Coverage for pySDC/helpers/transfer_helper.py: 77%
142 statements
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-20 14:51 +0000
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-20 14:51 +0000
1# coding=utf-8
2import numpy as np
3import scipy.sparse as sprs
4from scipy.interpolate import BarycentricInterpolator
7def next_neighbors_periodic(p, ps, k):
8 """
9 Function to find the next neighbors for a periodic setup
11 This function gives for a value p the k points next to it which are found in
12 in the vector ps and the points which are found periodically.
14 Args:
15 p: the current point
16 ps (np.ndarray): the grid with the potential neighbors
17 k (int): number of neighbors to find
19 Returns:
20 list: the k next neighbors
21 """
22 p_bar = p - np.floor(p / 1.0) * 1.0
23 ps = ps - ps[0]
24 distance_to_p = np.asarray(
25 list(map(lambda tk: min([np.abs(tk + 1 - p_bar), np.abs(tk - p_bar), np.abs(tk - 1 - p_bar)]), ps))
26 )
28 # zip it
29 value_index = []
30 for d, i in zip(distance_to_p, range(distance_to_p.size)):
31 value_index.append((d, i))
32 # sort by distance
33 value_index_sorted = sorted(value_index, key=lambda s: s[0])
34 # take first k indices with least distance and sort them
35 return sorted(map(lambda s: s[1], value_index_sorted[0:k]))
38def next_neighbors(p, ps, k):
39 """
40 Function to find the next neighbors for a non-periodic setup
42 This function gives for a value p the k points next to it which are found in
43 in the vector ps
45 Args:
46 p: the current point
47 ps (np.ndarray): the grid with the potential neighbors
48 k (int): number of neighbors to find
50 Returns:
51 list: the k next neighbors
52 """
53 distance_to_p = np.abs(ps - p)
54 # zip it
55 value_index = []
56 for d, i in zip(distance_to_p, range(distance_to_p.size)):
57 value_index.append((d, i))
58 # sort by distance
59 value_index_sorted = sorted(value_index, key=lambda s: s[0])
60 # take first k indices with least distance and sort them
61 return sorted(map(lambda s: s[1], value_index_sorted[0:k]))
64def continue_periodic_array(arr, nn):
65 """
66 Function to append an array for nn neighbors for periodicity
68 Args:
69 arr (np.ndarray): the input array
70 nn (list): the neighbors
72 Returns:
73 np.ndarray: the continued array
74 """
76 nn = np.asarray(nn)
77 d_nn = nn[1:] - nn[:-1]
78 if np.all(d_nn == np.ones(nn.shape[0] - 1)):
79 return arr[nn]
80 else:
81 cont_arr = [arr[nn[0]]]
82 shift = 0.0
83 for n, d in zip(nn[1:], d_nn):
84 if d != 1:
85 shift = -1
86 cont_arr.append(arr[n] + shift)
88 return np.asarray(cont_arr)
91def restriction_matrix_1d(fine_grid, coarse_grid, k=2, periodic=False, pad=1):
92 """
93 Function to contruct the restriction matrix in 1d using barycentric interpolation
95 Args:
96 fine_grid (np.ndarray): a one dimensional 1d array containing the nodes of the fine grid
97 coarse_grid (np.ndarray): a one dimensional 1d array containing the nodes of the coarse grid
98 k (int): order of the restriction
99 periodic (bool): flag to indicate periodicity
100 pad (int): padding parameter for boundaries
102 Returns:
103 sprs.csc_matrix: restriction matrix
104 """
106 n_g = coarse_grid.size
108 if periodic:
109 M = np.zeros((coarse_grid.size, fine_grid.size))
110 for i, p in zip(range(n_g), coarse_grid):
111 nn = next_neighbors_periodic(p, fine_grid, k)
112 circulating_one = np.asarray([1.0] + [0.0] * (k - 1))
113 cont_arr = continue_periodic_array(fine_grid, nn)
114 if p > np.mean(coarse_grid) and not (cont_arr[0] <= p <= cont_arr[-1]):
115 cont_arr += 1
116 bary_pol = []
117 for l in range(k):
118 bary_pol.append(BarycentricInterpolator(cont_arr, np.roll(circulating_one, l)))
119 with np.errstate(divide='ignore'):
120 M[i, nn] = np.asarray(list(map(lambda x: x(p), bary_pol)))
121 else:
122 M = np.zeros((coarse_grid.size, fine_grid.size + 2 * pad))
123 for i, p in zip(range(n_g), coarse_grid):
124 padded_f_grid = border_padding(fine_grid, pad, pad)
125 nn = next_neighbors(p, padded_f_grid, k)
126 # construct the lagrange polynomials for the k neighbors
127 circulating_one = np.asarray([1.0] + [0.0] * (k - 1))
128 bary_pol = []
129 for l in range(k):
130 bary_pol.append(BarycentricInterpolator(padded_f_grid[nn], np.roll(circulating_one, l)))
131 with np.errstate(divide='ignore'):
