Source code for implementations.problem_classes.RayleighBenard

import numpy as np
from mpi4py import MPI

from pySDC.implementations.problem_classes.generic_spectral import GenericSpectralLinear
from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh
from pySDC.core.convergence_controller import ConvergenceController
from pySDC.core.hooks import Hooks
from pySDC.implementations.convergence_controller_classes.check_convergence import CheckConvergence


[docs] class RayleighBenard(GenericSpectralLinear): """ Rayleigh-Benard Convection is a variation of incompressible Navier-Stokes. The equations we solve are u_x + v_z = 0 T_t - kappa (T_xx + T_zz) = -uT_x - vT_z u_t - nu (u_xx + u_zz) + p_x = -uu_x - vu_z v_t - nu (v_xx + v_zz) + p_z - T = -uv_x - vv_z with u the horizontal velocity, v the vertical velocity (in z-direction), T the temperature, p the pressure, indices denoting derivatives, kappa=(Rayleigh * Prandl)**(-1/2) and nu = (Rayleigh / Prandl)**(-1/2). Everything on the left hand side, that is the viscous part, the pressure gradient and the buoyancy due to temperature are treated implicitly, while the non-linear convection part on the right hand side is integrated explicitly. The domain, vertical boundary conditions and pressure gauge are Omega = [0, 8) x (-1, 1) T(z=+1) = 0 T(z=-1) = 2 u(z=+-1) = v(z=+-1) = 0 integral over p = 0 The spectral discretization uses FFT horizontally, implying periodic BCs, and an ultraspherical method vertically to facilitate the Dirichlet BCs. Parameters: Prandl (float): Prandl number Rayleigh (float): Rayleigh number nx (int): Horizontal resolution nz (int): Vertical resolution BCs (dict): Can specify boundary conditions here dealiasing (float): Dealiasing factor for evaluating the non-linear part comm (mpi4py.Intracomm): Space communicator """ dtype_u = mesh dtype_f = imex_mesh def __init__( self, Prandl=1, Rayleigh=2e6, nx=256, nz=64, BCs=None, dealiasing=3 / 2, comm=None, **kwargs, ): """ Constructor. `kwargs` are forwarded to parent class constructor. Args: Prandl (float): Prandtl number Rayleigh (float): Rayleigh number nx (int): Resolution in x-direction nz (int): Resolution in z direction BCs (dict): Vertical boundary conditions dealiasing (float): Dealiasing for evaluating the non-linear part in real space comm (mpi4py.Intracomm): Space communicator """ BCs = {} if BCs is None else BCs BCs = { 'T_top': 0, 'T_bottom': 2, 'v_top': 0, 'v_bottom': 0, 'u_top': 0, 'u_bottom': 0, 'p_integral': 0, **BCs, } if comm is None: try: from mpi4py import MPI comm = MPI.COMM_WORLD except ModuleNotFoundError: pass self._makeAttributeAndRegister( 'Prandl', 'Rayleigh', 'nx', 'nz', 'BCs', 'dealiasing', 'comm', localVars=locals(), readOnly=True, ) bases = [{'base': 'fft', 'N': nx, 'x0': 0, 'x1': 8}, {'base': 'ultraspherical', 'N': nz}] components = ['u', 'v', 'T', 'p'] super().