Source code for implementations.problem_classes.odeSystem

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Implementation of systems test problem ODEs.


Reference :

Van der Houwen, P. J., & Sommeijer, B. P. (1991). Iterated Runge–Kutta methods
on parallel computers. SIAM journal on scientific and statistical computing,
12(5), 1000-1028.
"""
import numpy as np

from pySDC.core.Errors import ProblemError
from pySDC.core.Problem import ptype, WorkCounter
from pySDC.implementations.datatype_classes.mesh import mesh


[docs] class ProtheroRobinsonAutonomous(ptype): r""" Implement the Prothero-Robinson problem into autonomous form: .. math:: \begin{eqnarray*} \frac{du}{dt} &=& -\frac{u^3-g(v)^3}{\epsilon} + \frac{dg}{dv}, &\quad u(0) = g(0),\\ \frac{dv}{dt} &=& 1, &\quad v(0) = 0, \end{eqnarray*} with :math:`\epsilon` a stiffness parameter, that makes the problem more stiff the smaller it is (usual taken value is :math:`\epsilon=1e^{-3}`). Exact solution is given by :math:`u(t)=g(t),\;v(t)=t`, and this implementation uses :math:`g(t)=\cos(t)`. Implement also the non-linear form of this problem: .. math:: \frac{du}{dt} = -\frac{u^3-g(v)^3}{\epsilon} + \frac{dg}{dv}, \quad u(0) = g(0). To use an other exact solution, one just have to derivate this class and overload the `g`, `dg` and `dg2` methods. For instance, to use :math:`g(t)=e^{-0.2t}`, define and use the following class: >>> class MyProtheroRobinson(ProtheroRobinsonAutonomous): >>> >>> def g(self, t): >>> return np.exp(-0.2 * t) >>> >>> def dg(self, t): >>> return (-0.2) * np.exp(-0.2 * t) >>> >>> def dg2(self, t): >>> return (-0.2) ** 2 * np.exp(-0.2 * t) Parameters ---------- epsilon : float, optional Stiffness parameter. The default is 1e-3. nonLinear : bool, optional Wether or not to use the non-linear form of the problem. The default is False. newton_maxiter : int, optional Maximum number of Newton iteration in solve_system. The default is 200. newton_tol : float, optional Residuum tolerance for Newton iteration in solve_system. The default is 5e-11. stop_at_nan : bool, optional Wheter to stop or not solve_system when getting NAN. The default is True. Reference --------- A. Prothero and A. Robinson, On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Mathematics of Computation, 28 (1974), pp. 145–162. """ dtype_u = mesh dtype_f = mesh def __init__(self, epsilon=1e-3, nonLinear=False, newton_maxiter=200, newton_tol=5e-11, stop_at_nan=True): nvars = 2 super().__init__((nvars, None, np.dtype('float64'))) self.f = self.f_NONLIN if nonLinear else self.f_LIN self.dgInv = self.dgInv_NONLIN if nonLinear else self.dgInv_LIN self._makeAttributeAndRegister( 'epsilon', 'nonLinear', 'newton_maxiter', 'newton_tol', 'stop_at_nan', localVars=locals(), readOnly=True ) self.work_counters['newton'] = WorkCounter() self.work_counters['rhs'] = WorkCounter() # ------------------------------------------------------------------------- # g function (analytical solution), and its first and second derivative # -------------------------------------------------------------------------
[docs] def g(self, t): return np.cos(t)
[docs] def dg(self, t): return -np.sin(t)
[docs] def dg2(self, t): return -np.cos(t)
