Coverage for pySDC/implementations/problem_classes/AllenCahn_1D_FD.py: 96%
225 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-16 14:51 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-16 14:51 +0000
1import numpy as np
2import scipy.sparse as sp
3from scipy.sparse.linalg import spsolve
5from pySDC.core.errors import ProblemError
6from pySDC.core.problem import Problem, WorkCounter
7from pySDC.helpers import problem_helper
8from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh, comp2_mesh
11class allencahn_front_fullyimplicit(Problem):
12 r"""
13 Example implementing the one-dimensional Allen-Cahn equation with driving force using inhomogeneous Dirichlet
14 boundary conditions
16 .. math::
17 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \frac{2}{\varepsilon^2} u (1 - u) (1 - 2u)
18 - 6 d_w u (1 - u)
20 for :math:`u \in [0, 1]`. The second order spatial derivative is approximated using centered finite differences. The
21 exact solution is given by
23 .. math::
24 u(x, t)= 0.5 \left(1 + \tanh\left(\frac{x - vt}{\sqrt{2}\varepsilon}\right)\right)
26 with :math:`v = 3 \sqrt{2} \varepsilon d_w`. For time-stepping, this problem is implemented to be treated
27 *fully-implicit* using Newton to solve the nonlinear system.
29 Parameters
30 ----------
31 nvars : int
32 Number of unknowns in the problem.
33 dw : float
34 Driving force.
35 eps : float
36 Scaling parameter :math:`\varepsilon`.
37 newton_maxiter : int
38 Maximum number of iterations for Newton's method.
39 newton_tol : float
40 Tolerance for Newton's method to terminate.
41 interval : list
42 Interval of spatial domain.
43 stop_at_nan : bool, optional
44 Indicates that the Newton solver should stop if ``nan`` values arise.
46 Attributes
47 ----------
48 A : scipy.diags
49 Second-order FD discretization of the 1D laplace operator.
50 dx : float
51 Distance between two spatial nodes.
52 xvalues : np.1darray
53 Spatial grid values.
54 uext : dtype_u
55 Contains additionally the external values of the boundary.
56 work_counters : WorkCounter
57 Counter for statistics. Here, number of Newton calls and number of evaluations
58 of right-hand side are counted.
59 """
61 dtype_u = mesh
62 dtype_f = mesh
64 def __init__(
65 self,
66 nvars=127,
67 dw=-0.04,
68 eps=0.04,
69 newton_maxiter=100,
70 newton_tol=1e-12,
71 interval=(-0.5, 0.5),
72 stop_at_nan=True,
73 stop_at_maxiter=False,
74 ):
75 # we assert that nvars looks very particular here.. this will be necessary for coarsening in space later on
76 if (nvars + 1) % 2:
77 raise ProblemError('setup requires nvars = 2^p - 1')
79 # invoke super init, passing number of dofs, dtype_u and dtype_f
80 super().__init__((nvars, None, np.dtype('float64')))
81 self._makeAttributeAndRegister(
82 'nvars',
83 'dw',
84 'eps',
85 'newton_maxiter',
86 'newton_tol',
87 'interval',
88 'stop_at_nan',
89 'stop_at_maxiter',
90 localVars=locals(),
91 readOnly=True,
92 )
94 # compute dx and get discretization matrix A
95 self.dx = (self.interval[1] - self.interval[0]) / (self.nvars + 1)
96 self.xvalues = np.array([(i + 1 - (self.nvars + 1) / 2) * self.dx for i in range(self.nvars)])
98 self.A, _ = problem_helper.get_finite_difference_matrix(
99 derivative=2,
100 order=2,
101 stencil_type='center',
102 dx=self.dx,
103 size=self.nvars + 2,
104 dim=1,
105 bc='dirichlet-zero',
106 )
107 self.uext = self.dtype_u((self.init[0] + 2, self.init[1], self.init[2]), val=0.0)
109 self.work_counters['newton'] = WorkCounter()
110 self.work_counters['rhs'] = WorkCounter()
112 def solve_system(self, rhs, factor, u0, t):
113 """