__init__(bases, components, comm=comm, **kwargs) self.Z, self.X = self.get_grid() self.Kz, self.Kx = self.get_wavenumbers() # construct 2D matrices Dzz = self.get_differentiation_matrix(axes=(1,), p=2) Dz = self.get_differentiation_matrix(axes=(1,)) Dx = self.get_differentiation_matrix(axes=(0,)) Dxx = self.get_differentiation_matrix(axes=(0,), p=2) Id = self.get_Id() S1 = self.get_basis_change_matrix(p_out=0, p_in=1) S2 = self.get_basis_change_matrix(p_out=0, p_in=2) U01 = self.get_basis_change_matrix(p_in=0, p_out=1) U12 = self.get_basis_change_matrix(p_in=1, p_out=2) U02 = self.get_basis_change_matrix(p_in=0, p_out=2) self.Dx = Dx self.Dxx = Dxx self.Dz = S1 @ Dz self.Dzz = S2 @ Dzz kappa = (Rayleigh * Prandl) ** (-1 / 2.0) nu = (Rayleigh / Prandl) ** (-1 / 2.0) # construct operators L_lhs = { 'p': {'u': U01 @ Dx, 'v': Dz}, # divergence free constraint 'u': {'p': U02 @ Dx, 'u': -nu * (U02 @ Dxx + Dzz)}, 'v': {'p': U12 @ Dz, 'v': -nu * (U02 @ Dxx + Dzz), 'T': -U02 @ Id}, 'T': {'T': -kappa * (U02 @ Dxx + Dzz)}, } self.setup_L(L_lhs) # mass matrix M_lhs = {i: {i: U02 @ Id} for i in ['u', 'v', 'T']} self.setup_M(M_lhs) # Prepare going from second (first for divergence free equation) derivative basis back to Chebychov-T self.base_change = self._setup_operator({**{comp: {comp: S2} for comp in ['u', 'v', 'T']}, 'p': {'p': S1}}) # BCs self.add_BC( component='p', equation='p', axis=1, v=self.BCs['p_integral'], kind='integral', line=-1, scalar=True ) self.add_BC(component='T', equation='T', axis=1, x=-1, v=self.BCs['T_bottom'], kind='Dirichlet', line=-1) self.add_BC(component='T', equation='T', axis=1, x=1, v=self.BCs['T_top'], kind='Dirichlet', line=-2) self.add_BC(component='v', equation='v', axis=1, x=1, v=self.BCs['v_bottom'], kind='Dirichlet', line=-1) self.add_BC(component='v', equation='v', axis=1, x=-1, v=self.BCs['v_bottom'], kind='Dirichlet', line=-2) self.remove_BC(component='v', equation='v', axis=1, x=-1, kind='Dirichlet', line=-2, scalar=True) self.add_BC(component='u', equation='u', axis=1, v=self.BCs['u_top'], x=1, kind='Dirichlet', line=-2) self.add_BC( component='u', equation='u', axis=1, v=self.BCs['u_bottom'], x=-1, kind='Dirichlet', line=-1, ) # eliminate Nyquist mode if needed if nx % 2 == 0: Nyquist_mode_index = self.axes[0].get_Nyquist_mode_index() for component in self.components: self.add_BC( component=component, equation=component, axis=0, kind='Nyquist', line=int(Nyquist_mode_index), v=0 ) self.setup_BCs()
[docs] def eval_f(self, u, *args, **kwargs): f = self.f_init if self.spectral_space: u_hat = u.copy() else: u_hat = self.transform(u) f_impl_hat = self.u_init_forward Dz = self.Dz Dx = self.Dx iu, iv, iT, ip = self.index(['u', 'v', 'T', 'p']) # evaluate implicit terms if not hasattr(self, '_L_T_base'): self._L_T_base = self.base_change @ self.L f_impl_hat = -(self._L_T_base @ u_hat.flatten()).reshape(u_hat.shape) if self.spectral_space: f.impl[:] = f_impl_hat else: f.impl[:] = self.itransform(f_impl_hat).real # ------------------------------------------- # treat convection explicitly with dealiasing # start by computing derivatives if not hasattr(self, '_Dx_expanded') or not hasattr(self, '_Dz_expanded'): self._Dx_expanded = self._setup_operator({'u': {'u': Dx}, 'v': {'v': Dx}, 'T': {'T': Dx}, 'p': {}}) self._Dz_expanded = self._setup_operator({'u': {'u': Dz}, 'v': {'v': Dz}, 'T': {'T': Dz}, 'p': {}}) Dx_u_hat = (self._Dx_expanded @ u_hat.flatten()).reshape(u_hat.shape) Dz_u_hat = (self._Dz_expanded @ u_hat.flatten()).reshape(u_hat.shape) padding = [self.dealiasing, self.dealiasing] Dx_u_pad = self.itransform(Dx_u_hat, padding=padding).real Dz_u_pad = self.itransform(Dz_u_hat, padding=padding).real u_pad = self.itransform(u_hat, padding=padding).real fexpl_pad = self.xp.zeros_like(u_pad) fexpl_pad[iu][:] = -(u_pad[iu] * Dx_u_pad[iu] + u_pad[iv] * Dz_u_pad[iu]) fexpl_pad[iv][:] = -(u_pad[iu] * Dx_u_pad[iv] + u_pad[iv] * Dz_u_pad[iv]) fexpl_pad[iT][:] = -(u_pad[iu] * Dx_u_pad[iT] + u_pad[iv] * Dz_u_pad[iT]) if self.spectral_space: f.expl[:] = self.transform(fexpl_pad, padding=padding) else: f.expl[:] = self.itransform(self.transform(fexpl_pad, padding=padding)).real return f
[docs] def u_exact(self, t=0, noise_level=1e-3, seed=99): assert t == 0 assert ( self.BCs['v_top'] == self.BCs['v_bottom'] ), 'Initial conditions are only implemented for zero velocity gradient' me = self.spectral.u_init iu, iv, iT, ip = self.index(['u', 'v', 'T', 'p']) # linear temperature gradient for comp in ['T', 'v', 'u']: a = (self.BCs[f'{comp}_top'] - self.BCs[f'{comp}_bottom']) / 2 b = (self.BCs[f'{comp}_top'] + self.BCs[f'{comp}_bottom']) / 2 me[self.index(comp)] = a * self.Z + b # perturb slightly rng = self.xp.random.default_rng(seed=seed) noise = self.spectral.u_init noise[iT] = rng.random(size=me[iT].shape) me[iT] += noise[iT].real * noise_level * (self.Z - 1) * (self.Z + 1) if self.spectral_space: me_hat = self.spectral.u_init_forward me_hat[:] = self.transform(me) return me_hat else: return me
[docs] def get_fig(self): # pragma: no cover """ Get a figure suitable to plot the solution of this problem Returns ------- self.fig : matplotlib.pyplot.figure.Figure """ import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable plt.rcParams['figure.constrained_layout.use'] = True self.fig, axs = plt.subplots(2, 1, sharex=True, sharey=True, figsize=((10, 5))) self.cax = [] divider = make_axes_locatable(axs[0]) self.cax += [divider.append_axes('right', size='3%', pad=0.03)] divider2 = make_axes_locatable(axs[1]) self.cax += [divider2.append_axes('right', size='3%', pad=0.03)] return self.fig
[docs] def plot(self, u, t=None, fig=None, quantity='T'): # pragma: no cover r""" Plot the solution. Parameters ---------- u : dtype_u Solution to be plotted t : float Time to display at the top of the figure fig : matplotlib.pyplot.figure.Figure Figure with the same structure as a figure generated by `self.get_fig`. If none is supplied, a new figure will be generated. quantity : (str) quantity you want to plot Returns ------- None """ fig = self.get_fig() if fig is None else fig axs = fig.axes imV = axs[1].pcolormesh(self.X, self.Z, self.compute_vorticity(u).real) if self.spectral_space: u = self.itransform(u) imT = axs[0].pcolormesh(self.X, self.Z, u[self.index(quantity)].real) for i, label in zip([0, 1], [rf'${quantity}$', 'vorticity']): axs[i].set_aspect(1) axs[i].set_title(label) if t is not None: fig.suptitle(f't = {t:.2f}') axs[1].set_xlabel(r'$x$') axs[1].set_ylabel(r'$z$') fig.colorbar(imT, self.cax[0]) fig.colorbar(imV, self.cax[1])
[docs] def compute_vorticity(self, u): if self.spectral_space: u_hat = u.copy() else: u_hat = self.transform(u) Dz = self.Dz Dx = self.Dx iu, iv = self.index(['u', 'v']) vorticity_hat = self.spectral.u_init_forward vorticity_hat[0] = (Dx * u_hat[iv].flatten() + Dz @ u_hat[iu].flatten()).reshape(u[iu].shape) return self.itransform(vorticity_hat)[0].real
