import numpy as np
from mpi4py import MPI
from pySDC.implementations.problem_classes.generic_spectral import GenericSpectralLinear
from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh
from pySDC.core.convergence_controller import ConvergenceController
from pySDC.core.hooks import Hooks
from pySDC.implementations.convergence_controller_classes.check_convergence import CheckConvergence
[docs]
class RayleighBenard(GenericSpectralLinear):
"""
Rayleigh-Benard Convection is a variation of incompressible Navier-Stokes.
The equations we solve are
u_x + v_z = 0
T_t - kappa (T_xx + T_zz) = -uT_x - vT_z
u_t - nu (u_xx + u_zz) + p_x = -uu_x - vu_z
v_t - nu (v_xx + v_zz) + p_z - T = -uv_x - vv_z
with u the horizontal velocity, v the vertical velocity (in z-direction), T the temperature, p the pressure, indices
denoting derivatives, kappa=(Rayleigh * Prandl)**(-1/2) and nu = (Rayleigh / Prandl)**(-1/2). Everything on the left
hand side, that is the viscous part, the pressure gradient and the buoyancy due to temperature are treated
implicitly, while the non-linear convection part on the right hand side is integrated explicitly.
The domain, vertical boundary conditions and pressure gauge are
Omega = [0, 8) x (-1, 1)
T(z=+1) = 0
T(z=-1) = 2
u(z=+-1) = v(z=+-1) = 0
integral over p = 0
The spectral discretization uses FFT horizontally, implying periodic BCs, and an ultraspherical method vertically to
facilitate the Dirichlet BCs.
Parameters:
Prandl (float): Prandl number
Rayleigh (float): Rayleigh number
nx (int): Horizontal resolution
nz (int): Vertical resolution
BCs (dict): Can specify boundary conditions here
dealiasing (float): Dealiasing factor for evaluating the non-linear part
comm (mpi4py.Intracomm): Space communicator
"""
dtype_u = mesh
dtype_f = imex_mesh
def __init__(
self,
Prandl=1,
Rayleigh=2e6,
nx=256,
nz=64,
BCs=None,
dealiasing=3 / 2,
comm=None,
**kwargs,
):
"""
Constructor. `kwargs` are forwarded to parent class constructor.
Args:
Prandl (float): Prandtl number
Rayleigh (float): Rayleigh number
nx (int): Resolution in x-direction
nz (int): Resolution in z direction
BCs (dict): Vertical boundary conditions
dealiasing (float): Dealiasing for evaluating the non-linear part in real space
comm (mpi4py.Intracomm): Space communicator
"""
BCs = {} if BCs is None else BCs
BCs = {
'T_top': 0,
'T_bottom': 2,
'v_top': 0,
'v_bottom': 0,
'u_top': 0,
'u_bottom': 0,
'p_integral': 0,
**BCs,
}
if comm is None:
try:
from mpi4py import MPI
comm = MPI.COMM_WORLD
except ModuleNotFoundError:
pass
self._makeAttributeAndRegister(
'Prandl',
'Rayleigh',
'nx',
'nz',
'BCs',
'dealiasing',
'comm',
localVars=locals(),
readOnly=True,
)
bases = [{'base': 'fft', 'N': nx, 'x0': 0, 'x1': 8}, {'base': 'ultraspherical', 'N': nz}]
components = ['u', 'v', 'T', 'p']
super().__init__(bases, components, comm=comm, **kwargs)
self.Z, self.X = self.get_grid()
self.Kz, self.Kx = self.get_wavenumbers()
# construct 2D matrices
Dzz = self.get_differentiation_matrix(axes=(1,), p=2)
Dz = self.get_differentiation_matrix(axes=(1,))
Dx = self.get_differentiation_matrix(axes=(0,))
Dxx = self.get_differentiation_matrix(axes=(0,), p=2)
Id = self.get_Id()
S1 = self.get_basis_change_matrix(p_out=0, p_in=1)
S2 = self.get_basis_change_matrix(p_out=0, p_in=2)
