Coverage for pySDC/projects/Resilience/accuracy_check.py: 80%
142 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-16 14:51 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-16 14:51 +0000
1import matplotlib as mpl
2import matplotlib.pylab as plt
3import numpy as np
5from pySDC.helpers.stats_helper import get_sorted
6from pySDC.implementations.convergence_controller_classes.estimate_embedded_error import EstimateEmbeddedError
7from pySDC.implementations.convergence_controller_classes.estimate_extrapolation_error import (
8 EstimateExtrapolationErrorNonMPI,
9)
10from pySDC.core.hooks import Hooks
11from pySDC.implementations.hooks.log_errors import LogLocalErrorPostStep
12from pySDC.projects.Resilience.strategies import merge_descriptions
14import pySDC.helpers.plot_helper as plt_helper
15from pySDC.projects.Resilience.piline import run_piline
18class DoNothing(Hooks):
19 pass
22def setup_mpl(font_size=8):
23 """
24 Setup matplotlib to fit in with TeX scipt.
26 Args:
27 fontsize (int): Font size
29 Returns:
30 None
31 """
32 plt_helper.setup_mpl(reset=True)
33 # Set up plotting parameters
34 style_options = {
35 "axes.labelsize": 12, # LaTeX default is 10pt font.
36 "legend.fontsize": 13, # Make the legend/label fonts a little smaller
37 "axes.xmargin": 0.03,
38 "axes.ymargin": 0.03,
39 }
40 mpl.rcParams.update(style_options)
43def get_results_from_stats(stats, var, val, hook_class=LogLocalErrorPostStep):
44 """
45 Extract results from the stats are used to compute the order.
47 Args:
48 stats (dict): The stats object from a pySDC run
49 var (str): The variable to compute the order against
50 val (float): The value of var corresponding to this run
51 hook_class (pySDC.Hook): A hook such that we know what information is available
53 Returns:
54 dict: The information needed for the order plot
55 """
56 results = {
57 'e_embedded': 0.0,
58 'e_extrapolated': 0.0,
59 'e': 0.0,
60 var: val,
61 }
63 if hook_class == LogLocalErrorPostStep:
64 e_extrapolated = np.array(get_sorted(stats, type='error_extrapolation_estimate'))[:, 1]
65 e_embedded = np.array(get_sorted(stats, type='error_embedded_estimate'))[:, 1]
66 e_local = np.array(get_sorted(stats, type='e_local_post_step'))[:, 1]
68 if len(e_extrapolated[e_extrapolated != [None]]) > 0:
69 results['e_extrapolated'] = e_extrapolated[e_extrapolated != [None]][-1]
71 if len(e_local[e_local != [None]]) > 0:
72 results['e'] = max([e_local[e_local != [None]][-1], np.finfo(float).eps])
74 if len(e_embedded[e_embedded != [None]]) > 0:
75 results['e_embedded'] = e_embedded[e_embedded != [None]][-1]
77 return results
80def multiple_runs(
81 k=5,
82 serial=True,
83 Tend_fixed=None,
84 custom_description=None,
85 prob=run_piline,
86 dt_list=None,
87 hook_class=LogLocalErrorPostStep,
88 custom_controller_params=None,
89 var='dt',
90 avoid_restarts=False,
91 embedded_error_flavor=None,
92):
93 """
94 A simple test program to compute the order of accuracy.
96 Args:
97 k (int): Number of SDC sweeps
98 serial (bool): Whether to do regular SDC or Multi-step SDC with 5 processes
99 Tend_fixed (float): The time you want to solve the equation to. If left at `None`, the local error will be
100 computed since a fixed number of steps will be performed.
