping,
299 the diffusion part is solved by one of ``PETSc``'s linear solver, whereas the reaction part will be solved by a nonlinear
300 solver.
302 Parameters
303 ----------
304 nvars : tuple of int, optional
305 Spatial resolution, i.e., number of degrees of freedom in space, e.g. ``nvars=(256, 256)``.
306 Du : float, optional
307 Diffusion rate for :math:`u`.
308 Dv: float, optional
309 Diffusion rate for :math:`v`.
310 A : float, optional
311 Feed rate for :math:`v`.
312 B : float, optional
313 Overall decay rate for :math:`u`.
314 comm : PETSc.COMM_WORLD, optional
315 Communicator for ``PETSc``.
316 lsol_tol : float, optional
317 Tolerance for linear solver to terminate.
318 nlsol_tol : float, optional
319 Tolerance for nonlinear solver to terminate.
320 lsol_maxiter : int, optional
321 Maximum number of iterations for linear solver.
322 nlsol_maxiter : int, optional
323 Maximum number of iterations for nonlinear solver.
325 Attributes
326 ----------
327 dx : float
328 Mesh grid width in x direction.
329 dy : float
330 Mesh grid width in y direction.
331 AMat : PETSc matrix object
332 Discretization matrix.
333 Id : PETSc matrix object
334 Identity matrix.
335 localX : PETSc vector object
336 Local vector for solution.
337 ksp : PETSc solver object
338 Linear solver object.
339 snes : PETSc solver object
340 Nonlinear solver object.
341 snes_itercount : int
342 Number of iterations done by nonlinear solver.
343 snes_ncalls : int
344 Number of calls of ``PETSc``'s nonlinear solver.
346 References
347 ----------
348 .. [1] Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms
349 of multistability. P. Gray, S. K. Scott. Chem. Eng. Sci. 38, 1 (1983).
350 .. [2] PETSc Web page. Satish Balay et al. https://petsc.org/ (2023).
351 .. [3] Parallel distributed computing using Python. Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler,
352 Alejandro Cosimo. Advances in Water Resources (2011).
353 """
355 dtype_u = petsc_vec
356 dtype_f = petsc_vec_comp2
358 def __init__(
359 self,
360 nvars,
361 Du,
362 Dv,
363 A,
364 B,
365 comm=PETSc.COMM_WORLD,
366 lsol_tol=1e-10,
367 nlsol_tol=1e-10,
368 lsol_maxiter=None,
369 nlsol_maxiter=None,
370 ):
371 """Initialization routine"""
372 # create DMDA object which will be used for all grid operations (boundary_type=3 -> periodic BC)
373 da = PETSc.DMDA().create(
374 [nvars[0], nvars[1]],
375 dof=2,
376 boundary_type=3,
377 stencil_width=1,
378 comm=comm,
379 )
381 # invoke super init, passing number of dofs, dtype_u and dtype_f
382 super().__init__(init=da)
383 self._makeAttributeAndRegister(
384 'nvars',
385 'Du',
386 'Dv',
387 'A',
388 'B',
389 'comm',
390 'lsol_tol',
391 'lsol_maxiter',
392 'nlsol_tol',
393 'nlsol_maxiter',
394 localVars=locals(),
395 readOnly=True,
396 )
398 # compute dx, dy and get local ranges
399 self.dx = 100.0 / (self.nvars[0])
400 self.dy = 100.0 / (self.nvars[1])
401 (self.xs, self.xe), (self.ys, self.ye) = self.init.getRanges()
403 # compute discretization matrix A and identity
404 self.AMat = self.__get_A()
405 self.Id = self.__get_Id()
406 self.localX = self.init.createLocalVec()
408 # setup linear solver
409 self.ksp = PETSc.KSP()
410 self.ksp.create(comm=self.comm)
411 self.ksp.setType('cg')
412 pc = self.ksp.getPC()
413 pc.setType('none')
414 self.ksp.setInitialGuessNonzero(True)
415 self.ksp.setFromOptions()
416 self.ksp.setTolerances(rtol=self.lsol_tol, atol=self.lsol_tol, max_it=self.lsol_maxiter)
417 self.ksp_itercount = 0
418 self.ksp_ncalls = 0
420 # setup nonlinear solver
421 self.snes = PETSc.SNES()
422 self.snes.create(comm=self.comm)
423 # self.snes.getKSP().setType('cg')
424 # self.snes.setType('ngmres')
425 self.snes.setFromOptions()
426 self.snes.setTolerances(
427 rtol=self.nlsol_tol,
428 atol=self.nlsol_tol,
429 stol=self.nlsol_tol,
430 max_it=self.nlsol_maxiter,
431 )
432 self.snes_itercount = 0
433 self.snes_ncalls = 0
435 def __get_A(self):
436 r"""