# ------------------------------------------------------------------------- # f(u,t) and Jacobian functions # -------------------------------------------------------------------------
[docs] def f(self, u, t): raise NotImplementedError()
[docs] def f_LIN(self, u, t): return -self.epsilon ** (-1) * (u - self.g(t)) + self.dg(t)
[docs] def f_NONLIN(self, u, t): return -self.epsilon ** (-1) * (u**3 - self.g(t) ** 3) + self.dg(t)
[docs] def dgInv(self, u, t): raise NotImplementedError()
[docs] def dgInv_LIN(self, u, t, dt): e = self.epsilon g1, g2 = self.dg(t), self.dg2(t) return np.array([[1 / (dt / e + 1), (dt * g2 + dt * g1 / e) / (dt / e + 1)], [0, 1]])
[docs] def dgInv_NONLIN(self, u, t, dt): e = self.epsilon g, g1, g2 = self.g(t), self.dg(t), self.dg2(t) return np.array( [[1 / (3 * dt * u**2 / e + 1), (dt * g2 + 3 * dt * g**2 * g1 / e) / (3 * dt * u**2 / e + 1)], [0, 1]] )
# ------------------------------------------------------------------------- # pySDC required methods # -------------------------------------------------------------------------
[docs] def u_exact(self, t, u_init=None, t_init=None): r""" Routine to return initial conditions or exact solutions. Parameters ---------- t : float Time at which the exact solution is computed. u_init : dtype_u Initial conditions for getting the exact solution. t_init : float The starting time. Returns ------- u : dtype_u The exact solution. """ u = self.dtype_u(self.init) u[0] = self.g(t) u[1] = t return u
[docs] def eval_f(self, u, t): """ Routine to evaluate the right-hand side of the problem. Parameters ---------- u : dtype_u Current values of the numerical solution. t : float Current time of the numerical solution is computed (not used here). Returns ------- f : dtype_f The right-hand side of the problem (one component). """ f = self.dtype_f(self.init) u, t = u f[0] = self.f(u, t) f[1] = 1 self.work_counters['rhs']() return f
[docs] def solve_system(self, rhs, dt, u0, t): """ Simple Newton solver for the nonlinear equation Parameters ---------- rhs : dtype_f Right-hand side for the nonlinear system. dt : float Abbrev. for the node-to-node stepsize (or any other factor required). u0 : dtype_u Initial guess for the iterative solver. t : float Time of the updated solution (e.g. for time-dependent BCs). Returns ------- u : dtype_u The solution as mesh. """ # create new mesh object from u0 and set initial values for iteration u = self.dtype_u(u0) # start newton iteration n, res = 0, np.inf while n < self.newton_maxiter: # evaluate RHS f = self.dtype_u(u) f[0] = self.f(*u) f[1] = 1 # form the function g with g(u) = 0 g = u - dt * f - rhs # if g is close to 0, then we are done res = np.linalg.norm(g, np.inf) if res < self.newton_tol or np.isnan(res): break # assemble (dg/du)^{-1} dgInv = self.dgInv(u[0], u[1], dt) # newton update: u1 = u0 - g/dg u -= dgInv @ g # increase iteration count and work counter n += 1 self.work_counters['newton']() if np.isnan(res) and self.stop_at_nan: raise ProblemError('Newton got nan after %i iterations, aborting...' % n) elif np.isnan(res): # pragma: no cover self.logger.warning('Newton got nan after %i iterations...' % n) if n == self.newton_maxiter: raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res)) return u