114 Simple Newton solver.
116 Parameters
117 ----------
118 rhs : dtype_f
119 Right-hand side for the nonlinear system.
120 factor : float
121 Abbrev. for the node-to-node stepsize (or any other factor required).
122 u0 : dtype_u
123 Initial guess for the iterative solver.
124 t : float
125 Current time (required here for the BC).
127 Returns
128 -------
129 me : dtype_u
130 The solution as mesh.
131 """
133 u = self.dtype_u(u0)
134 eps2 = self.eps**2
135 dw = self.dw
137 Id = sp.eye(self.nvars)
139 v = 3.0 * np.sqrt(2) * self.eps * self.dw
140 self.uext[0] = 0.5 * (1 + np.tanh((self.interval[0] - v * t) / (np.sqrt(2) * self.eps)))
141 self.uext[-1] = 0.5 * (1 + np.tanh((self.interval[1] - v * t) / (np.sqrt(2) * self.eps)))
143 A = self.A[1:-1, 1:-1]
144 # start newton iteration
145 n = 0
146 res = 99
147 while n < self.newton_maxiter:
148 # print(n)
149 # # form the function g(u), such that the solution to the nonlinear problem is a root of g
150 self.uext[1:-1] = u[:]
151 g = (
152 u
153 - rhs
154 - factor
155 * (
156 self.A.dot(self.uext)[1:-1]
157 - 2.0 / eps2 * u * (1.0 - u) * (1.0 - 2.0 * u)
158 - 6.0 * dw * u * (1.0 - u)
159 )
160 )
162 # if g is close to 0, then we are done
163 res = np.linalg.norm(g, np.inf)
165 if res < self.newton_tol:
166 break
168 # assemble dg
169 dg = Id - factor * (
170 A
171 - 2.0
172 / eps2
173 * sp.diags((1.0 - u) * (1.0 - 2.0 * u) - u * ((1.0 - 2.0 * u) + 2.0 * (1.0 - u)), offsets=0)
174 - 6.0 * dw * sp.diags((1.0 - u) - u, offsets=0)
175 )
177 # newton update: u1 = u0 - g/dg
178 u -= spsolve(dg, g)
179 # u -= gmres(dg, g, x0=z, rtol=self.lin_tol)[0]
180 # increase iteration count
181 n += 1
182 self.work_counters['newton']()
184 if np.isnan(res) and self.stop_at_nan:
185 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
186 elif np.isnan(res):
187 self.logger.warning('Newton got nan after %i iterations...' % n)
189 if n == self.newton_maxiter:
190 msg = 'Newton did not converge after %i iterations, error is %s' % (n, res)
191 if self.stop_at_maxiter:
192 raise ProblemError(msg)
193 else:
194 self.logger.warning(msg)
196 me = self.dtype_u(self.init)
197 me[:] = u[:]
199 return me
201 def eval_f(self, u, t):
202 """
203 Routine to evaluate the right-hand side of the problem.
205 Parameters
206 ----------
207 u : dtype_u
208 Current values of the numerical solution.
209 t : float
210 Current time of the numerical solution is computed.
212 Returns
213 -------
214 f : dtype_f
215 The right-hand side of the problem.
216 """
217 # set up boundary values to embed inner points
218 v = 3.0 * np.sqrt(2) * self.eps * self.dw
219 self.uext[0] = 0.5 * (1 + np.tanh((self.interval[0] - v * t) / (np.sqrt(2) * self.eps)))
220 self.uext[-1] = 0.5 * (1 + np.tanh((self.interval[1] - v * t) / (np.sqrt(2) * self.eps)))
222 self.uext[1:-1] = u[:]
224 f = self.dtype_f(self.init)
225 f[:] = (
226 self.A.dot(self.uext)[1:-1]
227 - 2.0 / self.eps**2 * u * (1.0 - u) * (1.0 - 2 * u)
228 - 6.0 * self.dw * u * (1.0 - u)
229 )
230 self.work_counters['rhs']()
231 return f
233 def u_exact(self, t):
234 r"""