101 custom_description (dict): Custom parameters to pass to the problem
102 prob (function): A function that can accept suitable arguments and run a problem (see the Resilience project)
103 dt_list (list): A list of values to check the order with
104 hook_class (pySDC.Hook): A hook for recording relevant information
105 custom_controller_params (dict): Custom parameters to pass to the problem
106 var (str): The variable to check the order against
107 avoid_restarts (bool): Mode of running adaptivity if applicable
108 embedded_error_flavor (str): Flavor for the estimation of embedded error
110 Returns:
111 dict: The errors for different values of var
112 """
114 # assemble list of dt
115 if dt_list is not None:
116 pass
117 elif Tend_fixed:
118 dt_list = 0.1 * 10.0 ** -(np.arange(3) / 2)
119 else:
120 dt_list = 0.01 * 10.0 ** -(np.arange(20) / 10.0)
122 num_procs = 1 if serial else 5
124 embedded_error_flavor = (
125 embedded_error_flavor if embedded_error_flavor else 'standard' if avoid_restarts else 'linearized'
126 )
128 # perform rest of the tests
129 for i in range(0, len(dt_list)):
130 desc = {
131 'step_params': {'maxiter': k},
132 'convergence_controllers': {
133 EstimateEmbeddedError.get_implementation(flavor=embedded_error_flavor, useMPI=False): {},
134 EstimateExtrapolationErrorNonMPI: {'no_storage': not serial},
135 },
136 }
138 # setup the variable we check the order against
139 if var == 'dt':
140 desc['level_params'] = {'dt': dt_list[i]}
141 elif var == 'e_tol':
142 from pySDC.implementations.convergence_controller_classes.adaptivity import Adaptivity
144 desc['convergence_controllers'][Adaptivity] = {
145 'e_tol': dt_list[i],
146 'avoid_restarts': avoid_restarts,
147 'embedded_error_flavor': embedded_error_flavor,
148 }
150 if custom_description is not None:
151 desc = merge_descriptions(desc, custom_description)
152 Tend = Tend_fixed if Tend_fixed else 30 * dt_list[i]
153 stats, controller, _ = prob(
154 custom_description=desc,
155 num_procs=num_procs,
156 Tend=Tend,
157 hook_class=hook_class,
158 custom_controller_params=custom_controller_params,
159 )
161 level = controller.MS[-1].levels[-1]
162 e_glob = abs(level.prob.u_exact(t=level.time + level.dt) - level.u[-1])
163 e_local = abs(level.prob.u_exact(t=level.time + level.dt, u_init=level.u[0], t_init=level.time) - level.u[-1])
165 res_ = get_results_from_stats(stats, var, dt_list[i], hook_class)
166 res_['e_glob'] = e_glob
167 res_['e_local'] = e_local
169 if i == 0:
170 res = res_.copy()
171 for key in res.keys():
172 res[key] = [res[key]]
173 else:
174 for key in res_.keys():
175 res[key].append(res_[key])
176 return res
179def plot_order(res, ax, k):
180 """
181 Plot the order using results from `multiple_runs`.
183 Args:
184 res (dict): The results from `multiple_runs`
185 ax: Somewhere to plot
186 k (int): Number of iterations
188 Returns:
189 None
190 """
191 color = plt.rcParams['axes.prop_cycle'].by_key()['color'][k - 2]
193 key = 'e_local'
194 order = get_accuracy_order(res, key=key, thresh=1e-11)
195 label = f'k={k}, p={np.mean(order):.2f}'
196 ax.loglog(res['dt'], res[key], color=color, ls='-', label=label)
197 ax.set_xlabel(r'$\Delta t$')
198 ax.set_ylabel(r'$\epsilon$')
199 ax.legend(frameon=False, loc='lower right')
202def plot(res, ax, k, var='dt', keys=None):
203 """
204 Plot the order of various errors using the results from `multiple_runs`.
206 Args:
207 results (dict): the dictionary containing the errors
208 ax: Somewhere to plot
209 k (int): Number of SDC sweeps
210 var (str): The variable to compute the order against
211 keys (list): List of keys to plot from the results
213 Returns:
214 None
215 """
216 keys = keys if keys else ['e_embedded', 'e_extrapolated', 'e']
217 ls = ['-', ':', '-.']
