Source code for implementations.sweeper_classes.boris_2nd_order

import numpy as np

from pySDC.core.Sweeper import sweeper


[docs] class boris_2nd_order(sweeper): """ Custom sweeper class, implements Sweeper.py Second-order sweeper using velocity-Verlet with Boris scheme as base integrator Attributes: S: node-to-node collocation matrix (first order) SQ: node-to-node collocation matrix (second order) ST: node-to-node trapezoidal matrix Sx: node-to-node Euler half-step for position update """ def __init__(self, params): """ Initialization routine for the custom sweeper Args: params: parameters for the sweeper """ # call parent's initialization routine if "QI" not in params: params["QI"] = "IE" if "QE" not in params: params["QE"] = "EE" super(boris_2nd_order, self).__init__(params) # S- and SQ-matrices (derived from Q) and Sx- and ST-matrices for the integrator [ self.S, self.ST, self.SQ, self.Sx, self.QQ, self.QI, self.QT, self.Qx, self.Q, ] = self.__get_Qd() self.qQ = np.dot(self.coll.weights, self.coll.Qmat[1:, 1:]) def __get_Qd(self): """ Get integration matrices for 2nd-order SDC Returns: S: node-to-node collocation matrix (first order) SQ: node-to-node collocation matrix (second order) ST: node-to-node trapezoidal matrix Sx: node-to-node Euler half-step for position update """ # set implicit and explicit Euler matrices (default, but can be changed) QI = self.get_Qdelta_implicit(self.coll, qd_type=self.params.QI) QE = self.get_Qdelta_explicit(self.coll, qd_type=self.params.QE) # trapezoidal rule QT = 1 / 2 * (QI + QE) # Qx as in the paper Qx = np.dot(QE, QT) + 1 / 2 * QE * QE Sx = np.zeros(np.shape(self.coll.Qmat)) ST = np.zeros(np.shape(self.coll.Qmat)) S = np.zeros(np.shape(self.coll.Qmat)) # fill-in node-to-node matrices Sx[0, :] = Qx[0, :] ST[0, :] = QT[0, :] S[0, :] = self.coll.Qmat[0, :] for m in range(self.coll.num_nodes): Sx[m + 1, :] = Qx[m + 1, :] - Qx[m, :] ST[m + 1, :] = QT[m + 1, :] - QT[m, :] S[m + 1, :] = self.coll.Qmat[m + 1, :] - self.coll.Qmat[m, :] # SQ via dot-product, could also be done via QQ SQ = np.dot(S, self.coll.Qmat) # QQ-matrix via product of Q QQ = np.dot(self.coll.Qmat, self.coll.Qmat) return [S, ST, SQ, Sx, QQ, QI, QT, Qx, self.coll.Qmat]
[docs] def update_nodes(self): """ Update the u- and f-values at the collocation nodes -> corresponds to a single sweep over all nodes Returns: None """ # get current level and problem description L = self.level P = L.prob # only if the level has been touched before assert L.status.unlocked # get number of collocation nodes for easier access M = self.coll.num_nodes # initialize integral terms with zeros, will add stuff later integral = [P.dtype_u(P.init, val=0.0) for l in range(M)] # gather all terms which are known already (e.g. from the previous iteration) # this corresponds to SF(u^k) - SdF(u^k) + tau (note: have integrals in pos and vel!) for m in range(M): for j in range(M + 1): # build RHS from f-terms (containing the E field) and the B field f = P.build_f(L.f[j], L.u[j], L.time + L.dt * self.coll.nodes[j - 1]) # add SQF(u^k) - SxF(u^k) for the position integral[m].pos += L.dt * (L.dt * (self.SQ[m + 1, j] - self.Sx[m + 1, j]) * f) # add SF(u^k) - STF(u^k) for the velocity integral[m].vel += L.dt * (self.S[m + 1, j] - self.ST[m + 1, j]) * f # add tau if associated if L.tau[m] is not None: integral[m] += L.tau[m] # tau is 0-to-node, need to change it to node-to-node here if m > 0: integral[m] -= L.tau[m - 1] # do the sweep for m in range(0, M): # build rhs, consisting of the known values from above and new values from previous nodes (at k+1) tmp = P.dtype_u(integral[m]) for j in range(m + 1): # build RHS from f-terms (containing the E field) and the B field f = P.build_f(L.f[j], L.u[j], L.time + L.dt * self.coll.nodes[j - 1]) # add SxF(u^{k+1}) tmp.pos += L.dt * (L.dt * self.Sx[m + 1, j] * f) # add pos at previous node + dt*v0 tmp.pos += L.u[m].pos + L.dt * self.coll.delta_m[m] * L.u[0].vel # set new position, is explicit L.u[m + 1].pos = tmp.pos # get E field with new positions and compute mean L.f[m + 1] = P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m]) ck = tmp.vel # do the boris scheme L.u[m + 1].vel = P.boris_solver(ck, L.dt * np.diag(self.QI)[m + 1], L.f[m], L.f[m + 1], L.u[m]) # indicate presence of new values at this level L.status.updated = True return None