235 Routine to return initial condition or the exact solution
237 Parameters
238 ----------
239 t : float
240 Time at which the exact solution is computed.
242 Returns
243 -------
244 me : dtype_u
245 The exact solution (in space and time).
246 """
247 v = 3.0 * np.sqrt(2) * self.eps * self.dw
248 me = self.dtype_u(self.init, val=0.0)
249 me[:] = 0.5 * (1 + np.tanh((self.xvalues - v * t) / (np.sqrt(2) * self.eps)))
250 return me
253class allencahn_front_semiimplicit(allencahn_front_fullyimplicit):
254 r"""
255 This class implements the one-dimensional Allen-Cahn equation with driving force using inhomogeneous Dirichlet
256 boundary conditions
258 .. math::
259 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \frac{2}{\varepsilon^2} u (1 - u) (1 - 2u)
260 - 6 d_w u (1 - u)
262 for :math:`u \in [0, 1]`. Centered finite differences are used for discretization of the second order spatial derivative.
263 The exact solution is given by
265 .. math::
266 u(x, t) = 0.5 \left(1 + \tanh\left(\frac{x - vt}{\sqrt{2}\varepsilon}\right)\right)
268 with :math:`v = 3 \sqrt{2} \varepsilon d_w`. For time-stepping, this problem will be treated in a
269 *semi-implicit* way, i.e., the Laplacian is treated implicitly, and the rest of the right-hand side will be handled
270 explicitly.
271 """
273 dtype_f = imex_mesh
275 def eval_f(self, u, t):
276 """
277 Routine to evaluate the right-hand side of the problem.
279 Parameters
280 ----------
281 u : dtype_u
282 Current values of the numerical solution.
283 t : float
284 Current time of the numerical solution is computed.
286 Returns
287 -------
288 f : dtype_f
289 The right-hand side of the problem.
290 """
291 # set up boundary values to embed inner points
292 v = 3.0 * np.sqrt(2) * self.eps * self.dw
293 self.uext[0] = 0.5 * (1 + np.tanh((self.interval[0] - v * t) / (np.sqrt(2) * self.eps)))
294 self.uext[-1] = 0.5 * (1 + np.tanh((self.interval[1] - v * t) / (np.sqrt(2) * self.eps)))
296 self.uext[1:-1] = u[:]
298 f = self.dtype_f(self.init)
299 f.impl[:] = self.A.dot(self.uext)[1:-1]
300 f.expl[:] = -2.0 / self.eps**2 * u * (1.0 - u) * (1.0 - 2 * u) - 6.0 * self.dw * u * (1.0 - u)
301 self.work_counters['rhs']()
302 return f
304 def solve_system(self, rhs, factor, u0, t):
305 r"""
306 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`.
308 Parameters
309 ----------
310 rhs : dtype_f
311 Right-hand side for the linear system.
312 factor : float
313 Abbrev. for the local stepsize (or any other factor required).
314 u0 : dtype_u
315 Initial guess for the iterative solver.
316 t : float
317 Current time (e.g. for time-dependent BCs).
319 Returns
320 -------
321 me : dtype_u
322 The solution as mesh.
323 """
325 me = self.dtype_u(self.init)
326 self.uext[0] = 0.0
327 self.uext[-1] = 0.0
328 self.uext[1:-1] = rhs[:]
329 me[:] = spsolve(sp.eye(self.nvars + 2, format='csc') - factor * self.A, self.uext)[1:-1]
330 return me
333class allencahn_front_finel(allencahn_front_fullyimplicit):
334 r"""
335 This class implements the one-dimensional Allen-Cahn equation with driving force using inhomogeneous Dirichlet
336 boundary conditions
338 .. math::
339 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \frac{2}{\varepsilon^2} u (1 - u) (1 - 2u)
340 - 6 d_w u (1 - u)
342 for :math:`u \in [0, 1]`. Centered finite differences are used for discretization of the Laplacian.