437 Helper function to assemble ``PETSc`` matrix A.
439 Returns
440 -------
441 A : PETSc matrix object
442 Discretization matrix.
443 """
444 A = self.init.createMatrix()
445 A.setType('aij') # sparse
446 A.setFromOptions()
447 A.setPreallocationNNZ((5, 5))
448 A.setUp()
450 A.zeroEntries()
451 row = PETSc.Mat.Stencil()
452 col = PETSc.Mat.Stencil()
453 mx, my = self.init.getSizes()
454 (xs, xe), (ys, ye) = self.init.getRanges()
455 for j in range(ys, ye):
456 for i in range(xs, xe):
457 row.index = (i, j)
458 row.field = 0
459 A.setValueStencil(row, row, self.Du * (-2.0 / self.dx**2 - 2.0 / self.dy**2))
460 row.field = 1
461 A.setValueStencil(row, row, self.Dv * (-2.0 / self.dx**2 - 2.0 / self.dy**2))
462 # if j > 0:
463 col.index = (i, j - 1)
464 col.field = 0
465 row.field = 0
466 A.setValueStencil(row, col, self.Du / self.dy**2)
467 col.field = 1
468 row.field = 1
469 A.setValueStencil(row, col, self.Dv / self.dy**2)
470 # if j < my - 1:
471 col.index = (i, j + 1)
472 col.field = 0
473 row.field = 0
474 A.setValueStencil(row, col, self.Du / self.dy**2)
475 col.field = 1
476 row.field = 1
477 A.setValueStencil(row, col, self.Dv / self.dy**2)
478 # if i > 0:
479 col.index = (i - 1, j)
480 col.field = 0
481 row.field = 0
482 A.setValueStencil(row, col, self.Du / self.dx**2)
483 col.field = 1
484 row.field = 1
485 A.setValueStencil(row, col, self.Dv / self.dx**2)
486 # if i < mx - 1:
487 col.index = (i + 1, j)
488 col.field = 0
489 row.field = 0
490 A.setValueStencil(row, col, self.Du / self.dx**2)
491 col.field = 1
492 row.field = 1
493 A.setValueStencil(row, col, self.Dv / self.dx**2)
494 A.assemble()
496 return A
498 def __get_Id(self):
499 r"""
500 Helper function to assemble ``PETSc`` identity matrix.
502 Returns
503 -------
504 Id : PETSc matrix object
505 Identity matrix.
506 """
508 Id = self.init.createMatrix()
509 Id.setType('aij') # sparse
510 Id.setFromOptions()
511 Id.setPreallocationNNZ((1, 1))
512 Id.setUp()
514 Id.zeroEntries()
515 row = PETSc.Mat.Stencil()
516 mx, my = self.init.getSizes()
517 (xs, xe), (ys, ye) = self.init.getRanges()
518 for j in range(ys, ye):
519 for i in range(xs, xe):
520 for indx in [0, 1]:
521 row.index = (i, j)
522 row.field = indx
523 Id.setValueStencil(row, row, 1.0)
525 Id.assemble()
527 return Id
529 def eval_f(self, u, t):
530 """
531 Routine to evaluate the right-hand side of the problem.
533 Parameters
534 ----------
535 u : dtype_u
536 Current values of the numerical solution.
537 t : float
538 Current time the numerical solution is computed.
540 Returns
541 -------
542 f : dtype_f
543 Right-hand side of the problem.
544 """
546 f = self.dtype_f(self.init)
547 self.AMat.mult(u, f.comp1)
549 fa = self.init.getVecArray(f.comp2)
550 xa = self.init.getVecArray(u)
551 for i in range(self.xs, self.xe):
552 for j in range(self.ys, self.ye):
553 fa[i, j, 0] = -xa[i, j, 0] * xa[i, j, 1] ** 2 + self.A * (1 - xa[i, j, 0])
554 fa[i, j, 1] = xa[i, j, 0] * xa[i, j, 1] ** 2 - self.B * xa[i, j, 1]
556 return f
558 def solve_system_1(self, rhs, factor, u0, t):
559 r"""