[docs] class Kaps(ptype): r""" Implement the Kaps problem: .. math:: \begin{eqnarray*} \frac{du}{dt} &=& -(2+\epsilon^{-1})u + \frac{v^2}{\epsilon}, &\quad u(0) = 1,\\ \frac{dv}{dt} &=& u - v(1+v), &\quad v(0) = 1, \end{eqnarray*} with :math:`\epsilon` a stiffness parameter, that makes the problem more stiff the smaller it is (usual taken value is :math:`\epsilon=1e^{-3}`). Exact solution is given by :math:`u(t)=e^{-2t},\;v(t)=e^{-t}`. Parameters ---------- epsilon : float, optional Stiffness parameter. The default is 1e-3. newton_maxiter : int, optional Maximum number of Newton iteration in solve_system. The default is 200. newton_tol : float, optional Residuum tolerance for Newton iteration in solve_system. The default is 5e-11. stop_at_nan : bool, optional Wheter to stop or not solve_system when getting NAN. The default is True. Reference --------- Van der Houwen, P. J., & Sommeijer, B. P. (1991). Iterated Runge–Kutta methods on parallel computers. SIAM journal on scientific and statistical computing, 12(5), 1000-1028. """ dtype_u = mesh dtype_f = mesh def __init__(self, epsilon=1e-3, newton_maxiter=200, newton_tol=5e-11, stop_at_nan=True): nvars = 2 super().__init__((nvars, None, np.dtype('float64'))) self._makeAttributeAndRegister( 'epsilon', 'newton_maxiter', 'newton_tol', 'stop_at_nan', localVars=locals(), readOnly=True ) self.work_counters['newton'] = WorkCounter() self.work_counters['rhs'] = WorkCounter()
[docs] def u_exact(self, t, u_init=None, t_init=None): r""" Routine to return initial conditions or exact solutions. Parameters ---------- t : float Time at which the exact solution is computed. u_init : dtype_u Initial conditions for getting the exact solution. t_init : float The starting time. Returns ------- u : dtype_u The exact solution. """ u = self.dtype_u(self.init) u[:] = [np.exp(-2 * t), np.exp(-t)] return u
[docs] def eval_f(self, u, t): """ Routine to evaluate the right-hand side of the problem. Parameters ---------- u : dtype_u Current values of the numerical solution. t : float Current time of the numerical solution is computed (not used here). Returns ------- f : dtype_f The right-hand side of the problem (one component). """ f = self.dtype_f(self.init) eps = self.epsilon x, y = u f[:] = [-(2 + 1 / eps) * x + y**2 / eps, x - y * (1 + y)] self.work_counters['rhs']() return f
[docs] def solve_system(self, rhs, dt, u0, t): """ Simple Newton solver for the nonlinear equation Parameters ---------- rhs : dtype_f Right-hand side for the nonlinear system. dt : float Abbrev. for the node-to-node stepsize (or any other factor required). u0 : dtype_u Initial guess for the iterative solver. t : float Current time (e.g. for time-dependent BCs). Returns ------- u : dtype_u The solution as mesh. """ # create new mesh object from u0 and set initial values for iteration u = self.dtype_u(u0) eps = self.epsilon # start newton iteration n, res = 0, np.inf while n < self.newton_maxiter: x, y = u f = np.array([-(2 + 1 / eps) * x + y**2 / eps, x - y * (1 + y)]) # form the function g with g(u) = 0 g = u - dt * f - rhs # if g is close to 0, then we are done res = np.linalg.norm(g, np.inf) if res < self.newton_tol or np.isnan(res): break # assemble (dg/du)^(-1) prefactor = 4 * dt**2 * eps * y + 2 * dt**2 * eps + dt**2 + 2 * dt * eps * y + 3 * dt * eps + dt + eps dgInv = ( 1 / prefactor * np.array([[2 * dt * eps * y + dt * eps + eps, 2 * dt * y], [dt * eps, 2 * dt * eps + dt + eps]]) ) # newton update: u1 = u0 - g/dg u -= dgInv @ g # increase iteration count and work counter n += 1 self.work_counters['newton']() if np.isnan(res) and self.stop_at_nan: raise ProblemError('Newton got nan after %i iterations, aborting...' % n) elif np.isnan(res): # pragma: no cover self.logger.warning('Newton got nan after %i iterations...' % n) if n == self.newton_maxiter: raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res)) return u
[docs] class ChemicalReaction3Var(ptype): r""" Chemical reaction with three components, modeled by the non-linear system: .. math:: \frac{d{\bf u}}{dt} = \begin{pmatrix} 0.013+1000u_3 & 0 & 0 \\ 0 & 2500u_3 0 \\ 0.013 & 0 & 1000u_1 + 2500u_2 \end{pmatrix} {\bf u}, with initial solution :math:`u(0)=(0.990731920827, 1.009264413846, -0.366532612659e-5)`. Parameters ---------- newton_maxiter : int, optional Maximum number of Newton iteration in solve_system. The default is 200. newton_tol : float, optional Residuum tolerance for Newton iteration in solve_system. The default is 5e-11. stop_at_nan : bool, optional Wheter to stop or not solve_system when getting NAN. The default is True. Reference --------- Van der Houwen, P. J., & Sommeijer, B. P. (1991). Iterated Runge–Kutta methods on parallel computers. SIAM journal on scientific and statistical computing, 12(5), 1000-1028. """ dtype_u = mesh dtype_f = mesh def __init__(self, newton_maxiter=200, newton_tol=5e-11, stop_at_nan=True): nvars = 3 u0 = (0.990731920827, 1.009264413846, -0.366532612659e-5) super().__init__((nvars, None, np.dtype('float64'))) self._makeAttributeAndRegister( 'u0', 'newton_maxiter', 'newton_tol', 'stop_at_nan', localVars=locals(), readOnly=True ) self.work_counters['newton'] = WorkCounter() self.work_counters['rhs'] = WorkCounter()
[docs] def u_exact(self, t, u_init=None, t_init=None): r""" Routine to return initial conditions or to approximate exact solution using ``SciPy``. Parameters ---------- t : float Time at which the approximated exact solution is computed. u_init : pySDC.implementations.problem_classes.Lorenz.dtype_u Initial conditions for getting the exact solution. t_init : float The starting time. Returns ------- me : dtype_u The approximated exact solution. """ me = self.dtype_u(self.init) if t > 0: def eval_rhs(t, u): r""" Evaluate the right hand side, but switch the arguments for ``SciPy``. Args: t (float): Time u (numpy.ndarray): Solution at time t Returns: (numpy.ndarray): Right hand side evaluation """ return self.eval_f(u, t) me[:] = self.generate_scipy_reference_solution(eval_rhs, t, u_init, t_init) else: me[:] = self.u0 return me
[docs] def eval_f(self, u, t): """ Routine to evaluate the right-hand side of the problem. Parameters ---------- u : dtype_u Current values of the numerical solution. t : float Current time of the numerical solution is computed (not used here). Returns ------- f : dtype_f The right-hand side of the problem (one component). """ f = self.dtype_f(self.init) c1, c2, c3 = u f[:] = -np.array([0.013 * c1 + 1000 * c3 * c1, 2500 * c3 * c2, 0.013 * c1 + 1000 * c1 * c3 + 2500 * c2 * c3]) self.work_counters['rhs']() return f
