Source code for implementations.problem_classes.OuterSolarSystem

import numpy as np

from pySDC.core.problem import Problem
from pySDC.implementations.datatype_classes.particles import particles, acceleration


# noinspection PyUnusedLocal
[docs] class outer_solar_system(Problem): r""" The :math:`N`-body problem describes the mutual influence of the motion of :math:`N` bodies. Formulation of the problem is based on Newton's second law. Therefore, the :math:`N`-body problem is formulated as .. math:: m_i \frac{d^2 {\bf r}_i}{d t^2} = \sum_{j=1, i\neq j}^N G \frac{m_i m_j}{|{\bf r}_i - {\bf r}_j|^3}({\bf r}_i - {\bf r}_j), where :math:`m_i` is the :math:`i`-th mass point with position described by the vector :math:`{\bf r}_i`, and :math:`G` is the gravitational constant. If only the sun influences the motion of the bodies gravitationally, the equations become .. math:: m_i \frac{d^2 {\bf r}_i}{d t^2} = G \frac{m_1}{|{\bf r}_i - {\bf r}_1|^3}({\bf r}_i - {\bf r}_1). This class implements the outer solar system consisting of the six outer planets: the sun, Jupiter, Saturn, Uranus, Neptune, and Pluto, i.e., :math:`N=6`. Parameters ---------- sun_only : bool, optional If False, only the sun is taken into account for the influence of the motion. Attributes ---------- G : float Gravitational constant. """ dtype_u = particles dtype_f = acceleration G = 2.95912208286e-4 def __init__(self, sun_only=False): """Initialization routine""" # invoke super init, passing nparts super().__init__(((3, 6), None, np.dtype('float64'))) self._makeAttributeAndRegister('sun_only', localVars=locals())
[docs] def eval_f(self, u, t): """ Routine to compute the right-hand side of the problem. Parameters ---------- u : dtype_u The particles. t (float): Current time at which the particles are computed (not used here). Returns ------- me : dtype_f The right-hand side of the problem. """ me = self.dtype_f(self.init, val=0.0) # compute the acceleration due to gravitational forces # ... only with respect to the sun if self.sun_only: for i in range(1, self.init[0][-1]): dx = u.pos[:, i] - u.pos[:, 0] r = np.sqrt(np.dot(dx, dx)) df = self.G * dx / (r**3) me[:, i] -= u.m[0] * df # ... or with all planets involved else: for i in range(self.init[0][-1]): for j in range(i): dx = u.pos[:, i] - u.pos[:, j] r = np.sqrt(np.dot(dx, dx)) df = self.G * dx / (r**3) me[:, i] -= u.m[j] * df me[:, j] += u.m[i] * df return me
[docs] def u_exact(self, t): r""" Routine to compute the exact/initial trajectory at time :math:`t`. Parameters ---------- t : float Time of the exact/initial trajectory. Returns ------- me : dtype_u The exact/initial position and velocity. """ assert t == 0.0, 'error, u_exact only works for the initial time t0=0' me = self.dtype_u(self.init) me.pos[:, 0] = [0.0, 0.0, 0.0] me.pos[:, 1] = [-3.5025653, -3.8169847, -1.5507963] me.pos[:, 2] = [9.0755314, -3.0458353, -1.6483708] me.pos[:, 3] = [8.3101420, -16.2901086, -7.2521278] me.pos[:, 4] = [11.4707666, -25.7294829, -10.8169456] me.pos[:, 5] = [-15.5387357, -25.2225594, -3.1902382] me.vel[:, 0] = [0.0, 0.0, 0.0] me.vel[:, 1] = [0.00565429, -0.00412490, -0.00190589] me.vel[:, 2] = [0.00168318, 0.00483525, 0.00192462] me.vel[:, 3] = [0.00354178, 0.00137102, 0.00055029] me.vel[:, 4] = [0.00288930, 0.00114527, 0.00039677] me.vel[:, 5] = [0.00276725, -0.0017072, -0.00136504] me.m[0] = 1.00000597682 # Sun me.m[1] = 0.000954786104043 # Jupiter me.m[2] = 0.000285583733151 # Saturn me.m[3] = 0.0000437273164546 # Uranus me.m[4] = 0.0000517759138449 # Neptune me.m[5] = 1.0 / 130000000.0 # Pluto return me
[docs] def eval_hamiltonian(self, u): """ Routine to compute the Hamiltonian. Parameters ---------- u : dtype_u The particles. Returns ------- ham : float The Hamiltonian. """ ham = 0 for i in range(self.init[0][-1]): ham += 0.5 * u.m[i] * np.dot(u.vel[:, i], u.vel[:, i]) for i in range(self.init[0][-1]): for j in range(i): dx = u.pos[:, i] - u.pos[:, j] r = np.sqrt(np.dot(dx, dx)) ham -= self.G * u.m[i] * u.m[j] / r return ham