560 Linear solver for :math:`(I - factor \cdot A)\vec{u} = \vec{rhs}`.
562 Parameters
563 ----------
564 rhs : dtype_f
565 Right-hand side for the linear system.
566 factor : float
567 Abbrev. for the local stepsize (or any other factor required).
568 u0 : dtype_u
569 Initial guess for the iterative solver.
570 t : float
571 Current time (e.g. for time-dependent BCs).
573 Returns
574 -------
575 me : dtype_u
576 Solution as mesh.
577 """
579 me = self.dtype_u(u0)
580 self.ksp.setOperators(self.Id - factor * self.AMat)
581 self.ksp.solve(rhs, me)
583 self.ksp_ncalls += 1
584 self.ksp_itercount += self.ksp.getIterationNumber()
586 return me
588 def solve_system_2(self, rhs, factor, u0, t):
589 r"""
590 Nonlinear solver for :math:`(I - factor \cdot F)(\vec{u}) = \vec{rhs}`.
592 Parameters
593 ----------
594 rhs : dtype_f
595 Right-hand side for the linear system.
596 factor : float
597 Abbrev. for the local stepsize (or any other factor required).
598 u0 : dtype_u
599 Initial guess for the iterative solver.
600 t : float
601 Current time (e.g. for time-dependent BCs).
603 Returns
604 -------
605 me : dtype_u
606 Solution as mesh.
607 """
609 me = self.dtype_u(u0)
610 target = GS_reaction(self.init, self, factor)
612 F = self.init.createGlobalVec()
613 self.snes.setFunction(target.formFunction, F)
614 J = self.init.createMatrix()
615 self.snes.setJacobian(target.formJacobian, J)
617 self.snes.solve(rhs, me)
619 self.snes_ncalls += 1
620 self.snes_itercount += self.snes.getIterationNumber()
622 return me
624 def u_exact(self, t):
625 r"""
626 Routine to compute the exact solution at time :math:`t`.
628 Parameters
629 ----------
630 t : float
631 Time of the exact solution.
633 Returns
634 -------
635 me : dtype_u
636 Exact solution.
637 """
639 assert t == 0, 'ERROR: u_exact is only valid for the initial solution'
641 me = self.dtype_u(self.init)
642 xa = self.init.getVecArray(me)
643 for i in range(self.xs, self.xe):
644 for j in range(self.ys, self.ye):
645 xa[i, j, 0] = 1.0 - 0.5 * np.power(
646 np.sin(np.pi * i * self.dx / 100) * np.sin(np.pi * j * self.dy / 100), 100
647 )
648 xa[i, j, 1] = 0.25 * np.power(
649 np.sin(np.pi * i * self.dx / 100) * np.sin(np.pi * j * self.dy / 100), 100
650 )
652 return me
655class petsc_grayscott_fullyimplicit(petsc_grayscott_multiimplicit):
656 r"""
657 The Gray-Scott system [1]_ describes a reaction-diffusion process of two substances :math:`u` and :math:`v`,
658 where they diffuse over time. During the reaction :math:`u` is used up with overall decay rate :math:`B`,
659 whereas :math:`v` is produced with feed rate :math:`A`. :math:`D_u,\, D_v` are the diffusion rates for
660 :math:`u,\, v`. This process is described by the two-dimensional model using periodic boundary conditions
662 .. math::
663 \frac{\partial u}{\partial t} = D_u \Delta u - u v^2 + A (1 - u),
665 .. math::
666 \frac{\partial v}{\partial t} = D_v \Delta v + u v^2 - B u
668 for :math:`x \in \Omega:=[0, 100]`. The spatial solve of the problem is realized by ``PETSc`` [2]_, [3]_. For time-stepping, the
669 problem is handled in a *fully-implicit* way, i.e., the nonlinear system containing the full right-hand side will be
670 solved by PETSc's nonlinear solver.
