Source code for implementations.sweeper_classes.imex_1st_order_MPI
from mpi4py import MPI
from pySDC.implementations.sweeper_classes.generic_implicit_MPI import SweeperMPI
from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order
[docs]
class imex_1st_order_MPI(SweeperMPI, imex_1st_order):
def __init__(self, params):
super().__init__(params)
assert (
self.params.QE == 'PIC'
), f"Only Picard is implemented for explicit precondioner so far in {type(self).__name__}! You chose \"{self.params.QE}\""
[docs]
def integrate(self, last_only=False):
"""
Integrates the right-hand side (here impl + expl)
Args:
last_only (bool): Integrate only the last node for the residual or all of them
Returns:
list of dtype_u: containing the integral as values
"""
L = self.level
P = L.prob
me = P.dtype_u(P.init, val=0.0)
for m in [self.coll.num_nodes - 1] if last_only else range(self.coll.num_nodes):
recvBuf = me if m == self.rank else None
self.comm.Reduce(
L.dt * self.coll.Qmat[m + 1, self.rank + 1] * (L.f[self.rank + 1].impl + L.f[self.rank + 1].expl),
recvBuf,
root=m,
op=MPI.SUM,
)
return me
[docs]
def update_nodes(self):
"""
Update the u- and f-values at the collocation nodes -> corresponds to a single sweep over all nodes
Returns:
None
"""
L = self.level
P = L.prob
# only if the level has been touched before
assert L.status.unlocked
# get number of collocation nodes for easier access
# gather all terms which are known already (e.g. from the previous iteration)
# this corresponds to u0 + QF(u^k) - QdF(u^k) + tau
# get QF(u^k)
rhs = self.integrate()
# subtract QdF(u^k)
rhs -= L.dt * (self.QI[self.rank + 1, self.rank + 1] * L.f[self.rank + 1].impl)
# add initial conditions
rhs += L.u[0]
# add tau if associated
if L.tau[self.rank] is not None:
rhs += L.tau[self.rank]
# implicit solve with prefactor stemming from the diagonal of Qd
L.u[self.rank + 1] = P.solve_system(
rhs,
L.dt * self.QI[self.rank + 1, self.rank + 1],
L.u[self.rank + 1],
L.time + L.dt * self.coll.nodes[self.rank],
)
# update function values
L.f[self.rank + 1] = P.eval_f(L.u[self.rank + 1], L.time + L.dt * self.coll.nodes[self.rank])
# indicate presence of new values at this level
L.status.updated = True
return None
[docs]
def compute_end_point(self):
"""
Compute u at the right point of the interval
Returns:
None
"""
L = self.level
P = L.prob
# check if Mth node is equal to right point and do_coll_update is false, perform a simple copy
if self.coll.right_is_node and not self.params.do_coll_update:
super().compute_end_point()
else:
L.uend = P.dtype_u(L.u[0])
self.comm.Allreduce(
L.dt * self.coll.weights[self.rank] * (L.f[self.rank + 1].impl + L.f[self.rank + 1].expl),
L.uend,
op=MPI.SUM,
)
L.uend += L.u[0]
# add up tau correction of the full interval (last entry)
if L.tau[self.rank] is not None:
self.communicate_tau_correction_for_full_interval()
L.uend += L.tau[-1]
return None