Coverage for pySDC/implementations/problem_classes/FermiPastaUlamTsingou.py: 98%
40 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-16 14:51 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-16 14:51 +0000
1import numpy as np
3from pySDC.core.errors import ParameterError
4from pySDC.core.problem import Problem
5from pySDC.implementations.datatype_classes.particles import particles, acceleration
8# noinspection PyUnusedLocal
9class fermi_pasta_ulam_tsingou(Problem):
10 r"""
11 The Fermi-Pasta-Ulam-Tsingou (FPUT) problem was one of the first computer experiments. E. Fermi, J. Pasta
12 and S. Ulam investigated the behavior of a vibrating spring with a weak correction term (which is quadratic
13 for the FPU-:math:`\alpha` model, and cubic for the FPU-:math:`\beta` model [1]_). This can be modelled by
14 the second-order problem
16 .. math::
17 \frac{d^2 u_j(t)}{d t^2} = (u_{j+1}(t) - 2 u_j(t) + u_{j-1}(t)) (1 + \alpha (u_{j+1}(t) - u_{j-1}(t))),
19 where :math:`u_j(t)` is the position of the :math:`j`-th particle. [2]_ is used as setup for this
20 implemented problem class. The Hamiltonian of this problem (needed for second-order SDC) is
22 .. math::
23 \sum_{i=1}^n \frac{1}{2}v^2_{i-1}(t) + \frac{1}{2}(u_{i+1}(t) - u_{i-1}(t))^2 + \frac{\alpha}{3}(u_{i+1}(t) - u_{i-1}(t))^3,
25 where :math:`v_j(t)` is the velocity of the :math:`j`-th particle.
27 Parameters
28 ----------
29 npart : int, optional
30 Number of particles.
31 alpha : float, optional
32 Factor of the nonlinear force :math:`\alpha`.
33 k : float, optional
34 Mode for initial conditions.
35 energy_modes : list, optional
36 Energy modes.
38 Attributes
39 ----------
40 dx : float
41 Mesh grid size.
42 xvalues : np.1darray
43 Spatial grid.
44 ones : np.1darray
45 Vector containing ones.
47 References
48 ----------
49 .. [1] E. Fermi, J. Pasta, S. Ulam. Studies of nonlinear problems (1955). I. Los Alamos report LA-1940.
50 Collected Papers of Enrico Fermi, E. Segré (Ed.), University of Chicago Press (1965)
51 .. [2] http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations
52 """
54 dtype_u = particles
55 dtype_f = acceleration
57 def __init__(self, npart=2048, alpha=0.25, k=1.0, energy_modes=None):
58 """Initialization routine"""
60 if energy_modes is None:
61 energy_modes = [1, 2, 3, 4]
63 # invoke super init, passing nparts
64 super().__init__((npart, None, np.dtype('float64')))
65 self._makeAttributeAndRegister('npart', 'alpha', 'k', 'energy_modes', localVars=locals(), readOnly=True)
67 self.dx = (self.npart / 32) / (self.npart + 1)
68 self.xvalues = np.array([(i + 1) * self.dx for i in range(self.npart)])
69 self.ones = np.ones(self.npart - 2)
71 def eval_f(self, u, t):
72 """
73 Routine to compute the right-hand side of the problem.
75 Parameters
76 ----------
77 u : dtype_u
78 Current values of the numerical solution.
79 t : float
80 Current time of the numerical solution is computed.
82 Returns
83 -------
84 f : dtype_f
85 The right-hand side of the problem.
86 """
87 me = self.dtype_f(self.init, val=0.0)
89 # me[1:-1] = u.pos[:-2] - 2.0 * u.pos[1:-1] + u.pos[2:] + \
90 # self.alpha * ((u.pos[2:] - u.pos[1:-1]) ** 2 -
91 # (u.pos[1:-1] - u.pos[:-2]) ** 2)
92 # me[0] = -2.0 * u.pos[0] + u.pos[1] + \
93 # self.alpha * ((u.pos[1] - u.pos[0]) ** 2 - (u.pos[0]) ** 2)
94 # me[-1] = u.pos[-2] - 2.0 * u.pos[-1] + \
95 # self.alpha * ((u.pos[-1]) ** 2 - (u.pos[-1] - u.pos[-2]) ** 2)
96 me[1:-1] = (u.pos[:-2] - 2.0 * u.pos[1:-1] + u.pos[2:]) * (self.ones + self.alpha * (u.pos[2:] - u.pos[:-2]))
97 me[0] = (-2.0 * u.pos[0] + u.pos[1]) * (1 + self.alpha * (u.pos[1]))
98 me[-1] = (u.pos[-2] - 2.0 * u.pos[-1]) * (1 + self.alpha * (-u.pos[-2]))
100 return me
102 def u_exact(self, t):
103 r"""
104 Routine to compute the exact/initial trajectory at time :math:`t`.
106 Parameters
107 ----------
108 t : float
109 Time of the exact solution.
111 Returns
112 -------
113 me : dtype_u
114 The exact/initial position and velocity.
115 """
116 assert t == 0.0, 'error, u_exact only works for the initial time t0=0'
118 me = self.dtype_u(self.init, val=0.0)
120 me.pos[:] = np.sin(self.k * np.pi * self.xvalues)
121 me.vel[:] = 0.0
123 return me
125 def eval_hamiltonian(self, u):
126 """
127 Routine to compute the Hamiltonian.
129 Parameters
130 ----------
131 u : dtype_u
132 The particles.
134 Returns
135 -------
136 ham : float
137 The Hamiltonian.
138 """
140 ham = sum(
141 0.5 * u.vel[:-1] ** 2
142 + 0.5 * (u.pos[1:] - u.pos[:-1]) ** 2
143 + self.alpha / 3.0 * (u.pos[1:] - u.pos[:-1]) ** 3
144 )
145 ham += 0.5 * u.vel[-1] ** 2 + 0.5 * (u.pos[-1]) ** 2 + self.alpha / 3.0 * (-u.pos[-1]) ** 3
146 ham += 0.5 * (u.pos[0]) ** 2 + self.alpha / 3.0 * (u.pos[0]) ** 3
147 return ham
149 def eval_mode_energy(self, u):
150 r"""
151 Routine to compute the energy following [1]_.
153 Parameters
154 ----------
155 u : dtype_u
156 Particles.
158 Returns
159 -------
160 energy : dict
161 Energies.
162 """
164 energy = {}
166 for k in self.energy_modes:
167 # Qk = np.sqrt(2.0 / (self.npart + 1)) * np.dot(u.pos, np.sin(np.pi * k * self.xvalues))
168 Qk = np.sqrt(2.0 * self.dx) * np.dot(u.pos, np.sin(np.pi * k * self.xvalues))
169 # Qkdot = np.sqrt(2.0 / (self.npart + 1)) * np.dot(u.vel, np.sin(np.pi * k * self.xvalues))
170 Qkdot = np.sqrt(2.0 * self.dx) * np.dot(u.vel, np.sin(np.pi * k * self.xvalues))
172 # omegak2 = 4.0 * np.sin(k * np.pi / (2.0 * (self.npart + 1))) ** 2
173 omegak2 = 4.0 * np.sin(k * np.pi * self.dx / 2.0) ** 2
174 energy[k] = 0.5 * (Qkdot**2 + omegak2 * Qk**2)
176 return energy