[docs] def compute_Nusselt_numbers(self, u): """ Compute the various versions of the Nusselt number. This reflects the type of heat transport. If the Nusselt number is equal to one, it indicates heat transport due to conduction. If it is larger, advection is present. Computing the Nusselt number at various places can be used to check the code. Args: u: The solution you want to compute the Nusselt numbers of Returns: dict: Nusselt number averaged over the entire volume and horizontally averaged at the top and bottom. """ iv, iT = self.index(['v', 'T']) DzT_hat = self.spectral.u_init_forward if self.spectral_space: u_hat = u.copy() else: u_hat = self.transform(u) DzT_hat[iT] = (self.Dz @ u_hat[iT].flatten()).reshape(DzT_hat[iT].shape) # compute vT with dealiasing padding = [self.dealiasing, self.dealiasing] u_pad = self.itransform(u_hat, padding=padding).real _me = self.xp.zeros_like(u_pad) _me[0] = u_pad[iv] * u_pad[iT] vT_hat = self.transform(_me, padding=padding) nusselt_hat = (vT_hat[0] - DzT_hat[iT]) / self.nx nusselt_no_v_hat = (-DzT_hat[iT]) / self.nx integral_z = self.xp.sum(nusselt_hat * self.spectral.axes[1].get_BC(kind='integral'), axis=-1).real integral_V = ( integral_z[0] * self.axes[0].L ) # only the first Fourier mode has non-zero integral with periodic BCs Nusselt_V = self.comm.bcast(integral_V / self.spectral.V, root=0) Nusselt_t = self.comm.bcast( self.xp.sum(nusselt_hat * self.spectral.axes[1].get_BC(kind='Dirichlet', x=1), axis=-1).real[0], root=0 ) Nusselt_b = self.comm.bcast( self.xp.sum(nusselt_hat * self.spectral.axes[1].get_BC(kind='Dirichlet', x=-1), axis=-1).real[0], root=0 ) Nusselt_no_v_t = self.comm.bcast( self.xp.sum(nusselt_no_v_hat * self.spectral.axes[1].get_BC(kind='Dirichlet', x=1), axis=-1).real[0], root=0 ) Nusselt_no_v_b = self.comm.bcast( self.xp.sum(nusselt_no_v_hat * self.spectral.axes[1].get_BC(kind='Dirichlet', x=-1), axis=-1).real[0], root=0, ) return { 'V': Nusselt_V, 't': Nusselt_t, 'b': Nusselt_b, 't_no_v': Nusselt_no_v_t, 'b_no_v': Nusselt_no_v_b, }
[docs] def compute_viscous_dissipation(self, u): iu, iv = self.index(['u', 'v']) Lap_u_hat = self.spectral.u_init_forward if self.spectral_space: u_hat = u.copy() else: u_hat = self.transform(u) Lap_u_hat[iu] = ((self.Dzz + self.Dxx) @ u_hat[iu].flatten()).reshape(u_hat[iu].shape) Lap_u_hat[iv] = ((self.Dzz + self.Dxx) @ u_hat[iv].flatten()).reshape(u_hat[iu].shape) Lap_u = self.itransform(Lap_u_hat) return abs(u[iu] * Lap_u[iu] + u[iv] * Lap_u[iv])
[docs] def compute_buoyancy_generation(self, u): if self.spectral_space: u = self.itransform(u) iv, iT = self.index(['v', 'T']) return abs(u[iv] * self.Rayleigh * u[iT])
[docs] class CFLLimit(ConvergenceController):
[docs] def dependencies(self, controller, *args, **kwargs): from pySDC.implementations.hooks.log_step_size import LogStepSize controller.add_hook(LogCFL) controller.add_hook(LogStepSize)
[docs] def setup_status_variables(self, controller, **kwargs): """ Add the embedded error variable to the error function. Args: controller (pySDC.Controller): The controller """ self.add_status_variable_to_level('CFL_limit')