343 The exact solution is given by
345 .. math::
346 u(x, t) = 0.5 \left(1 + \tanh\left(\frac{x - vt}{\sqrt{2}\varepsilon}\right)\right)
348 with :math:`v = 3 \sqrt{2} \varepsilon d_w`.
350 Let :math:`A` denote the finite difference matrix to discretize :math:`\frac{\partial^2 u}{\partial x^2}`. Here,
351 *Finel's trick* is used. Let
353 .. math::
354 a = \tanh\left(\frac{\Delta x}{\sqrt{2}\varepsilon}\right)^2,
356 then, the right-hand side of the problem can be written as
358 .. math::
359 \frac{\partial u}{\partial t} = A u - \frac{1}{\Delta x^2} \left[
360 \frac{1 - a}{1 - a (2u - 1)^2} - 1
361 \right] (2u - 1).
363 For time-stepping, this problem will be treated in a *fully-implicit* way. The nonlinear system is solved using Newton.
364 """
366 # noinspection PyTypeChecker
367 def solve_system(self, rhs, factor, u0, t):
368 """
369 Simple Newton solver.
371 Parameters
372 ----------
373 rhs : dtype_f
374 Right-hand side for the nonlinear system.
375 factor : float
376 Abbrev. for the node-to-node stepsize (or any other factor required).
377 u0 : dtype_u
378 Initial guess for the iterative solver.
379 t : float
380 Current time (e.g. for time-dependent BCs).
382 Returns
383 -------
384 me : dtype_u
385 The solution as mesh.
386 """
388 u = self.dtype_u(u0)
389 dw = self.dw
390 a2 = np.tanh(self.dx / (np.sqrt(2) * self.eps)) ** 2
392 Id = sp.eye(self.nvars)
394 v = 3.0 * np.sqrt(2) * self.eps * self.dw
395 self.uext[0] = 0.5 * (1 + np.tanh((self.interval[0] - v * t) / (np.sqrt(2) * self.eps)))
396 self.uext[-1] = 0.5 * (1 + np.tanh((self.interval[1] - v * t) / (np.sqrt(2) * self.eps)))
398 A = self.A[1:-1, 1:-1]
399 # start newton iteration
400 n = 0
401 res = 99
402 while n < self.newton_maxiter:
403 # form the function g(u), such that the solution to the nonlinear problem is a root of g
404 self.uext[1:-1] = u[:]
405 gprim = 1.0 / self.dx**2 * ((1.0 - a2) / (1.0 - a2 * (2.0 * u - 1.0) ** 2) - 1.0) * (2.0 * u - 1.0)
406 g = u - rhs - factor * (self.A.dot(self.uext)[1:-1] - 1.0 * gprim - 6.0 * dw * u * (1.0 - u))
408 # if g is close to 0, then we are done
409 res = np.linalg.norm(g, np.inf)
411 if res < self.newton_tol:
412 break
414 # assemble dg
415 dgprim = (
416 1.0
417 / self.dx**2
418 * (
419 2.0 * ((1.0 - a2) / (1.0 - a2 * (2.0 * u - 1.0) ** 2) - 1.0)
420 + (2.0 * u - 1) ** 2 * (1.0 - a2) * 4 * a2 / (1.0 - a2 * (2.0 * u - 1.0) ** 2) ** 2
421 )
422 )
424 dg = Id - factor * (A - 1.0 * sp.diags(dgprim, offsets=0) - 6.0 * dw * sp.diags((1.0 - u) - u, offsets=0))
426 # newton update: u1 = u0 - g/dg
427 u -= spsolve(dg, g)
428 # For some reason, doing cg or gmres does not work so well here...
