Source code for implementations.transfer_classes.BaseTransfer_mass
from pySDC.core.base_transfer import BaseTransfer
from pySDC.core.errors import UnlockError
[docs]
class base_transfer_mass(BaseTransfer):
"""
Standard base_transfer class
Attributes:
logger: custom logger for sweeper-related logging
params(__Pars): parameter object containing the custom parameters passed by the user
fine (pySDC.Level.level): reference to the fine level
coarse (pySDC.Level.level): reference to the coarse level
"""
[docs]
def restrict(self):
"""
Space-time restriction routine
The routine applies the spatial restriction operator to teh fine values on the fine nodes, then reevaluates f
on the coarse level. This is used for the first part of the FAS correction tau via integration. The second part
is the integral over the fine values, restricted to the coarse level. Finally, possible tau corrections on the
fine level are restricted as well.
"""
# get data for easier access
F = self.fine
G = self.coarse
PG = G.prob
PF = F.prob
SF = F.sweep
SG = G.sweep
# only if the level is unlocked at least by prediction
if not F.status.unlocked:
raise UnlockError('fine level is still locked, cannot use data from there')
# restrict fine values in space
tmp_u = []
for m in range(1, SF.coll.num_nodes + 1):
tmp_u.append(self.space_transfer.project(F.u[m]))
# restrict collocation values
G.u[0] = self.space_transfer.project(F.u[0])
for n in range(1, SG.coll.num_nodes + 1):
G.u[n] = self.Rcoll[n - 1, 0] * tmp_u[0]
for m in range(1, SF.coll.num_nodes):
G.u[n] += self.Rcoll[n - 1, m] * tmp_u[m]
# re-evaluate f on coarse level
G.f[0] = PG.eval_f(G.u[0], G.time)
for m in range(1, SG.coll.num_nodes + 1):
G.f[m] = PG.eval_f(G.u[m], G.time + G.dt * SG.coll.nodes[m - 1])
# build coarse level tau correction part
tauG = G.sweep.integrate()
for m in range(SG.coll.num_nodes):
tauG[m] = PG.apply_mass_matrix(G.u[m + 1]) - tauG[m]
# build fine level tau correction part
tauF = F.sweep.integrate()
for m in range(SF.coll.num_nodes):
tauF[m] = PF.apply_mass_matrix(F.u[m + 1]) - tauF[m]
# restrict fine level tau correction part in space
tmp_tau = []
for m in range(SF.coll.num_nodes):
tmp_tau.append(self.space_transfer.restrict(tauF[m]))
# restrict fine level tau correction part in collocation
tauFG = []
for n in range(1, SG.coll.num_nodes + 1):
tauFG.append(self.Rcoll[n - 1, 0] * tmp_tau[0])
for m in range(1, SF.coll.num_nodes):
tauFG[-1] += self.Rcoll[n - 1, m] * tmp_tau[m]
# build tau correction
for m in range(SG.coll.num_nodes):
G.tau[m] = tauG[m] - tauFG[m]
if F.tau[0] is not None:
# restrict possible tau correction from fine in space
tmp_tau = []
for m in range(SF.coll.num_nodes):
tmp_tau.append(self.space_transfer.restrict(F.tau[m]))
# restrict possible tau correction from fine in collocation
for n in range(SG.coll.num_nodes):
for m in range(SF.coll.num_nodes):
G.tau[n] += self.Rcoll[n, m] * tmp_tau[m]
else:
pass
# save u and rhs evaluations for interpolation
for m in range(1, SG.coll.num_nodes + 1):
G.uold[m] = PG.dtype_u(G.u[m])
G.fold[m] = PG.dtype_f(G.f[m])
# This is somewhat ugly, but we have to apply the mass matrix on u0 only on the finest level
if F.level_index == 0:
G.u[0] = self.space_transfer.restrict(PF.apply_mass_matrix(F.u[0]))
# works as a predictor
G.status.unlocked = True
return None
[docs]
def prolong(self):
"""
Space-time prolongation routine
This routine applies the spatial prolongation routine to the difference between the computed and the restricted
values on the coarse level and then adds this difference to the fine values as coarse correction.
"""
# get data for easier access
F = self.fine
G = self.coarse
PF = F.prob
SF = F.sweep
SG = G.sweep
# only of the level is unlocked at least by prediction or restriction
if not G.status.unlocked:
raise UnlockError('coarse level is still locked, cannot use data from there')
# build coarse correction
# interpolate values in space first
tmp_u = []
for m in range(1, SG.coll.num_nodes + 1):
tmp_u.append(self.space_transfer.prolong(G.u[m] - G.uold[m]))
# interpolate values in collocation
# F.u[0] += tmp_u[0]
for n in range(1, SF.coll.num_nodes + 1):
for m in range(SG.coll.num_nodes):
F.u[n] += self.Pcoll[n - 1, m] * tmp_u[m]
# re-evaluate f on fine level
# F.f[0] = PF.eval_f(F.u[0], F.time)
for m in range(1, SF.coll.num_nodes + 1):
F.f[m] = PF.eval_f(F.u[m], F.time + F.dt * SF.coll.nodes[m - 1])
return None
[docs]
def prolong_f(self):
"""
Space-time prolongation routine w.r.t. the rhs f
This routine applies the spatial prolongation routine to the difference between the computed and the restricted
values on the coarse level and then adds this difference to the fine values as coarse correction.
"""
# get data for easier access
F = self.fine
G = self.coarse
SF = F.sweep
SG = G.sweep
# only of the level is unlocked at least by prediction or restriction
if not G.status.unlocked:
raise UnlockError('coarse level is still locked, cannot use data from there')
# build coarse correction
# interpolate values in space first
tmp_u = []
tmp_f = []
for m in range(1, SG.coll.num_nodes + 1):
tmp_u.append(self.space_transfer.prolong(G.u[m] - G.uold[m]))
tmp_f.append(self.space_transfer.prolong(G.f[m] - G.fold[m]))
# interpolate values in collocation
for n in range(1, SF.coll.num_nodes + 1):
for m in range(SG.coll.num_nodes):
F.u[n] += self.Pcoll[n - 1, m] * tmp_u[m]
F.f[n] += self.Pcoll[n - 1, m] * tmp_f[m]
return None