import logging
import dolfin as df
import numpy as np
from pySDC.core.problem import Problem
from pySDC.implementations.datatype_classes.fenics_mesh import fenics_mesh, rhs_fenics_mesh
# noinspection PyUnusedLocal
[docs]
class fenics_vortex_2d(Problem):
r"""
This class implements the vorticity-velocity problem in two dimensions with periodic boundary conditions
in :math:`[0, 1]^2`
.. math::
\frac{\partial w}{\partial t} = \nu \Delta w
for some parameter :math:`\nu`. In this class the problem is implemented that the spatial part is solved
using ``FEniCS`` [1]_. Hence, the problem is reformulated to the *weak formulation*
.. math::
\int_\Omega w_t v\,dx = - \nu \int_\Omega \nabla w \nabla v\,dx
This problem class treats the PDE in an IMEX way, with diffusion being the implicit part and everything else the explicit one.
The mass matrix needs inversion for this type of problem class, see the derived one for the mass-matrix version without inversion.
Parameters
----------
c_nvars : List of int tuple, optional
Spatial resolution, i.e., numbers of degrees of freedom in space, e.g. ``c_nvars=[(128, 128)]``.
family : str, optional
Indicates the family of elements used to create the function space
for the trail and test functions. The default is ``'CG'``, which are the class
of Continuous Galerkin, a *synonym* for the Lagrange family of elements, see [2]_.
order : int, optional
Defines the order of the elements in the function space.
refinements : int, optional
Denotes the refinement of the mesh. ``refinements=2`` refines the mesh by factor :math:`2`.
nu : float, optional
Diffusion coefficient :math:`\nu`.
rho : int, optional
Problem parameter.
delta : float, optional
Problem parameter.
Attributes
----------
V : FunctionSpace
Defines the function space of the trial and test functions.
M : scalar, vector, matrix or higher rank tensor
Mass matrix for FENiCS.
K : scalar, vector, matrix or higher rank tensor
Stiffness matrix including diffusion coefficient (and correct sign).
References
----------
.. [1] The FEniCS Project Version 1.5. M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,
C. Richardson, J. Ring, M. E. Rognes, G. N. Wells. Archive of Numerical Software (2015).
.. [2] Automated Solution of Differential Equations by the Finite Element Method. A. Logg, K.-A. Mardal, G. N.
Wells and others. Springer (2012).
"""
dtype_u = fenics_mesh
dtype_f = rhs_fenics_mesh
def __init__(self, c_nvars=None, family='CG', order=4, refinements=None, nu=0.01, rho=50, delta=0.05):
"""
Initialization routine
Args:
problem_params (dict): custom parameters for the example
dtype_u: FEniCS mesh data type (will be passed to parent class)
dtype_f: FEniCS mesh data data type with implicit and explicit parts (will be passed to parent class)
"""
if c_nvars is None:
c_nvars = [(32, 32)]
if refinements is None:
refinements = 1
# Subdomain for Periodic boundary condition
class PeriodicBoundary(df.SubDomain):
# Left boundary is "target domain" G
def inside(self, x, on_boundary):
# return True if on left or bottom boundary AND NOT on one of the two corners (0, 1) and (1, 0)
return bool(
(df.near(x[0], 0) or df.near(x[1], 0))
and (not ((df.near(x[0], 0) and df.near(x[1], 1)) or (df.near(x[0], 1) and df.near(x[1], 0))))
and on_boundary
)
def map(self, x, y):
if df.near(x[0], 1) and df.near(x[1], 1):
y[0] = x[0] - 1.0
y[1] = x[1] - 1.0
elif df.near(x[0], 1):
y[0] = x[0] - 1.0
y[1] = x[1]
else: # near(x[1], 1)
y[0] = x[0]
y[1] = x[1] - 1.0
# set logger level for FFC and dolfin
logging.getLogger('FFC').setLevel(logging.WARNING)
logging.getLogger('UFL').setLevel(logging.WARNING)
# set solver and form parameters
df.parameters["form_compiler"]["optimize"] = True
df.parameters["form_compiler"]["cpp_optimize"] = True
# set mesh and refinement (for multilevel)
mesh = df.UnitSquareMesh(c_nvars[0], c_nvars[1])
for _ in range(refinements):
mesh = df.refine(mesh)
self.mesh = df.Mesh(mesh)
# define function space for future reference
self.V = df.FunctionSpace(mesh, family, order, constrained_domain=PeriodicBoundary())
tmp = df.Function(self.V)
print('DoFs on this level:', len(tmp.vector()[:]))
self.fix_bc_for_residual = False
# invoke super init, passing number of dofs, dtype_u and dtype_f
super(fenics_vortex_2d, self).__init__(self.V)
self._makeAttributeAndRegister(
'c_nvars', 'family', 'order', 'refinements', 'nu', 'rho', 'delta', localVars=locals(), readOnly=True
)
w = df.TrialFunction(self.V)
v = df.TestFunction(self.V)
# Stiffness term (diffusion)
a_K = df.inner(df.nabla_grad(w), df.nabla_grad(v)) * df.dx
# Mass term
a_M = w * v * df.dx
self.M = df.assemble(a_M)
self.K = df.assemble(a_K)
[docs]
def solve_system(self, rhs, factor, u0, t):
r"""
Dolfin's linear solver for :math:`(M - factor \cdot A)\vec{u} = \vec{rhs}`.