429 # u -= cg(dg, g, x0=z, rtol=self.lin_tol)[0]
430 # increase iteration count
431 n += 1
432 self.work_counters['newton']()
434 if np.isnan(res) and self.stop_at_nan:
435 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
436 elif np.isnan(res):
437 self.logger.warning('Newton got nan after %i iterations...' % n)
439 if n == self.newton_maxiter:
440 self.logger.warning('Newton did not converge after %i iterations, error is %s' % (n, res))
442 me = self.dtype_u(self.init)
443 me[:] = u[:]
445 return me
447 def eval_f(self, u, t):
448 """
449 Routine to evaluate the right-hand side of the problem.
451 Parameters
452 ----------
453 u : dtype_u
454 Current values of the numerical solution.
455 t : float
456 Current time of the numerical solution is computed.
458 Returns
459 -------
460 f : dtype_f
461 The right-hand side of the problem.
462 """
463 # set up boundary values to embed inner points
464 v = 3.0 * np.sqrt(2) * self.eps * self.dw
465 self.uext[0] = 0.5 * (1 + np.tanh((self.interval[0] - v * t) / (np.sqrt(2) * self.eps)))
466 self.uext[-1] = 0.5 * (1 + np.tanh((self.interval[1] - v * t) / (np.sqrt(2) * self.eps)))
468 self.uext[1:-1] = u[:]
470 a2 = np.tanh(self.dx / (np.sqrt(2) * self.eps)) ** 2
471 gprim = 1.0 / self.dx**2 * ((1.0 - a2) / (1.0 - a2 * (2.0 * u - 1.0) ** 2) - 1) * (2.0 * u - 1.0)
472 f = self.dtype_f(self.init)
473 f[:] = self.A.dot(self.uext)[1:-1] - 1.0 * gprim - 6.0 * self.dw * u * (1.0 - u)
474 self.work_counters['rhs']()
475 return f
478class allencahn_periodic_fullyimplicit(Problem):
479 r"""
480 Example implementing the one-dimensional Allen-Cahn equation with driving force and periodic boundary conditions
482 .. math::
483 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \frac{2}{\varepsilon^2} u (1 - u) (1 - 2u)
484 - 6 d_w u (1 - u)
486 for :math:`u \in [0, 1]`. Centered finite differences are used for discretization of the Laplacian.
487 The exact solution is
489 .. math::
490 u(x, t) = 0.5 \left(1 + \tanh\left(\frac{r - |x| - vt}{\sqrt{2}\varepsilon}\right)\right)
492 with :math:`v = 3 \sqrt{2} \varepsilon d_w` and radius :math:`r` of the circles. For time-stepping, the problem is treated
493 *fully-implicitly*, i.e., the nonlinear system is solved by Newton.
495 Parameters
496 ----------
497 nvars : int
498 Number of unknowns in the problem.
499 dw : float
500 Driving force.
501 eps : float
502 Scaling parameter :math:`\varepsilon`.
503 newton_maxiter : int
504 Maximum number of iterations for Newton's method.
505 newton_tol : float
506 Tolerance for Newton's method to terminate.
507 interval : list
508 Interval of spatial domain.
509 radius : float
510 Radius of the circles.
511 stop_at_nan : bool, optional
512 Indicates that the Newton solver should stop if nan values arise.
514 Attributes
515 ----------
516 A : scipy.diags
517 Second-order FD discretization of the 1D laplace operator.
518 dx : float
519 Distance between two spatial nodes.
520 xvalues : np.1darray
521 Spatial grid points.
522 work_counters : WorkCounter
523 Counter for statistics. Here, number of Newton calls and number of evaluations
524 of right-hand side are counted.
525 """
527 dtype_u = mesh
528 dtype_f = mesh
530 def __init__(
531 self,
532 nvars=128,
533 dw=-0.04,
534 eps=0.04,
535 newton_maxiter=100,
536 newton_tol=1e-12,
537 interval=(-0.5, 0.5),
538 radius=0.25,
539 stop_at_nan=True,
540 ):
541 # we assert that nvars looks very particular here.. this will be necessary for coarsening in space later on
542 if (nvars) % 2:
543 raise ProblemError('setup requires nvars = 2^p')
545 # invoke super init, passing number of dofs, dtype_u and dtype_f
546 super().__init__((nvars, None, np.dtype('float64')))
547 self._makeAttributeAndRegister(
548 'nvars',
549 'dw',
550 'eps',
551 'newton_maxiter',
552 'newton_tol',
553 'interval',
554 'radius',
555 'stop_at_nan',
556 localVars=locals(),
557 readOnly=True,
558 )
560 # compute dx and get discretization matrix A
561 self.dx = (self.interval[1] - self.interval[0]) / self.nvars
562 self.xvalues = np.array([self.interval[0] + i * self.dx for i in range(self.nvars)])
564 self.A, _ = problem_helper.get_finite_difference_matrix(
565 derivative=2,
566 order=2,
567 stencil_type='center',
568 dx=self.dx,
569 size=self.nvars,
570 dim=1,
571 bc='periodic',
572 )
574 self.work_counters['newton'] = WorkCounter()
575 self.work_counters['rhs'] = WorkCounter()
577 def solve_system(self, rhs, factor, u0, t):
578 """