218 color = plt.rcParams['axes.prop_cycle'].by_key()['color'][k - 2]
220 for i in range(len(keys)):
221 if all(me == 0.0 for me in res[keys[i]]):
222 continue
223 order = get_accuracy_order(res, key=keys[i], var=var)
224 if keys[i] == 'e_embedded':
225 label = rf'$k={ {np.mean(order):.2f}} $'
226 expect_order = k if var == 'dt' else 1.0
227 assert np.isclose(
228 np.mean(order), expect_order, atol=4e-1
229 ), f'Expected embedded error estimate to have order {expect_order} \
230but got {np.mean(order):.2f}'
232 elif keys[i] == 'e_extrapolated':
233 label = None
234 expect_order = k + 1 if var == 'dt' else 1 + 1 / k
235 assert np.isclose(
236 np.mean(order), expect_order, rtol=3e-1
237 ), f'Expected extrapolation error estimate to have order \
238{expect_order} but got {np.mean(order):.2f}'
239 else:
240 label = None
241 ax.loglog(res[var], res[keys[i]], color=color, ls=ls[i], label=label)
243 if var == 'dt':
244 ax.set_xlabel(r'$\Delta t$')
245 elif var == 'e_tol':
246 ax.set_xlabel(r'$\epsilon_\mathrm{TOL}$')
247 else:
248 ax.set_xlabel(var)
249 ax.set_ylabel(r'$\epsilon$')
250 ax.legend(frameon=False, loc='lower right')
253def get_accuracy_order(results, key='e_embedded', thresh=1e-14, var='dt'):
254 """
255 Routine to compute the order of accuracy in time
257 Args:
258 results (dict): the dictionary containing the errors
259 key (str): The key in the dictionary corresponding to a specific error
260 thresh (float): A threshold below which values are not entered into the order computation
261 var (str): The variable to compute the order against
263 Returns:
264 the list of orders
265 """
267 # retrieve the list of dt from results
268 assert var in results, f'ERROR: expecting the list of {var} in the results dictionary'
269 dt_list = sorted(results[var], reverse=True)
271 order = []
272 # loop over two consecutive errors/dt pairs
273 for i in range(1, len(dt_list)):
274 # compute order as log(prev_error/this_error)/log(this_dt/old_dt) <-- depends on the sorting of the list!
275 try:
276 if results[key][i] > thresh and results[key][i - 1] > thresh:
277 order.append(np.log(results[key][i] / results[key][i - 1]) / np.log(dt_list[i] / dt_list[i - 1]))
278 except TypeError:
279 print('Type Warning', results[key])
281 return order
284def plot_orders(
285 ax,
286 ks,
287 serial,
288 Tend_fixed=None,
289 custom_description=None,
290 prob=run_piline,
291 dt_list=None,
292 custom_controller_params=None,
293 embedded_error_flavor=None,
294):
295 """