671 """
673 dtype_f = petsc_vec
675 def eval_f(self, u, t):
676 """
677 Routine to evaluate the right-hand side of the problem.
679 Parameters
680 ----------
681 u : dtype_u
682 Current values of the numerical solution.
683 t : float
684 Current time the numerical solution is computed.
686 Returns
687 -------
688 f : dtype_f
689 Right-hand side of the problem.
690 """
692 f = self.dtype_f(self.init)
693 self.AMat.mult(u, f)
695 fa = self.init.getVecArray(f)
696 xa = self.init.getVecArray(u)
697 for i in range(self.xs, self.xe):
698 for j in range(self.ys, self.ye):
699 fa[i, j, 0] += -xa[i, j, 0] * xa[i, j, 1] ** 2 + self.A * (1 - xa[i, j, 0])
700 fa[i, j, 1] += xa[i, j, 0] * xa[i, j, 1] ** 2 - self.B * xa[i, j, 1]
702 return f
704 def solve_system(self, rhs, factor, u0, t):
705 r"""
706 Nonlinear solver for :math:`(I - factor \cdot F)(\vec{u}) = \vec{rhs}`.
708 Parameters
709 ----------
710 rhs : dtype_f
711 Right-hand side for the linear system.
712 factor : float
713 Abbrev. for the local stepsize (or any other factor required).
714 u0 : dtype_u
715 Initial guess for the iterative solver.
716 t : float
717 Current time (e.g. for time-dependent BCs).
719 Returns
720 -------
721 me : dtype_u
722 Solution as mesh.
723 """
725 me = self.dtype_u(u0)
726 target = GS_full(self.init, self, factor, self.dx, self.dy)
728 # assign residual function and Jacobian
729 F = self.init.createGlobalVec()
730 self.snes.setFunction(target.formFunction, F)
731 J = self.init.createMatrix()
732 self.snes.setJacobian(target.formJacobian, J)
734 self.snes.solve(rhs, me)
736 self.snes_ncalls += 1
737 self.snes_itercount += self.snes.getIterationNumber()
739 return me
742class petsc_grayscott_semiimplicit(petsc_grayscott_multiimplicit):
743 r"""
744 The Gray-Scott system [1]_ describes a reaction-diffusion process of two substances :math:`u` and :math:`v`,
745 where they diffuse over time. During the reaction :math:`u` is used up with overall decay rate :math:`B`,
746 whereas :math:`v` is produced with feed rate :math:`A`. :math:`D_u,\, D_v` are the diffusion rates for
747 :math:`u,\, v`. This process is described by the two-dimensional model using periodic boundary conditions
749 .. math::
750 \frac{\partial u}{\partial t} = D_u \Delta u - u v^2 + A (1 - u),
752 .. math::
753 \frac{\partial v}{\partial t} = D_v \Delta v + u v^2 - B u
755 for :math:`x \in \Omega:=[0, 100]`. The spatial solve of the problem is realized by ``PETSc`` [2]_, [3]_. For time-stepping,
756 the problem is treated *semi-implicitly*, i.e., the system with diffusion part is solved by PETSc's linear solver.
757 """
759 dtype_f = petsc_vec_imex
761 def eval_f(self, u, t):
762 """
763 Routine to evaluate the right-hand side of the problem.
765 Parameters
766 ----------
767 u : dtype_u
768 Current values of the numerical solution.
769 t : float
770 Current time the numerical solution is computed.
772 Returns
773 -------
774 f : dtype_f
775 Right-hand side of the problem.
776 """
778 f = self.dtype_f(self.init)
779 self.AMat.mult(u, f.impl)
781 fa = self.init.getVecArray(f.expl)
782 xa = self.init.getVecArray(u)
783 for i in range(self.xs, self.xe):
784 for j in range(self.ys, self.ye):
785 fa[i, j, 0] = -xa[i, j, 0] * xa[i, j, 1] ** 2 + self.A * (1 - xa[i, j, 0])
786 fa[i, j, 1] = xa[i, j, 0] * xa[i, j, 1] ** 2 - self.B * xa[i, j, 1]
788 return f
790 def solve_system(self, rhs, factor, u0, t):
791 r"""
792 Linear solver for :math:`(I - factor \cdot A)\vec{u} = \vec{rhs}`.
794 Parameters
795 ----------
796 rhs : dtype_f
797 Right-hand side for the linear system.
798 factor : float
799 Abbrev. for the local stepsize (or any other factor required).
800 u0 : dtype_u
801 Initial guess for the iterative solver.
802 t : float
803 Current time (e.g. for time-dependent BCs).
805 Returns
806 -------
807 me : dtype_u
808 Solution as mesh.
809 """
811 me = self.dtype_u(u0)
812 self.ksp.setOperators(self.Id - factor * self.AMat)
813 self.ksp.solve(rhs, me)
815 self.ksp_ncalls += 1
816 self.ksp_itercount += self.ksp.getIterationNumber()
818 return me