579 Simple Newton solver.
581 Parameters
582 ----------
583 rhs : dtype_f
584 Right-hand side for the nonlinear system.
585 factor : float
586 Abbrev. for the node-to-node stepsize (or any other factor required).
587 u0 : dtype_u
588 Initial guess for the iterative solver.
589 t : float
590 Current time (required here for the BC).
592 Returns
593 -------
594 u : dtype_u
595 The solution as mesh.
596 """
598 u = self.dtype_u(u0)
599 eps2 = self.eps**2
600 dw = self.dw
602 Id = sp.eye(self.nvars)
604 # start newton iteration
605 n = 0
606 res = 99
607 while n < self.newton_maxiter:
608 # form the function g(u), such that the solution to the nonlinear problem is a root of g
609 g = (
610 u
611 - rhs
612 - factor * (self.A.dot(u) - 2.0 / eps2 * u * (1.0 - u) * (1.0 - 2.0 * u) - 6.0 * dw * u * (1.0 - u))
613 )
615 # if g is close to 0, then we are done
616 res = np.linalg.norm(g, np.inf)
618 if res < self.newton_tol:
619 break
621 # assemble dg
622 dg = Id - factor * (
623 self.A
624 - 2.0
625 / eps2
626 * sp.diags((1.0 - u) * (1.0 - 2.0 * u) - u * ((1.0 - 2.0 * u) + 2.0 * (1.0 - u)), offsets=0)
627 - 6.0 * dw * sp.diags((1.0 - u) - u, offsets=0)
628 )
630 # newton update: u1 = u0 - g/dg
631 u -= spsolve(dg, g)
632 # u -= gmres(dg, g, x0=z, rtol=self.lin_tol)[0]
633 # increase iteration count
634 n += 1
635 self.work_counters['newton']()
637 if np.isnan(res) and self.stop_at_nan:
638 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
639 elif np.isnan(res):
640 self.logger.warning('Newton got nan after %i iterations...' % n)
642 if n == self.newton_maxiter:
643 self.logger.warning('Newton did not converge after %i iterations, error is %s' % (n, res))
645 me = self.dtype_u(self.init)
646 me[:] = u[:]
648 return me
650 def eval_f(self, u, t):
651 """
652 Routine to evaluate the right-hand side of the problem.
654 Parameters
655 ----------
656 u : dtype_u
657 Current values of the numerical solution.
658 t : float
659 Current time of the numerical solution is computed.
661 Returns
662 -------
663 f : dtype_f
664 The right-hand side of the problem.
665 """
666 f = self.dtype_f(self.init)
667 f[:] = self.A.dot(u) - 2.0 / self.eps**2 * u * (1.0 - u) * (1.0 - 2 * u) - 6.0 * self.dw * u * (1.0 - u)
668 self.work_counters['rhs']()
669 return f
671 def u_exact(self, t):
672 r"""
673 Routine to return initial condition or the exact solution.
675 Parameters
676 ----------
677 t : float
678 Time at which the approximated exact solution is computed.
680 Returns
681 -------
682 me : dtype_u
683 The approximated exact solution.
684 """
685 v = 3.0 * np.sqrt(2) * self.eps * self.dw
686 me = self.dtype_u(self.init, val=0.0)
687 me[:] = 0.5 * (1 + np.tanh((self.radius - abs(self.xvalues) - v * t) / (np.sqrt(2) * self.eps)))
688 return me
691class allencahn_periodic_semiimplicit(allencahn_periodic_fullyimplicit):
692 r"""
693 This class implements the one-dimensional Allen-Cahn equation with driving force and periodic boundary conditions
695 .. math::
696 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \frac{2}{\varepsilon^2} u (1 - u) (1 - 2u)
697 - 6 d_w u (1 - u)
699 for :math:`u \in [0, 1]`. For discretization of the Laplacian, centered finite differences are used.