296 Plot only the local error.
298 Args:
299 ax: Somewhere to plot
300 ks (list): List of sweeps
301 serial (bool): Whether to do regular SDC or Multi-step SDC with 5 processes
302 Tend_fixed (float): The time you want to solve the equation to. If left at `None`, the local error will be
303 custom_description (dict): Custom parameters to pass to the problem
304 prob (function): A function that can accept suitable arguments and run a problem (see the Resilience project)
305 dt_list (list): A list of values to check the order with
306 custom_controller_params (dict): Custom parameters to pass to the problem
307 embedded_error_flavor (str): Flavor for the estimation of embedded error
309 Returns:
310 None
311 """
312 for i in range(len(ks)):
313 k = ks[i]
314 res = multiple_runs(
315 k=k,
316 serial=serial,
317 Tend_fixed=Tend_fixed,
318 custom_description=custom_description,
319 prob=prob,
320 dt_list=dt_list,
321 hook_class=DoNothing,
322 custom_controller_params=custom_controller_params,
323 embedded_error_flavor=embedded_error_flavor,
324 )
325 plot_order(res, ax, k)
328def plot_all_errors(
329 ax,
330 ks,
331 serial,
332 Tend_fixed=None,
333 custom_description=None,
334 prob=run_piline,
335 dt_list=None,
336 custom_controller_params=None,
337 var='dt',
338 avoid_restarts=False,
339 embedded_error_flavor=None,
340 keys=None,
341):
342 """
343 Make tests for plotting the error and plot a bunch of error estimates
345 Args:
346 ax: Somewhere to plot
347 ks (list): List of sweeps
348 serial (bool): Whether to do regular SDC or Multi-step SDC with 5 processes
349 Tend_fixed (float): The time you want to solve the equation to. If left at `None`, the local error will be
350 custom_description (dict): Custom parameters to pass to the problem
351 prob (function): A function that can accept suitable arguments and run a problem (see the Resilience project)
352 dt_list (list): A list of values to check the order with
353 custom_controller_params (dict): Custom parameters to pass to the problem
354 var (str): The variable to compute the order against
355 avoid_restarts (bool): Mode of running adaptivity if applicable
356 embedded_error_flavor (str): Flavor for the estimation of embedded error
357 keys (list): List of keys to plot from the results
359 Returns:
360 None
361 """
362 for i in range(len(ks)):
363 k = ks[i]
364 res = multiple_runs(
365 k=k,
366 serial=serial,
367 Tend_fixed=Tend_fixed,
368 custom_description=custom_description,
369 prob=prob,
370 dt_list=dt_list,
371 custom_controller_params=custom_controller_params,
372 var=var,
373 avoid_restarts=avoid_restarts,
374 embedded_error_flavor=embedded_error_flavor,
375 )
377 # visualize results
378 plot(res, ax, k, var=var, keys=keys)
380 ax.plot([None, None], color='black', label=r'$\epsilon_\mathrm{embedded}$', ls='-')
381 ax.plot([None, None], color='black', label=r'$\epsilon_\mathrm{extrapolated}$', ls=':')
382 ax.plot([None, None], color='black', label=r'$e$', ls='-.')
383 ax.legend(frameon=False, loc='lower right')
386def check_order_with_adaptivity():
387 """
388 Test the order when running adaptivity.
389 Since we replace the step size with the tolerance, we check the order against this.
391 Irrespective of the number of sweeps we do, the embedded error estimate should scale linearly with the tolerance,
392 since it is supposed to match it as closely as possible.
394 The error estimate for the error of the last sweep, however will depend on the number of sweeps we do. The order
395 we expect is 1 + 1/k.
396 """
397 setup_mpl()
398 ks = [3, 2]
399 for serial in [True, False]:
400 fig, ax = plt.subplots(1, 1, figsize=(3.5, 3))
401 plot_all_errors(
402 ax,
403 ks,
404 serial,
405 Tend_fixed=5e-1,
406 var='e_tol',
407 dt_list=[1e-5, 5e-6],
408 avoid_restarts=False,
409 custom_controller_params={'logger_level': 30},
410 )
411 if serial:
412 fig.savefig('data/error_estimate_order_adaptivity.png', dpi=300, bbox_inches='tight')
413 else:
414 fig.savefig('data/error_estimate_order_adaptivity_parallel.png', dpi=300, bbox_inches='tight')
415 plt.close(fig)
418def check_order_against_step_size():
419 """
420 Check the order versus the step size for different numbers of sweeps.
421 """
422 setup_mpl()
423 ks = [4, 3, 2]
424 for serial in [True, False]:
425 fig, ax = plt.subplots(1, 1, figsize=(3.5, 3))
427 plot_all_errors(ax, ks, serial, Tend_fixed=1.0)
429 if serial:
430 fig.savefig('data/error_estimate_order.png', dpi=300, bbox_inches='tight')
431 else:
432 fig.savefig('data/error_estimate_order_parallel.png', dpi=300, bbox_inches='tight')
433 plt.close(fig)
436def main():
437 """Run various tests"""
438 check_order_with_adaptivity()
439 check_order_against_step_size()
442if __name__ == "__main__":
443 main()