Source code for implementations.transfer_classes.BaseTransfer_mass

from pySDC.core.base_transfer import BaseTransfer
from pySDC.core.errors import UnlockError


[docs] class base_transfer_mass(BaseTransfer): """ Standard base_transfer class Attributes: logger: custom logger for sweeper-related logging params(__Pars): parameter object containing the custom parameters passed by the user fine (pySDC.Level.level): reference to the fine level coarse (pySDC.Level.level): reference to the coarse level """
[docs] def restrict(self): """ Space-time restriction routine The routine applies the spatial restriction operator to teh fine values on the fine nodes, then reevaluates f on the coarse level. This is used for the first part of the FAS correction tau via integration. The second part is the integral over the fine values, restricted to the coarse level. Finally, possible tau corrections on the fine level are restricted as well. """ # get data for easier access F = self.fine G = self.coarse PG = G.prob PF = F.prob SF = F.sweep SG = G.sweep # only if the level is unlocked at least by prediction if not F.status.unlocked: raise UnlockError('fine level is still locked, cannot use data from there') # restrict fine values in space tmp_u = [] for m in range(1, SF.coll.num_nodes + 1): tmp_u.append(self.space_transfer.project(F.u[m])) # restrict collocation values G.u[0] = self.space_transfer.project(F.u[0]) for n in range(1, SG.coll.num_nodes + 1): G.u[n] = self.Rcoll[n - 1, 0] * tmp_u[0] for m in range(1, SF.coll.num_nodes): G.u[n] += self.Rcoll[n - 1, m] * tmp_u[m] # re-evaluate f on coarse level G.f[0] = PG.eval_f(G.u[0], G.time) for m in range(1, SG.coll.num_nodes + 1): G.f[m] = PG.eval_f(G.u[m], G.time + G.dt * SG.coll.nodes[m - 1]) # build coarse level tau correction part tauG = G.sweep.integrate() for m in range(SG.coll.num_nodes): tauG[m] = PG.apply_mass_matrix(G.u[m + 1]) - tauG[m] # build fine level tau correction part tauF = F.sweep.integrate() for m in range(SF.coll.num_nodes): tauF[m] = PF.apply_mass_matrix(F.u[m + 1]) - tauF[m] # restrict fine level tau correction part in space tmp_tau = [] for m in range(SF.coll.num_nodes): tmp_tau.append(self.space_transfer.restrict(tauF[m])) # restrict fine level tau correction part in collocation tauFG = [] for n in range(1, SG.coll.num_nodes + 1): tauFG.append(self.Rcoll[n - 1, 0] * tmp_tau[0]) for m in range(1, SF.coll.num_nodes): tauFG[-1] += self.Rcoll[n - 1, m] * tmp_tau[m] # build tau correction for m in range(SG.coll.num_nodes): G.tau[m] = tauG[m] - tauFG[m] if F.tau[0] is not None: # restrict possible tau correction from fine in space tmp_tau = [] for m in range(SF.coll.num_nodes): tmp_tau.append(self.space_transfer.restrict(F.tau[m])) # restrict possible tau correction from fine in collocation for n in range(SG.coll.num_nodes): for m in range(SF.coll.num_nodes): G.tau[n] += self.Rcoll[n, m] * tmp_tau[m] else: pass # save u and rhs evaluations for interpolation for m in range(1, SG.coll.num_nodes + 1): G.uold[m] = PG.dtype_u(G.u[m]) G.fold[m] = PG.dtype_f(G.f[m]) # This is somewhat ugly, but we have to apply the mass matrix on u0 only on the finest level if F.level_index == 0: G.u[0] = self.space_transfer.restrict(PF.apply_mass_matrix(F.u[0])) # works as a predictor G.status.unlocked = True return None
[docs] def prolong(self): """ Space-time prolongation routine This routine applies the spatial prolongation routine to the difference between the computed and the restricted values on the coarse level and then adds this difference to the fine values as coarse correction. """ # get data for easier access F = self.fine G = self.coarse PF = F.prob SF = F.sweep SG = G.sweep # only of the level is unlocked at least by prediction or restriction if not G.status.unlocked: raise UnlockError('coarse level is still locked, cannot use data from there') # build coarse correction # interpolate values in space first tmp_u = [] for m in range(1, SG.coll.num_nodes + 1): tmp_u.append(self.space_transfer.prolong(G.u[m] - G.uold[m])) # interpolate values in collocation # F.u[0] += tmp_u[0] for n in range(1, SF.coll.num_nodes + 1): for m in range(SG.coll.num_nodes): F.u[n] += self.Pcoll[n - 1, m] * tmp_u[m] # re-evaluate f on fine level # F.f[0] = PF.eval_f(F.u[0], F.time) for m in range(1, SF.coll.num_nodes + 1): F.f[m] = PF.eval_f(F.u[m], F.time + F.dt * SF.coll.nodes[m - 1]) return None
[docs] def prolong_f(self): """ Space-time prolongation routine w.r.t. the rhs f This routine applies the spatial prolongation routine to the difference between the computed and the restricted values on the coarse level and then adds this difference to the fine values as coarse correction. """ # get data for easier access F = self.fine G = self.coarse SF = F.sweep SG = G.sweep # only of the level is unlocked at least by prediction or restriction if not G.status.unlocked: raise UnlockError('coarse level is still locked, cannot use data from there') # build coarse correction # interpolate values in space first tmp_u = [] tmp_f = [] for m in range(1, SG.coll.num_nodes + 1): tmp_u.append(self.space_transfer.prolong(G.u[m] - G.uold[m])) tmp_f.append(self.space_transfer.prolong(G.f[m] - G.fold[m])) # interpolate values in collocation for n in range(1, SF.coll.num_nodes + 1): for m in range(SG.coll.num_nodes): F.u[n] += self.Pcoll[n - 1, m] * tmp_u[m] F.f[n] += self.Pcoll[n - 1, m] * tmp_f[m] return None