700 The exact solution is
702 .. math::
703 u(x, t) = 0.5 \left(1 + \tanh\left(\frac{r - |x| - vt}{\sqrt{2}\varepsilon}\right)\right)
705 with :math:`v = 3 \sqrt{2} \varepsilon d_w` and radius :math:`r` of the circles. For time-stepping, the problem is treated
706 in *semi-implicit* way, i.e., the part containing the Laplacian is treated implicitly, and the rest of the right-hand
707 side is only evaluated at each time.
708 """
710 dtype_f = imex_mesh
712 def __init__(
713 self,
714 nvars=128,
715 dw=-0.04,
716 eps=0.04,
717 newton_maxiter=100,
718 newton_tol=1e-12,
719 interval=(-0.5, 0.5),
720 radius=0.25,
721 stop_at_nan=True,
722 ):
723 super().__init__(nvars, dw, eps, newton_maxiter, newton_tol, interval, radius, stop_at_nan)
725 def solve_system(self, rhs, factor, u0, t):
726 r"""
727 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`.
729 Parameters
730 ----------
731 rhs : dtype_f
732 Right-hand side for the linear system.
733 factor : float
734 Abbrev. for the local stepsize (or any other factor required).
735 u0 : dtype_u
736 Initial guess for the iterative solver.
737 t : float
738 Current time (e.g. for time-dependent BCs).
740 Returns
741 -------
742 me : dtype_u
743 The solution as mesh.
744 """
746 me = self.dtype_u(u0)
747 me[:] = spsolve(sp.eye(self.nvars, format='csc') - factor * self.A, rhs)
748 return me
750 def eval_f(self, u, t):
751 """
752 Routine to evaluate the right-hand side of the problem.
754 Parameters
755 ----------
756 u : dtype_u
757 Current values of the numerical solution.
758 t : float
759 Current time of the numerical solution is computed.
761 Returns
762 -------
763 f : dtype_f
764 The right-hand side of the problem.
765 """
766 f = self.dtype_f(self.init)
767 f.impl[:] = self.A.dot(u)
768 f.expl[:] = (
769 -2.0 / self.eps**2 * u * (1.0 - u) * (1.0 - 2.0 * u) - 6.0 * self.dw * u * (1.0 - u) + 0.0 / self.eps**2 * u
770 )
771 self.work_counters['rhs']()
772 return f
775class allencahn_periodic_multiimplicit(allencahn_periodic_fullyimplicit):
776 r"""
777 This class implements the one-dimensional Allen-Cahn equation with driving force and periodic boundary conditions
779 .. math::
780 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \frac{2}{\varepsilon^2} u (1 - u) (1 - 2u)
781 - 6 d_w u (1 - u)
783 for :math:`u \in [0, 1]`. For discretization of the second order spatial derivative, centered finite differences are used.
784 The exact solution is then given by
786 .. math::
787 u(x, t) = 0.5 \left(1 + \tanh\left(\frac{r - |x| - vt}{\sqrt{2}\varepsilon}\right)\right)
789 with :math:`v = 3 \sqrt{2} \varepsilon d_w` and radius :math:`r` of the circles. For time-stepping, the problem is treated
790 in a *multi-implicit* fashion, i.e., the nonlinear system containing the part with the Laplacian is solved with a
791 linear solver provided by a ``SciPy`` routine, and the nonlinear system including the rest of the right-hand side is solved by
792 Newton's method.
793 """
795 dtype_f = comp2_mesh
797 def __init__(
798 self,
799 nvars=128,
800 dw=-0.04,
801 eps=0.04,
802 newton_maxiter=100,
803 newton_tol=1e-12,
804 interval=(-0.5, 0.5),
805 radius=0.25,
806 stop_at_nan=True,
807 ):
808 super().__init__(nvars, dw, eps, newton_maxiter, newton_tol, interval, radius, stop_at_nan)
810 def solve_system_1(self, rhs, factor, u0, t):
811 r"""
812 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`.