Parameters
----------
rhs : dtype_f
Right-hand side for the nonlinear system.
factor : float
Abbrev. for the node-to-node stepsize (or any other factor required).
u0 : dtype_u
Initial guess for the iterative solver (not used here so far).
t : float
Current time.
Returns
-------
u : dtype_u
The solution as mesh.
"""
A = self.M + self.nu * factor * self.K
b = self.apply_mass_matrix(rhs)
u = self.dtype_u(u0)
df.solve(A, u.values.vector(), b.values.vector())
return u
def __eval_fexpl(self, u, t):
"""
Helper routine to evaluate the explicit part of the right-hand side.
Parameters
----------
u : dtype_u
Current values of the numerical solution.
t : float
Current time at which the numerical solution is computed.
Returns
-------
fexpl : dtype_u
Explicit part of the right-hand side.
"""
b = self.apply_mass_matrix(u)
psi = self.dtype_u(self.V)
df.solve(self.K, psi.values.vector(), b.values.vector())
fexpl = self.dtype_u(self.V)
fexpl.values = df.project(
df.Dx(psi.values, 1) * df.Dx(u.values, 0) - df.Dx(psi.values, 0) * df.Dx(u.values, 1), self.V
)
return fexpl
def __eval_fimpl(self, u, t):
"""
Helper routine to evaluate the implicit part of the right-hand side.
Parameters
----------
u : dtype_u
Current values of the numerical solution.
t : float
Current time at which the numerical solution is computed.
Returns
-------
fimpl : dtype_u
Implicit part of the right-hand side.
"""
A = -self.nu * self.K
fimpl = self.dtype_u(self.V)
A.mult(u.values.vector(), fimpl.values.vector())
fimpl = self.__invert_mass_matrix(fimpl)
return fimpl
[docs]
def eval_f(self, u, t):
"""
Routine to evaluate both parts of the right-hand side.
Parameters
----------
u : dtype_u
Current values of the numerical solution.
t : float
Current time at which the numerical solution is computed.
Returns
-------
f : dtype_f
The right-hand side divided into two parts.
"""
f = self.dtype_f(self.V)
f.impl = self.__eval_fimpl(u, t)
f.expl = self.__eval_fexpl(u, t)
return f
[docs]
def apply_mass_matrix(self, u):
r"""
Routine to apply mass matrix.
Parameters
u : dtype_u
Current values of the numerical solution.
Returns
-------
me : dtype_u
The product :math:` M\vec{u}`.
"""
me = self.dtype_u(self.V)
self.M.mult(u.values.vector(), me.values.vector())
return me
def __invert_mass_matrix(self, u):
"""
Helper routine to invert mass matrix.
Parameters
----------
u : dtype_u
Current values of the numerical solution.
Returns
-------
me : dtype_u
The product :math:`M^{-1} \vec{u}`.
"""
me = self.dtype_u(self.V)
df.solve(self.M, me.values.vector(), u.values.vector())
return me
[docs]
def u_exact(self, t):
r"""
Routine to compute the exact solution at time :math:`t`.
Parameters
----------
t : float
Time of the exact solution.
Returns
-------
me : dtype_u
The exact solution.
"""
assert t == 0, 'ERROR: u_exact only valid for t=0'
w = df.Expression(
'r*(1-pow(tanh(r*((0.75-4) - x[1])),2)) + r*(1-pow(tanh(r*(x[1] - (0.25-4))),2)) - \
r*(1-pow(tanh(r*((0.75-3) - x[1])),2)) + r*(1-pow(tanh(r*(x[1] - (0.25-3))),2)) - \
r*(1-pow(tanh(r*((0.75-2) - x[1])),2)) + r*(1-pow(tanh(r*(x[1] - (0.25-2))),2)) - \
r*(1-pow(tanh(r*((0.75-1) - x[1])),2)) + r*(1-pow(tanh(r*(x[1] - (0.25-1))),2)) - \
r*(1-pow(tanh(r*((0.75-0) - x[1])),2)) + r*(1-pow(tanh(r*(x[1] - (0.25-0))),2)) - \
r*(1-pow(tanh(r*((0.75+1) - x[1])),2)) + r*(1-pow(tanh(r*(x[1] - (0.25+1))),2)) - \
r*(1-pow(tanh(r*((0.75+2) - x[1])),2)) + r*(1-pow(tanh(r*(x[1] - (0.25+2))),2)) - \
r*(1-pow(tanh(r*((0.75+3) - x[1])),2)) + r*(1-pow(tanh(r*(x[1] - (0.25+3))),2)) - \
r*(1-pow(tanh(r*((0.75+4) - x[1])),2)) + r*(1-pow(tanh(r*(x[1] - (0.25+4))),2)) - \
d*2*a*cos(2*a*(x[0]+0.25))',
d=self.delta,
r=self.rho,
a=np.pi,
degree=self.order,
)
me = self.dtype_u(self.V)
me.values = df.interpolate(w, self.V)
# df.plot(me.values)
# df.interactive()
# exit()
return me
[docs]
class fenics_vortex_2d_mass(fenics_vortex_2d):
r"""
This class implements the vorticity-velocity problem in two dimensions with periodic boundary conditions
in :math:`[0, 1]^2`
.. math::
\frac{\partial w}{\partial t} = \nu \Delta w
for some parameter :math:`\nu`. In this class the problem is implemented that the spatial part is solved
using ``FEniCS`` [1]_. Hence, the problem is reformulated to the *weak formulation*
.. math::
\int_\Omega w_t v\,dx = - \nu \int_\Omega \nabla w \nabla v\,dx
This problem class treats the PDE in an IMEX way, with diffusion being the implicit part and everything else the explicit one.