U01 = self.get_basis_change_matrix(p_in=0, p_out=1)
U12 = self.get_basis_change_matrix(p_in=1, p_out=2)
U02 = self.get_basis_change_matrix(p_in=0, p_out=2)
self.Dx = Dx
self.Dxx = Dxx
self.Dz = S1 @ Dz
self.Dzz = S2 @ Dzz
kappa = (Rayleigh * Prandl) ** (-1 / 2.0)
nu = (Rayleigh / Prandl) ** (-1 / 2.0)
# construct operators
L_lhs = {
'p': {'u': U01 @ Dx, 'v': Dz}, # divergence free constraint
'u': {'p': U02 @ Dx, 'u': -nu * (U02 @ Dxx + Dzz)},
'v': {'p': U12 @ Dz, 'v': -nu * (U02 @ Dxx + Dzz), 'T': -U02 @ Id},
'T': {'T': -kappa * (U02 @ Dxx + Dzz)},
}
self.setup_L(L_lhs)
# mass matrix
M_lhs = {i: {i: U02 @ Id} for i in ['u', 'v', 'T']}
self.setup_M(M_lhs)
# Prepare going from second (first for divergence free equation) derivative basis back to Chebychov-T
self.base_change = self._setup_operator({**{comp: {comp: S2} for comp in ['u', 'v', 'T']}, 'p': {'p': S1}})
# BCs
self.add_BC(
component='p', equation='p', axis=1, v=self.BCs['p_integral'], kind='integral', line=-1, scalar=True
)
self.add_BC(component='T', equation='T', axis=1, x=-1, v=self.BCs['T_bottom'], kind='Dirichlet', line=-1)
self.add_BC(component='T', equation='T', axis=1, x=1, v=self.BCs['T_top'], kind='Dirichlet', line=-2)
self.add_BC(component='v', equation='v', axis=1, x=1, v=self.BCs['v_top'], kind='Dirichlet', line=-1)
self.add_BC(component='v', equation='v', axis=1, x=-1, v=self.BCs['v_bottom'], kind='Dirichlet', line=-2)
self.remove_BC(component='v', equation='v', axis=1, x=-1, kind='Dirichlet', line=-2, scalar=True)
self.add_BC(component='u', equation='u', axis=1, v=self.BCs['u_top'], x=1, kind='Dirichlet', line=-2)
self.add_BC(
component='u',
equation='u',
axis=1,
v=self.BCs['u_bottom'],
x=-1,
kind='Dirichlet',
line=-1,
)
# eliminate Nyquist mode if needed
if nx % 2 == 0:
Nyquist_mode_index = self.axes[0].get_Nyquist_mode_index()
for component in self.components:
self.add_BC(
component=component, equation=component, axis=0, kind='Nyquist', line=int(Nyquist_mode_index), v=0
)
self.setup_BCs()
[docs]
def eval_f(self, u, *args, **kwargs):
f = self.f_init
if self.spectral_space:
u_hat = u.copy()
else:
u_hat = self.transform(u)
f_impl_hat = self.u_init_forward
Dz = self.Dz
Dx = self.Dx
iu, iv, iT, ip = self.index(['u', 'v', 'T', 'p'])
# evaluate implicit terms
if not hasattr(self, '_L_T_base'):
self._L_T_base = self.base_change @ self.L
f_impl_hat = -(self._L_T_base @ u_hat.flatten()).reshape(u_hat.shape)
if self.spectral_space:
f.impl[:] = f_impl_hat
else:
f.impl[:] = self.itransform(f_impl_hat).real
# -------------------------------------------
# treat convection explicitly with dealiasing
# start by computing derivatives
if not hasattr(self, '_Dx_expanded') or not hasattr(self, '_Dz_expanded'):
self._Dx_expanded = self._setup_operator({'u': {'u': Dx}, 'v': {'v': Dx}, 'T': {'T': Dx}, 'p': {}})
self._Dz_expanded = self._setup_operator({'u': {'u': Dz}, 'v': {'v': Dz}, 'T': {'T': Dz}, 'p': {}})
Dx_u_hat = (self._Dx_expanded @ u_hat.flatten()).reshape(u_hat.shape)
Dz_u_hat = (self._Dz_expanded @ u_hat.flatten()).reshape(u_hat.shape)
padding = [self.dealiasing, self.dealiasing]
Dx_u_pad = self.itransform(Dx_u_hat, padding=padding).real
Dz_u_pad = self.itransform(Dz_u_hat, padding=padding).real