814 Parameters
815 ----------
816 rhs : dtype_f
817 Right-hand side for the linear system.
818 factor : float
819 Abbrev. for the local stepsize (or any other factor required).
820 u0 : dtype_u
821 Initial guess for the iterative solver.
822 t : float
823 Current time (e.g. for time-dependent BCs).
825 Returns
826 -------
827 me : dtype_u
828 The solution as mesh.
829 """
831 me = self.dtype_u(u0)
832 me[:] = spsolve(sp.eye(self.nvars, format='csc') - factor * self.A, rhs)
833 return me
835 def eval_f(self, u, t):
836 """
837 Routine to evaluate the right-hand side of the problem.
839 Parameters
840 ----------
841 u : dtype_u
842 Current values of the numerical solution.
843 t : float
844 Current time of the numerical solution is computed (not used here).
846 Returns
847 -------
848 f : dtype_f
849 The right-hand side of the problem.
850 """
851 f = self.dtype_f(self.init)
852 f.comp1[:] = self.A.dot(u)
853 f.comp2[:] = (
854 -2.0 / self.eps**2 * u * (1.0 - u) * (1.0 - 2.0 * u) - 6.0 * self.dw * u * (1.0 - u) + 0.0 / self.eps**2 * u
855 )
856 self.work_counters['rhs']()
857 return f
859 def solve_system_2(self, rhs, factor, u0, t):
860 r"""
861 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`.
863 Parameters
864 ----------
865 rhs : dtype_f
866 Right-hand side for the linear system.
867 factor : float
868 Abbrev. for the local stepsize (or any other factor required).
869 u0 : dtype_u
870 Initial guess for the iterative solver.
871 t : float
872 Current time (e.g. for time-dependent BCs).
874 Returns
875 -------
876 me : dtype_u
877 The solution as mesh.
878 """
880 u = self.dtype_u(u0)
881 eps2 = self.eps**2
882 dw = self.dw
884 Id = sp.eye(self.nvars)
886 # start newton iteration
887 n = 0
888 res = 99
889 while n < self.newton_maxiter:
890 # form the function g(u), such that the solution to the nonlinear problem is a root of g
891 g = (
892 u
893 - rhs
894 - factor
895 * (-2.0 / eps2 * u * (1.0 - u) * (1.0 - 2.0 * u) - 6.0 * dw * u * (1.0 - u) + 0.0 / self.eps**2 * u)
896 )
898 # if g is close to 0, then we are done
899 res = np.linalg.norm(g, np.inf)
901 if res < self.newton_tol:
902 break
904 # assemble dg
905 dg = Id - factor * (
906 -2.0 / eps2 * sp.diags((1.0 - u) * (1.0 - 2.0 * u) - u * ((1.0 - 2.0 * u) + 2.0 * (1.0 - u)), offsets=0)
907 - 6.0 * dw * sp.diags((1.0 - u) - u, offsets=0)
908 + 0.0 / self.eps**2 * Id
909 )
911 # newton update: u1 = u0 - g/dg
912 u -= spsolve(dg, g)
913 # u -= gmres(dg, g, x0=z, rtol=self.lin_tol)[0]
914 # increase iteration count
915 n += 1
916 self.work_counters['newton']()
918 if np.isnan(res) and self.stop_at_nan:
919 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
920 elif np.isnan(res):
921 self.logger.warning('Newton got nan after %i iterations...' % n)
923 if n == self.newton_maxiter:
924 self.logger.warning('Newton did not converge after %i iterations, error is %s' % (n, res))
926 me = self.dtype_u(self.init)
927 me[:] = u[:]
929 return me