[docs] def setup(self, controller, params, description, **kwargs): """ Define default parameters here. Default parameters are: - control_order (int): The order relative to other convergence controllers - dt_max (float): maximal step size - dt_min (float): minimal step size Args: controller (pySDC.Controller): The controller params (dict): The params passed for this specific convergence controller description (dict): The description object used to instantiate the controller Returns: (dict): The updated params dictionary """ defaults = { "control_order": -50, "dt_max": np.inf, "dt_min": 0, "cfl": 0.4, } return {**defaults, **super().setup(controller, params, description, **kwargs)}
[docs] @staticmethod def compute_max_step_size(P, u): grid_spacing_x = P.X[1, 0] - P.X[0, 0] cell_wallz = P.xp.zeros(P.nz + 1) cell_wallz[0] = 1 cell_wallz[-1] = -1 cell_wallz[1:-1] = (P.Z[0, :-1] + P.Z[0, 1:]) / 2 grid_spacing_z = cell_wallz[:-1] - cell_wallz[1:] iu, iv = P.index(['u', 'v']) if P.spectral_space: u = P.itransform(u) max_step_size_x = P.xp.min(grid_spacing_x / P.xp.abs(u[iu])) max_step_size_z = P.xp.min(grid_spacing_z / P.xp.abs(u[iv])) max_step_size = min([max_step_size_x, max_step_size_z]) if hasattr(P, 'comm'): max_step_size = P.comm.allreduce(max_step_size, op=MPI.MIN) return float(max_step_size)
[docs] def get_new_step_size(self, controller, step, **kwargs): if not CheckConvergence.check_convergence(step): return None L = step.levels[0] P = step.levels[0].prob L.sweep.compute_end_point() max_step_size = self.compute_max_step_size(P, L.uend) L.status.CFL_limit = self.params.cfl * max_step_size dt_new = L.status.dt_new if L.status.dt_new else max([self.params.dt_max, L.params.dt]) L.status.dt_new = min([dt_new, self.params.cfl * max_step_size]) L.status.dt_new = max([self.params.dt_min, L.status.dt_new]) self.log(f'dt max: {max_step_size:.2e} -> New step size: {L.status.dt_new:.2e}', step)
[docs] class LogCFL(Hooks):
[docs] def post_step(self, step, level_number): """ Record CFL limit. Args: step (pySDC.Step.step): the current step level_number (int): the current level number Returns: None """ super().post_step(step, level_number) L = step.levels[level_number] self.add_to_stats( process=step.status.slot, time=L.time + L.dt, level=L.level_index, iter=step.status.iter, sweep=L.status.sweep, type='CFL_limit', value=L.status.CFL_limit, )
[docs] class LogAnalysisVariables(Hooks):
[docs] def post_step(self, step, level_number): """ Record Nusselt numbers. Args: step (pySDC.Step.step): the current step level_number (int): the current level number Returns: None """ super().post_step(step, level_number) L = step.levels[level_number] P = L.prob L.sweep.compute_end_point() Nusselt = P.compute_Nusselt_numbers(L.uend) buoyancy_production = P.compute_buoyancy_generation(L.uend) viscous_dissipation = P.compute_viscous_dissipation(L.uend) for key, value in zip( ['Nusselt', 'buoyancy_production', 'viscous_dissipation'], [Nusselt, buoyancy_production, viscous_dissipation], ): self.add_to_stats( process=step.status.slot, time=L.time + L.dt, level=L.level_index, iter=step.status.iter, sweep=L.status.sweep, type=key, value=value, )