[docs] def solve_system(self, rhs, dt, u0, t): """ Simple Newton solver for the nonlinear equation Parameters ---------- rhs : dtype_f Right-hand side for the nonlinear system. dt : float Abbrev. for the node-to-node stepsize (or any other factor required). u0 : dtype_u Initial guess for the iterative solver. t : float Current time (e.g. for time-dependent BCs). Returns ------- u : dtype_u The solution as mesh. """ # create new mesh object from u0 and set initial values for iteration u = self.dtype_u(u0) # start newton iteration n, res = 0, np.inf while n < self.newton_maxiter: c1, c2, c3 = u f = -np.array([0.013 * c1 + 1000 * c3 * c1, 2500 * c3 * c2, 0.013 * c1 + 1000 * c1 * c3 + 2500 * c2 * c3]) # form the function g with g(u) = 0 g = u - dt * f - rhs # if g is close to 0, then we are done res = np.linalg.norm(g, np.inf) if res < self.newton_tol or np.isnan(res): break # assemble (dg/du)^(-1) dgInv = np.array( [ [ ( 2500000000.0 * c1 * c3**2 * dt**3 + 32500.0 * c1 * c3 * dt**3 + 3500000.0 * c1 * c3 * dt**2 + 13.0 * c1 * dt**2 + 1000.0 * c1 * dt + 2500000.0 * c2 * c3 * dt**2 + 32.5 * c2 * dt**2 + 2500.0 * c2 * dt + 2500000.0 * c3**2 * dt**2 + 32.5 * c3 * dt**2 + 3500.0 * c3 * dt + 0.013 * dt + 1.0 ) / ( 2500000000.0 * c1 * c3**2 * dt**3 + 32500.0 * c1 * c3 * dt**3 + 3500000.0 * c1 * c3 * dt**2 + 13.0 * c1 * dt**2 + 1000.0 * c1 * dt + 2500000000.0 * c2 * c3**2 * dt**3 + 65000.0 * c2 * c3 * dt**3 + 5000000.0 * c2 * c3 * dt**2 + 0.4225 * c2 * dt**3 + 65.0 * c2 * dt**2 + 2500.0 * c2 * dt + 2500000000.0 * c3**3 * dt**3 + 65000.0 * c3**2 * dt**3 + 6000000.0 * c3**2 * dt**2 + 0.4225 * c3 * dt**3 + 91.0 * c3 * dt**2 + 4500.0 * c3 * dt + 0.000169 * dt**2 + 0.026 * dt + 1.0 ), (2500000000.0 * c1 * c3**2 * dt**3 + 32500.0 * c1 * c3 * dt**3 + 2500000.0 * c1 * c3 * dt**2) / ( 2500000000.0 * c1 * c3**2 * dt**3 + 32500.0 * c1 * c3 * dt**3 + 3500000.0 * c1 * c3 * dt**2 + 13.0 * c1 * dt**2 + 1000.0 * c1 * dt + 2500000000.0 * c2 * c3**2 * dt**3 + 65000.0 * c2 * c3 * dt**3 + 5000000.0 * c2 * c3 * dt**2 + 0.4225 * c2 * dt**3 + 65.0 * c2 * dt**2 + 2500.0 * c2 * dt + 2500000000.0 * c3**3 * dt**3 + 65000.0 * c3**2 * dt**3 + 6000000.0 * c3**2 * dt**2 + 0.4225 * c3 * dt**3 + 91.0 * c3 * dt**2 + 4500.0 * c3 * dt + 0.000169 * dt**2 + 0.026 * dt + 1.0 ), ( -2500000000.0 * c1 * c3**2 * dt**3 - 32500.0 * c1 * c3 * dt**3 - 3500000.0 * c1 * c3 * dt**2 - 13.0 * c1 * dt**2 - 1000.0 * c1 * dt ) / ( 2500000000.0 * c1 * c3**2 * dt**3 + 32500.0 * c1 * c3 * dt**3 + 3500000.0 * c1 * c3 * dt**2 + 13.0 * c1 * dt**2 + 1000.0 * c1 * dt + 2500000000.0 * c2 * c3**2 * dt**3 + 65000.0 * c2 * c3 * dt**3 + 5000000.0 * c2 * c3 * dt**2 + 0.4225 * c2 * dt**3 + 65.0 * c2 * dt**2 + 2500.0 * c2 * dt + 2500000000.0 * c3**3 * dt**3 + 65000.0 * c3**2 * dt**3 + 6000000.0 * c3**2 * dt**2 + 0.4225 * c3 * dt**3 + 91.0 * c3 * dt**2 + 4500.0 * c3 * dt + 0.000169 * dt**2 + 0.026 * dt + 1.0 ), ], [ (6250000000.0 * c2 * c3 * dt**2 + 81250.0 * c2 * dt**2) / ( 6250000000.0 * c1 * c3 * dt**2 + 2500000.0 * c1 * dt + 6250000000.0 * c2 * c3 * dt**2 + 81250.0 * c2 * dt**2 + 6250000.0 * c2 * dt + 6250000000.0 * c3**2 * dt**2 + 81250.0 * c3 * dt**2 + 8750000.0 * c3 * dt + 32.5 * dt + 2500.0 ), ( 2500000.0 * c1 * dt + 6250000000.0 * c2 * c3 * dt**2 + 81250.0 * c2 * dt**2 + 6250000.0 * c2 * dt + 2500000.0 * c3 * dt + 32.5 * dt + 2500.0 ) / ( 6250000000.0 * c1 * c3 * dt**2 + 2500000.0 * c1 * dt + 6250000000.0 * c2 * c3 * dt**2 + 81250.0 * c2 * dt**2 + 6250000.0 * c2 * dt + 6250000000.0 * c3**2 * dt**2 + 81250.0 * c3 * dt**2 + 8750000.0 * c3 * dt + 32.5 * dt + 2500.0 ), (-6250000000.0 * c2 * c3 * dt**2 - 81250.0 * c2 * dt**2 - 6250000.0 * c2 * dt) / ( 6250000000.0 * c1 * c3 * dt**2 + 2500000.0 * c1 * dt + 6250000000.0 * c2 * c3 * dt**2 + 81250.0 * c2 * dt**2 + 6250000.0 * c2 * dt + 6250000000.0 * c3**2 * dt**2 + 81250.0 * c3 * dt**2 + 8750000.0 * c3 * dt + 32.5 * dt + 2500.0 ), ], [ (-2500000.0 * c3**2 * dt**2 - 32.5 * c3 * dt**2 - 1000.0 * c3 * dt - 0.013 * dt) / ( 2500000.0 * c1 * c3 * dt**2 + 1000.0 * c1 * dt + 2500000.0 * c2 * c3 * dt**2 + 32.5 * c2 * dt**2 + 2500.0 * c2 * dt + 2500000.0 * c3**2 * dt**2 + 32.5 * c3 * dt**2 + 3500.0 * c3 * dt + 0.013 * dt + 1.0 ), (-2500000.0 * c3**2 * dt**2 - 32.5 * c3 * dt**2 - 2500.0 * c3 * dt) / ( 2500000.0 * c1 * c3 * dt**2 + 1000.0 * c1 * dt + 2500000.0 * c2 * c3 * dt**2 + 32.5 * c2 * dt**2 + 2500.0 * c2 * dt + 2500000.0 * c3**2 * dt**2 + 32.5 * c3 * dt**2 + 3500.0 * c3 * dt + 0.013 * dt + 1.0 ), (2500000.0 * c3**2 * dt**2 + 32.5 * c3 * dt**2 + 3500.0 * c3 * dt + 0.013 * dt + 1.0) / ( 2500000.0 * c1 * c3 * dt**2 + 1000.0 * c1 * dt + 2500000.0 * c2 * c3 * dt**2 + 32.5 * c2 * dt**2 + 2500.0 * c2 * dt + 2500000.0 * c3**2 * dt**2 + 32.5 * c3 * dt**2 + 3500.0 * c3 * dt + 0.013 * dt + 1.0 ), ], ] ) # newton update: u1 = u0 - g/dg u -= dgInv @ g # increase iteration count and work counter n += 1 self.work_counters['newton']() if np.isnan(res) and self.stop_at_nan: raise ProblemError('Newton got nan after %i iterations, aborting...' % n) elif np.isnan(res): # pragma: no cover self.logger.warning('Newton got nan after %i iterations...' % n) if n == self.newton_maxiter: raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res)) return u
[docs] class JacobiElliptic(ptype): r""" Implement the Jacobi Elliptic non-linear problem: .. math:: \begin{eqnarray*} \frac{du}{dt} &=& vw, &\quad u(0) = 0, \\ \frac{dv}{dt} &=& -uw, &\quad v(0) = 1, \\ \frac{dw}{dt} &=& -0.51uv, &\quad w(0) = 1. \end{eqnarray*} Parameters ---------- newton_maxiter : int, optional Maximum number of Newton iteration in solve_system. The default is 200. newton_tol : float, optional Residuum tolerance for Newton iteration in solve_system. The default is 5e-11. stop_at_nan : bool, optional Wheter to stop or not solve_system when getting NAN. The default is True. Reference --------- Van Der Houwen, P. J., Sommeijer, B. P., & Van Der Veen, W. A. (1995). Parallel iteration across the steps of high-order Runge-Kutta methods for nonstiff initial value problems. Journal of computational and applied mathematics, 60(3), 309-329. """ dtype_u = mesh dtype_f = mesh def __init__(self, newton_maxiter=200, newton_tol=5e-11, stop_at_nan=True): nvars = 3 u0 = (0.0, 1.0, 1.0) super().__init__((nvars, None, np.dtype('float64'))) self._makeAttributeAndRegister( 'u0', 'newton_maxiter', 'newton_tol', 'stop_at_nan', localVars=locals(), readOnly=True ) self.work_counters['newton'] = WorkCounter() self.work_counters['rhs'] = WorkCounter()