No mass matrix inversion is needed here, i.e. using this problem class requires the imex_1st_order_mass sweeper.
Parameters
----------
c_nvars : List of int tuple, optional
Spatial resolution, i.e., numbers of degrees of freedom in space, e.g. ``c_nvars=[(128, 128)]``.
family : str, optional
Indicates the family of elements used to create the function space
for the trail and test functions. The default is ``'CG'``, which are the class
of Continuous Galerkin, a *synonym* for the Lagrange family of elements, see [2]_.
order : int, optional
Defines the order of the elements in the function space.
refinements : int, optional
Denotes the refinement of the mesh. ``refinements=2`` refines the mesh by factor :math:`2`.
nu : float, optional
Diffusion coefficient :math:`\nu`.
rho : int, optional
Problem parameter.
delta : float, optional
Problem parameter.
Attributes
----------
V : FunctionSpace
Defines the function space of the trial and test functions.
M : scalar, vector, matrix or higher rank tensor
Mass matrix for FENiCS.
K : scalar, vector, matrix or higher rank tensor
Stiffness matrix including diffusion coefficient (and correct sign).
References
----------
.. [1] The FEniCS Project Version 1.5. M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,
C. Richardson, J. Ring, M. E. Rognes, G. N. Wells. Archive of Numerical Software (2015).
.. [2] Automated Solution of Differential Equations by the Finite Element Method. A. Logg, K.-A. Mardal, G. N.
Wells and others. Springer (2012).
"""
[docs]
def solve_system(self, rhs, factor, u0, t):
r"""
Dolfin's linear solver for :math:`(M - factor \cdot A)\vec{u} = \vec{rhs}`.
Parameters
----------
rhs : dtype_f
Right-hand side for the nonlinear system.
factor : float
Abbrev. for the node-to-node stepsize (or any other factor required).
u0 : dtype_u
Initial guess for the iterative solver (not used here so far).
t : float
Current time.
Returns
-------
u : dtype_u
The solution as mesh.
"""
A = self.M + self.nu * factor * self.K
b = self.dtype_u(rhs)
u = self.dtype_u(u0)
df.solve(A, u.values.vector(), b.values.vector())
return u
def __eval_fexpl(self, u, t):
"""
Helper routine to evaluate the explicit part of the right-hand side.
Parameters
----------
u : dtype_u
Current values of the numerical solution.
t : float
Current time at which the numerical solution is computed.
Returns
-------
fexpl : dtype_u
Explicit part of the right-hand side.
"""
b = self.apply_mass_matrix(u)
psi = self.dtype_u(self.V)
df.solve(self.K, psi.values.vector(), b.values.vector())
fexpl = self.dtype_u(self.V)
fexpl.values = df.project(
df.Dx(psi.values, 1) * df.Dx(u.values, 0) - df.Dx(psi.values, 0) * df.Dx(u.values, 1), self.V
)
fexpl = self.apply_mass_matrix(fexpl)
return fexpl
def __eval_fimpl(self, u, t):
"""
Helper routine to evaluate the implicit part of the right-hand side.
Parameters
----------
u : dtype_u
Current values of the numerical solution.
t : float
Current time at which the numerical solution is computed.
Returns
-------
fimpl : dtype_u
Implicit part of the right-hand side.
"""
A = -self.nu * self.K
fimpl = self.dtype_u(self.V)
A.mult(u.values.vector(), fimpl.values.vector())
return fimpl
[docs]
def eval_f(self, u, t):
"""
Routine to evaluate both parts of the right-hand side.
Note: Need to add this here, because otherwise the parent class will call the "local" functions __eval_*
and not the ones of the child class.
Parameters
----------
u : dtype_u
Current values of the numerical solution.
t : float
Current time at which the numerical solution is computed.
Returns
-------
f : dtype_f
The right-hand side divided into two parts.
"""
f = self.dtype_f(self.V)
f.impl = self.__eval_fimpl(u, t)
f.expl = self.__eval_fexpl(u, t)
return f