u_pad = self.itransform(u_hat, padding=padding).real
fexpl_pad = self.xp.zeros_like(u_pad)
fexpl_pad[iu][:] = -(u_pad[iu] * Dx_u_pad[iu] + u_pad[iv] * Dz_u_pad[iu])
fexpl_pad[iv][:] = -(u_pad[iu] * Dx_u_pad[iv] + u_pad[iv] * Dz_u_pad[iv])
fexpl_pad[iT][:] = -(u_pad[iu] * Dx_u_pad[iT] + u_pad[iv] * Dz_u_pad[iT])
if self.spectral_space:
f.expl[:] = self.transform(fexpl_pad, padding=padding)
else:
f.expl[:] = self.itransform(self.transform(fexpl_pad, padding=padding)).real
return f
[docs]
def u_exact(self, t=0, noise_level=1e-3, seed=99):
assert t == 0
assert (
self.BCs['v_top'] == self.BCs['v_bottom']
), 'Initial conditions are only implemented for zero velocity gradient'
me = self.spectral.u_init
iu, iv, iT, ip = self.index(['u', 'v', 'T', 'p'])
# linear temperature gradient
for comp in ['T', 'v', 'u']:
a = (self.BCs[f'{comp}_top'] - self.BCs[f'{comp}_bottom']) / 2
b = (self.BCs[f'{comp}_top'] + self.BCs[f'{comp}_bottom']) / 2
me[self.index(comp)] = a * self.Z + b
# perturb slightly
rng = self.xp.random.default_rng(seed=seed)
noise = self.spectral.u_init
noise[iT] = rng.random(size=me[iT].shape)
me[iT] += noise[iT].real * noise_level * (self.Z - 1) * (self.Z + 1)
if self.spectral_space:
me_hat = self.spectral.u_init_forward
me_hat[:] = self.transform(me)
return me_hat
else:
return me
[docs]
def apply_BCs(self, sol):
"""
Enforce the Dirichlet BCs at the top and bottom for arbitrary solution.
The function modifies the last two modes of u, v, and T in order to achieve this.
Note that the pressure is not modified here and the Nyquist mode is not altered either.
Args:
sol: Some solution that does not need to enforce boundary conditions
Returns:
Modified version of the solution that satisfies Dirichlet BCs.
"""
ultraspherical = self.spectral.axes[-1]
if self.spectral_space:
sol_half_hat = self.itransform(sol, axes=(-2,))
else:
sol_half_hat = self.transform(sol, axes=(-1,))
BC_bottom = ultraspherical.get_BC(x=-1, kind='dirichlet')
BC_top = ultraspherical.get_BC(x=1, kind='dirichlet')
M = np.array([BC_top[-2:], BC_bottom[-2:]])
M_I = np.linalg.inv(M)
rhs = np.empty((2, self.nx), dtype=complex)
for component in ['u', 'v', 'T']:
i = self.index(component)
rhs[0] = self.BCs[f'{component}_top'] - self.xp.sum(sol_half_hat[i, :, :-2] * BC_top[:-2], axis=1)
rhs[1] = self.BCs[f'{component}_bottom'] - self.xp.sum(sol_half_hat[i, :, :-2] * BC_bottom[:-2], axis=1)
BC_vals = M_I @ rhs
sol_half_hat[i, :, -2:] = BC_vals.T
if self.spectral_space:
return self.transform(sol_half_hat, axes=(-2,))
else:
return self.itransform(sol_half_hat, axes=(-1,))
[docs]
def get_fig(self): # pragma: no cover
"""
Get a figure suitable to plot the solution of this problem
Returns
-------
self.fig : matplotlib.pyplot.figure.Figure
"""
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
plt.rcParams['figure.constrained_layout.use'] = True
self.fig, axs = plt.subplots(2, 1, sharex=True, sharey=True, figsize=((10, 5)))
self.cax = []
divider = make_axes_locatable(axs[0])
self.cax += [divider.append_axes('right', size='3%', pad=0.03)]
divider2 = make_axes_locatable(axs[1])
self.cax += [divider2.append_axes('right', size='3%', pad=0.03)]
return self.fig
[docs]
def plot(self, u, t=None, fig=None, quantity='T'): # pragma: no cover
r"""
Plot the solution.