[docs] def u_exact(self, t, u_init=None, t_init=None): r""" Routine to return initial conditions or to approximate exact solution using ``SciPy``. Parameters ---------- t : float Time at which the approximated exact solution is computed. u_init : pySDC.implementations.problem_classes.Lorenz.dtype_u Initial conditions for getting the exact solution. t_init : float The starting time. Returns ------- me : dtype_u The approximated exact solution. """ me = self.dtype_u(self.init) if t > 0: def eval_rhs(t, u): r""" Evaluate the right hand side, but switch the arguments for ``SciPy``. Args: t (float): Time u (numpy.ndarray): Solution at time t Returns: (numpy.ndarray): Right hand side evaluation """ return self.eval_f(u, t) me[:] = self.generate_scipy_reference_solution(eval_rhs, t, u_init, t_init) else: me[:] = self.u0 return me
[docs] def eval_f(self, u, t): """ Routine to evaluate the right-hand side of the problem. Parameters ---------- u : dtype_u Current values of the numerical solution. t : float Current time of the numerical solution is computed (not used here). Returns ------- f : dtype_f The right-hand side of the problem (one component). """ f = self.dtype_f(self.init) u1, u2, u3 = u f[:] = np.array([u2 * u3, -u1 * u3, -0.51 * u1 * u2]) self.work_counters['rhs']() return f
[docs] def solve_system(self, rhs, dt, u0, t): """ Simple Newton solver for the nonlinear equation Parameters ---------- rhs : dtype_f Right-hand side for the nonlinear system. dt : float Abbrev. for the node-to-node stepsize (or any other factor required). u0 : dtype_u Initial guess for the iterative solver. t : float Current time (e.g. for time-dependent BCs). Returns ------- u : dtype_u The solution as mesh. """ # create new mesh object from u0 and set initial values for iteration u = self.dtype_u(u0) # start newton iteration n, res = 0, np.inf while n < self.newton_maxiter: u1, u2, u3 = u f = np.array([u2 * u3, -u1 * u3, -0.51 * u1 * u2]) # form the function g with g(u) = 0 g = u - dt * f - rhs # if g is close to 0, then we are done res = np.linalg.norm(g, np.inf) if res < self.newton_tol or np.isnan(res): break # assemble (dg/du)^(-1) dgInv = np.array( [ [ 0.51 * dt**2 * u1**2 - 1.0, 0.51 * dt**2 * u1 * u2 - 1.0 * dt * u3, 1.0 * dt**2 * u1 * u3 - 1.0 * dt * u2, ], [ -0.51 * dt**2 * u1 * u2 + 1.0 * dt * u3, -0.51 * dt**2 * u2**2 - 1.0, 1.0 * dt**2 * u2 * u3 + 1.0 * dt * u1, ], [ -0.51 * dt**2 * u1 * u3 + 0.51 * dt * u2, 0.51 * dt**2 * u2 * u3 + 0.51 * dt * u1, -1.0 * dt**2 * u3**2 - 1.0, ], ] ) dgInv /= ( 1.02 * dt**3 * u1 * u2 * u3 + 0.51 * dt**2 * u1**2 - 0.51 * dt**2 * u2**2 - 1.0 * dt**2 * u3**2 - 1.0 ) # newton update: u1 = u0 - g/dg u -= dgInv @ g # increase iteration count and work counter n += 1 self.work_counters['newton']() if np.isnan(res) and self.stop_at_nan: raise ProblemError('Newton got nan after %i iterations, aborting...' % n) elif np.isnan(res): # pragma: no cover self.logger.warning('Newton got nan after %i iterations...' % n) if n == self.newton_maxiter: raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res)) return u