[docs] def integrate(self): """ Integrates the right-hand side Returns: list of dtype_u: containing the integral as values """ # get current level and problem description L = self.level P = L.prob # create new instance of dtype_u, initialize values with 0 p = [] for m in range(1, self.coll.num_nodes + 1): p.append(P.dtype_u(P.init, val=0.0)) # integrate RHS over all collocation nodes, RHS is here only f(x,v)! for j in range(1, self.coll.num_nodes + 1): f = P.build_f(L.f[j], L.u[j], L.time + L.dt * self.coll.nodes[j - 1]) p[-1].pos += L.dt * (L.dt * self.QQ[m, j] * f) + L.dt * self.coll.Qmat[m, j] * L.u[0].vel p[-1].vel += L.dt * self.coll.Qmat[m, j] * f return p
[docs] def compute_end_point(self): """ Compute u at the right point of the interval The value uend computed here is a full evaluation of the Picard formulation (always!) Returns: None """ # get current level and problem description L = self.level P = L.prob # start with u0 and add integral over the full interval (using coll.weights) L.uend = P.dtype_u(L.u[0]) for m in range(self.coll.num_nodes): f = P.build_f(L.f[m + 1], L.u[m + 1], L.time + L.dt * self.coll.nodes[m]) L.uend.pos += L.dt * (L.dt * self.qQ[m] * f) + L.dt * self.coll.weights[m] * L.u[0].vel L.uend.vel += L.dt * self.coll.weights[m] * f # add up tau correction of the full interval (last entry) if L.tau[-1] is not None: L.uend += L.tau[-1] return None
[docs] def get_sweeper_mats(self): """ Returns the matrices Q, QQ, Qx, QT which define the sweeper. """ Q = self.Q[1:, 1:] QQ = self.QQ[1:, 1:] Qx = self.Qx[1:, 1:] QT = self.QT[1:, 1:] return Q, QQ, Qx, QT
[docs] def get_scalar_problems_sweeper_mats(self, lambdas=None): """ This function returns the corresponding matrices of an SDC sweep matrix formulation Args: lambdas (numpy.narray): the first entry in lambdas is k-spring constant and the second is mu friction. """ Q, QQ, Qx, QT = self.get_sweeper_mats() if lambdas is None: pass # should use lambdas from attached problem and make sure it is scalar SDC raise NotImplementedError("At the moment, the values for the lambda have to be provided") else: k = lambdas[0] mu = lambdas[1] nnodes = self.coll.num_nodes dt = self.level.dt F = np.block( [ [-k * np.eye(nnodes), -mu * np.eye(nnodes)], [-k * np.eye(nnodes), -mu * np.eye(nnodes)], ] ) C_coll = np.block([[np.eye(nnodes), dt * Q], [np.zeros([nnodes, nnodes]), np.eye(nnodes)]]) Q_coll = np.block( [ [dt**2 * QQ, np.zeros([nnodes, nnodes])], [np.zeros([nnodes, nnodes]), dt * Q], ] ) Q_vv = np.block( [ [dt**2 * Qx, np.zeros([nnodes, nnodes])], [np.zeros([nnodes, nnodes]), dt * QT], ] ) M_vv = np.eye(2 * nnodes) - np.dot(Q_vv, F) return C_coll, Q_coll, Q_vv, M_vv, F
[docs] def get_scalar_problems_manysweep_mats(self, nsweeps, lambdas=None): """ For a scalar problem, K sweeps of SDC can be written in matrix form. Args: nsweeps (int): number of sweeps lambdas (numpy.ndarray): the first entry in lambdas is k-spring constant and the second is mu friction. """ nnodes = self.coll.num_nodes C_coll, Q_coll, Q_vv, M_vv, F = self.get_scalar_problems_sweeper_mats(lambdas=lambdas) K_sdc = np.dot(np.linalg.inv(M_vv), Q_coll - Q_vv) @ F Keig, Kvec = np.linalg.eig(K_sdc) Kp_sdc = np.linalg.matrix_power(K_sdc, nsweeps) Kinv_sdc = np.linalg.inv(np.eye(2 * nnodes) - K_sdc) Kdot_sdc = np.dot(np.eye(2 * nnodes) - Kp_sdc, Kinv_sdc) MC = np.dot(np.linalg.inv(M_vv), C_coll) Mat_sweep = Kp_sdc + np.dot(Kdot_sdc, MC) return Mat_sweep, np.max(np.abs(Keig))
[docs] def get_scalar_problems_picardsweep_mats(self, nsweeps, lambdas=None): """ For a scalar problem, K sweeps of SDC can be written in matrix form. Args: nsweeps (int): number of sweeps lambdas (numpy.ndarray): the first entry in lambdas is k-spring constant and the second is mu friction. """ nnodes = self.coll.num_nodes C_coll, Q_coll, Q_vv, M_vv, F = self.get_scalar_problems_sweeper_mats(lambdas=lambdas) K_sdc = np.dot(Q_coll, F) Keig, Kvec = np.linalg.eig(K_sdc) Kp_sdc = np.linalg.matrix_power(K_sdc, nsweeps) Kinv_sdc = np.linalg.inv(np.eye(2 * nnodes) - K_sdc) Kdot_sdc = np.dot(np.eye(2 * nnodes) - Kp_sdc, Kinv_sdc) Mat_sweep = Kp_sdc + np.dot(Kdot_sdc, C_coll) return Mat_sweep, np.max(np.abs(Keig))