Parameters
----------
u : dtype_u
Solution to be plotted
t : float
Time to display at the top of the figure
fig : matplotlib.pyplot.figure.Figure
Figure with the same structure as a figure generated by `self.get_fig`. If none is supplied, a new figure will be generated.
quantity : (str)
quantity you want to plot
Returns
-------
None
"""
fig = self.get_fig() if fig is None else fig
axs = fig.axes
imV = axs[1].pcolormesh(self.X, self.Z, self.compute_vorticity(u).real)
if self.spectral_space:
u = self.itransform(u)
imT = axs[0].pcolormesh(self.X, self.Z, u[self.index(quantity)].real)
for i, label in zip([0, 1], [rf'${quantity}$', 'vorticity']):
axs[i].set_aspect(1)
axs[i].set_title(label)
if t is not None:
fig.suptitle(f't = {t:.2f}')
axs[1].set_xlabel(r'$x$')
axs[1].set_ylabel(r'$z$')
fig.colorbar(imT, self.cax[0])
fig.colorbar(imV, self.cax[1])
[docs]
def compute_vorticity(self, u):
if self.spectral_space:
u_hat = u.copy()
else:
u_hat = self.transform(u)
Dz = self.Dz
Dx = self.Dx
iu, iv = self.index(['u', 'v'])
vorticity_hat = self.spectral.u_init_forward
vorticity_hat[0] = (Dx * u_hat[iv].flatten() + Dz @ u_hat[iu].flatten()).reshape(u[iu].shape)
return self.itransform(vorticity_hat)[0].real
[docs]
def compute_Nusselt_numbers(self, u):
"""
Compute the various versions of the Nusselt number. This reflects the type of heat transport.
If the Nusselt number is equal to one, it indicates heat transport due to conduction. If it is larger,
advection is present.
Computing the Nusselt number at various places can be used to check the code.
Args:
u: The solution you want to compute the Nusselt numbers of
Returns:
dict: Nusselt number averaged over the entire volume and horizontally averaged at the top and bottom.
"""
iv, iT = self.index(['v', 'T'])
DzT_hat = self.spectral.u_init_forward
if self.spectral_space:
u_hat = u.copy()
else:
u_hat = self.transform(u)
DzT_hat[iT] = (self.Dz @ u_hat[iT].flatten()).reshape(DzT_hat[iT].shape)
# compute vT with dealiasing
padding = [self.dealiasing, self.dealiasing]
u_pad = self.itransform(u_hat, padding=padding).real
_me = self.xp.zeros_like(u_pad)
_me[0] = u_pad[iv] * u_pad[iT]
vT_hat = self.transform(_me, padding=padding)
nusselt_hat = (vT_hat[0] - DzT_hat[iT]) / self.nx
nusselt_no_v_hat = (-DzT_hat[iT]) / self.nx
integral_z = self.xp.sum(nusselt_hat * self.spectral.axes[1].get_BC(kind='integral'), axis=-1).real
integral_V = (
integral_z[0] * self.axes[0].L
) # only the first Fourier mode has non-zero integral with periodic BCs
Nusselt_V = self.comm.bcast(integral_V / self.spectral.V, root=0)
Nusselt_t = self.comm.bcast(
self.xp.sum(nusselt_hat * self.spectral.axes[1].get_BC(kind='Dirichlet', x=1), axis=-1).real[0], root=0
)
Nusselt_b = self.comm.bcast(
self.xp.sum(nusselt_hat * self.spectral.axes[1].get_BC(kind='Dirichlet', x=-1), axis=-1).real[0], root=0
)
Nusselt_no_v_t = self.comm.bcast(
self.xp.sum(nusselt_no_v_hat * self.spectral.axes[1].get_BC(kind='Dirichlet', x=1), axis=-1).real[0], root=0
)
Nusselt_no_v_b = self.comm.bcast(
self.xp.sum(nusselt_no_v_hat * self.spectral.axes[1].get_BC(kind='Dirichlet', x=-1), axis=-1).real[0],
root=0,
)
return {
'V': Nusselt_V,
't': Nusselt_t,
'b': Nusselt_b,
't_no_v': Nusselt_no_v_t,
'b_no_v': Nusselt_no_v_b,
}
[docs]
def compute_viscous_dissipation(self, u):
iu, iv = self.index(['u', 'v'])
Lap_u_hat = self.spectral.u_init_forward
if self.spectral_space:
u_hat = u.copy()
else:
u_hat = self.transform(u)
Lap_u_hat[iu] = ((self.Dzz + self.Dxx) @ u_hat[iu].flatten()).reshape(u_hat[iu].shape)
Lap_u_hat[iv] = ((self.Dzz + self.Dxx) @ u_hat[iv].flatten()).reshape(u_hat[iu].shape)
Lap_u = self.itransform(Lap_u_hat)
return abs(u[iu] * Lap_u[iu] + u[iv] * Lap_u[iv])
[docs]
def compute_buoyancy_generation(self, u):
if self.spectral_space:
u = self.itransform(u)
iv, iT = self.index(['v', 'T'])
return abs(u[iv] * self.Rayleigh * u[iT])
[docs]
class CFLLimit(ConvergenceController):
[docs]
def dependencies(self, controller, *args, **kwargs):
from pySDC.implementations.hooks.log_step_size import LogStepSize
controller.add_hook(LogCFL)
controller.add_hook(LogStepSize)
[docs]
def setup_status_variables(self, controller, **kwargs):
"""
Add the embedded error variable to the error function.
