Source code for implementations.sweeper_classes.explicit
from pySDC.core.sweeper import Sweeper
[docs]
class explicit(Sweeper):
"""
Custom sweeper class, implements Sweeper.py
Attributes:
QE: explicit Euler integration matrix
"""
def __init__(self, params):
"""
Initialization routine for the custom sweeper
Args:
params: parameters for the sweeper
"""
if 'QE' not in params:
params['QE'] = 'EE'
# call parent's initialization routine
super(explicit, self).__init__(params)
# integration matrix
self.QE = self.get_Qdelta_explicit(qd_type=self.params.QE)
[docs]
def integrate(self):
"""
Integrates the right-hand side
Returns:
list of dtype_u: containing the integral as values
"""
# get current level and problem description
L = self.level
P = L.prob
me = []
# integrate RHS over all collocation nodes
for m in range(1, self.coll.num_nodes + 1):
# new instance of dtype_u, initialize values with 0
me.append(P.dtype_u(P.init, val=0.0))
for j in range(1, self.coll.num_nodes + 1):
me[-1] += L.dt * self.coll.Qmat[m, j] * L.f[j]
return me
[docs]
def update_nodes(self):
"""
Update the u- and f-values at the collocation nodes -> corresponds to a single sweep over all nodes
Returns:
None
"""
# get current level and problem description
L = self.level
P = L.prob
# only if the level has been touched before
assert L.status.unlocked
# get number of collocation nodes for easier access
M = self.coll.num_nodes
# gather all terms which are known already (e.g. from the previous iteration)
# this corresponds to u0 + QF(u^k) - QEFE(u^k) + tau
# get QF(u^k)
integral = self.integrate()
for m in range(M):
# subtract QEFE(u^k)_m
for j in range(1, M + 1):
integral[m] -= L.dt * self.QE[m + 1, j] * L.f[j]
# add initial value
integral[m] += L.u[0]
# add tau if associated
if L.tau[m] is not None:
integral[m] += L.tau[m]
# do the sweep
for m in range(0, M):
# build new u, consisting of the known values from above and new values from previous nodes (at k+1)
L.u[m + 1] = P.dtype_u(integral[m])
for j in range(1, m + 1):
L.u[m + 1] += L.dt * self.QE[m + 1, j] * L.f[j]
# update function values
L.f[m + 1] = P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m])
# indicate presence of new values at this level
L.status.updated = True
return None
[docs]
def compute_end_point(self):
"""
Compute u at the right point of the interval
The value uend computed here is a full evaluation of the Picard formulation unless do_full_update==False
Returns:
None
"""
# get current level and problem description
L = self.level
P = L.prob
# check if Mth node is equal to right point and do_coll_update is false, perform a simple copy
if self.coll.right_is_node and not self.params.do_coll_update:
# a copy is sufficient
L.uend = P.dtype_u(L.u[-1])
else:
# start with u0 and add integral over the full interval (using coll.weights)
L.uend = P.dtype_u(L.u[0])
for m in range(self.coll.num_nodes):
L.uend += L.dt * self.coll.weights[m] * L.f[m + 1]
# add up tau correction of the full interval (last entry)
if L.tau[-1] is not None:
L.uend += L.tau[-1]
return None