132 M[i, nn] = np.asarray(list(map(lambda x: x(p), bary_pol)))
133 if pad > 0:
134 M = M[:, pad:-pad]
136 return sprs.csc_matrix(M)
139def interpolation_matrix_1d(fine_grid, coarse_grid, k=2, periodic=False, pad=1, equidist_nested=True):
140 """
141 Function to construct the restriction matrix in 1d using barycentric interpolation
143 Args:
144 fine_grid (np.ndarray): a one dimensional 1d array containing the nodes of the fine grid
145 coarse_grid (np.ndarray): a one dimensional 1d array containing the nodes of the coarse grid
146 k (int): order of the restriction
147 periodic (bool): flag to indicate periodicity
148 pad (int): padding parameter for boundaries
149 equidist_nested (bool): shortcut possible, if nodes are equidistant and nested
151 Returns:
152 sprs.csc_matrix: interpolation matrix
153 """
155 n_f = fine_grid.size
157 if periodic:
158 M = np.zeros((fine_grid.size, coarse_grid.size))
160 if equidist_nested:
161 for i, p in zip(range(n_f), fine_grid):
162 if i % 2 == 0:
163 M[i, int(i / 2)] = 1.0
164 else:
165 nn = []
166 cpos = int(i / 2)
167 offset = int(k / 2)
168 for j in range(k):
169 nn.append(cpos - offset + 1 + j)
170 if nn[-1] < 0:
171 nn[-1] += coarse_grid.size
172 elif nn[-1] > coarse_grid.size - 1:
173 nn[-1] -= coarse_grid.size
174 nn = sorted(nn)
176 circulating_one = np.asarray([1.0] + [0.0] * (k - 1))
177 if len(nn) > 0:
178 cont_arr = continue_periodic_array(coarse_grid, nn)
179 else:
180 cont_arr = coarse_grid
182 if p > np.mean(fine_grid) and not (cont_arr[0] <= p <= cont_arr[-1]):
183 cont_arr += 1
185 bary_pol = []
186 for l in range(k):
187 bary_pol.append(BarycentricInterpolator(cont_arr, np.roll(circulating_one, l)))
188 with np.errstate(divide='ignore'):
189 M[i, nn] = np.asarray(list(map(lambda x: x(p), bary_pol)))
191 else:
192 for i, p in zip(range(n_f), fine_grid):
193 nn = next_neighbors_periodic(p, coarse_grid, k)
194 circulating_one = np.asarray([1.0] + [0.0] * (k - 1))
195 cont_arr = continue_periodic_array(coarse_grid, nn)
197 if p > np.mean(fine_grid) and not (cont_arr[0] <= p <= cont_arr[-1]):
198 cont_arr += 1
200 bary_pol = []
201 for l in range(k):
202 bary_pol.append(BarycentricInterpolator(cont_arr, np.roll(circulating_one, l)))
203 with np.errstate(divide='ignore'):
204 M[i, nn] = np.asarray(list(map(lambda x: x(p), bary_pol)))
206 else:
207 M = np.zeros((fine_grid.size, coarse_grid.size + 2 * pad))
208 padded_c_grid = border_padding(coarse_grid, pad, pad)
210 if equidist_nested:
211 for i, p in zip(range(n_f), fine_grid):
212 if i % 2 != 0:
213 M[i, int((i - 1) / 2) + 1] = 1.0
214 else:
215 nn = []
216 cpos = int(i / 2)
217 offset = int(k / 2)
218 for j in range(k):
219 nn.append(cpos - offset + 1 + j)
220 if nn[-1] < 0:
221 nn[-1] += k
222 elif nn[-1] > coarse_grid.size + 1:
223 nn[-1] -= k
224 nn = sorted(nn)
225 # construct the lagrange polynomials for the k neighbors
226 circulating_one = np.asarray([1.0] + [0.0] * (k - 1))
227 bary_pol = []
228 for l in range(k):
229 bary_pol.append(BarycentricInterpolator(padded_c_grid[nn], np.roll(circulating_one, l)))
230 with np.errstate(divide='ignore'):
231 M[i, nn] = np.asarray(list(map(lambda x: x(p), bary_pol)))
233 else:
234 for i, p in zip(range(n_f), fine_grid):
235 nn = next_neighbors(p, padded_c_grid, k)
236 # construct the lagrange polynomials for the k neighbors
237 circulating_one = np.asarray([1.0] + [0.0] * (k - 1))
238 bary_pol = []
239 for l in range(k):
240 bary_pol.append(BarycentricInterpolator(padded_c_grid[nn], np.roll(circulating_one, l)))
241 with np.errstate(divide='ignore'):
242 M[i, nn] = np.asarray(list(map(lambda x: x(p), bary_pol)))
244 if pad > 0:
245 M = M[:, pad:-pad]
247 return sprs.csc_matrix(M)
250def border_padding(grid, l, r, pad_type='mirror'):
251 """
252 Function to pad/embed an array at the boundaries
254 Args:
255 grid (np.npdarray): the input array
256 l: left boundary
257 r: right boundary
258 pad_type: type of padding
260 Returns:
261 np.npdarray: the padded array
263 """
265 assert l < grid.size and r < grid.size
266 padded_arr = np.zeros(grid.size + l + r)
267 if pad_type == 'mirror':
268 for i in range(l):
269 padded_arr[i] = 2 * grid[0] - grid[l - i]
270 for j in range(r):
271 padded_arr[-j - 1] = 2 * grid[-1] - grid[-r + j - 1]
272 padded_arr[l : l + grid.size] = grid
273 return padded_arr