Args:
controller (pySDC.Controller): The controller
"""
self.add_status_variable_to_level('CFL_limit')
[docs]
def setup(self, controller, params, description, **kwargs):
"""
Define default parameters here.
Default parameters are:
- control_order (int): The order relative to other convergence controllers
- dt_max (float): maximal step size
- dt_min (float): minimal step size
Args:
controller (pySDC.Controller): The controller
params (dict): The params passed for this specific convergence controller
description (dict): The description object used to instantiate the controller
Returns:
(dict): The updated params dictionary
"""
defaults = {
"control_order": -50,
"dt_max": np.inf,
"dt_min": 0,
"cfl": 0.4,
}
return {**defaults, **super().setup(controller, params, description, **kwargs)}
[docs]
@staticmethod
def compute_max_step_size(P, u):
grid_spacing_x = P.X[1, 0] - P.X[0, 0]
cell_wallz = P.xp.zeros(P.nz + 1)
cell_wallz[0] = 1
cell_wallz[-1] = -1
cell_wallz[1:-1] = (P.Z[0, :-1] + P.Z[0, 1:]) / 2
grid_spacing_z = cell_wallz[:-1] - cell_wallz[1:]
iu, iv = P.index(['u', 'v'])
if P.spectral_space:
u = P.itransform(u)
max_step_size_x = P.xp.min(grid_spacing_x / P.xp.abs(u[iu]))
max_step_size_z = P.xp.min(grid_spacing_z / P.xp.abs(u[iv]))
max_step_size = min([max_step_size_x, max_step_size_z])
if hasattr(P, 'comm'):
max_step_size = P.comm.allreduce(max_step_size, op=MPI.MIN)
return float(max_step_size)
[docs]
def get_new_step_size(self, controller, step, **kwargs):
if not CheckConvergence.check_convergence(step):
return None
L = step.levels[0]
P = step.levels[0].prob
L.sweep.compute_end_point()
max_step_size = self.compute_max_step_size(P, L.uend)
L.status.CFL_limit = self.params.cfl * max_step_size
dt_new = L.status.dt_new if L.status.dt_new else max([self.params.dt_max, L.params.dt])
L.status.dt_new = min([dt_new, self.params.cfl * max_step_size])
L.status.dt_new = max([self.params.dt_min, L.status.dt_new])
self.log(f'dt max: {max_step_size:.2e} -> New step size: {L.status.dt_new:.2e}', step)
[docs]
class LogCFL(Hooks):
[docs]
def post_step(self, step, level_number):
"""
Record CFL limit.
Args:
step (pySDC.Step.step): the current step
level_number (int): the current level number
Returns:
None
"""
super().post_step(step, level_number)
L = step.levels[level_number]
self.add_to_stats(
process=step.status.slot,
time=L.time + L.dt,
level=L.level_index,
iter=step.status.iter,
sweep=L.status.sweep,
type='CFL_limit',
value=L.status.CFL_limit,
)
[docs]
class LogAnalysisVariables(Hooks):
[docs]
def post_step(self, step, level_number):
"""
Record Nusselt numbers.
Args:
step (pySDC.Step.step): the current step
level_number (int): the current level number
Returns:
None
"""
super().post_step(step, level_number)
L = step.levels[level_number]
P = L.prob
L.sweep.compute_end_point()
Nusselt = P.compute_Nusselt_numbers(L.uend)
buoyancy_production = P.compute_buoyancy_generation(L.uend)
viscous_dissipation = P.compute_viscous_dissipation(L.uend)
for key, value in zip(
['Nusselt', 'buoyancy_production', 'viscous_dissipation'],
[Nusselt, buoyancy_production, viscous_dissipation],
):
self.add_to_stats(
process=step.status.slot,
time=L.time + L.dt,
level=L.level_index,
iter=step.status.iter,
sweep=L.status.sweep,
type=key,
value=value,
)