Source code for implementations.problem_classes.HenonHeiles

import numpy as np

from pySDC.core.problem import Problem
from pySDC.implementations.datatype_classes.particles import particles, acceleration


# noinspection PyUnusedLocal
[docs] class henon_heiles(Problem): r""" This class implements the second-order Hénon-Heiles system .. math:: \frac{d^2 x}{dt^2} = - x - 2 x y, .. math:: \frac{d^2 y}{dt} = - y - x^2 + y^2 with Hamiltonian .. math:: H = 0.5 \left[\left(\frac{d x}{d t}\right)^2 + \left(\frac{d y}{d t}\right)^2\right] + 0.5 \left(x^2 + y^2\right) + x^2 y - \frac{y^3}{3}. """ dtype_u = particles dtype_f = acceleration def __init__(self): """Initialization routine""" # invoke super init, passing nparts super().__init__((2, None, np.dtype('float64')))
[docs] def eval_f(self, u, t): """ Routine to compute the right-hand side of the problem. Parameters ---------- u : dtype_u Current values of the particles. t : float Current time of the particles is computed (not used here). Returns ------- me : dtype_f The right-hand side of the problem. """ me = self.dtype_f(self.init) me[0] = -u.pos[0] - 2 * u.pos[0] * u.pos[1] me[1] = -u.pos[1] - u.pos[0] ** 2 + u.pos[1] ** 2 return me
[docs] def u_exact(self, t): r""" Routine to compute the exact/initial trajectory at time :math:`t`. Parameters ---------- t : float Time of the exact/initial trajectory. Returns ------- me : dtype_u Exact/initial position and velocity. """ assert t == 0.0, 'error, u_exact only works for the initial time t0=0' me = self.dtype_u(self.init) q1 = 0.0 q2 = 0.2 p2 = 0.2 U0 = 0.5 * (q1 * q1 + q2 * q2) + q1 * q1 * q2 - q2 * q2 * q2 / 3.0 H0 = 0.125 me.pos[0] = q1 me.pos[1] = q2 me.vel[0] = np.sqrt(2.0 * (H0 - U0) - p2 * p2) me.vel[1] = p2 return me
[docs] def eval_hamiltonian(self, u): """ Routine to compute the Hamiltonian. Parameters ---------- u : dtype_u Current values of The particles. Returns ------- ham : float The Hamiltonian. """ ham = 0.5 * (u.vel[0] ** 2 + u.vel[1] ** 2) ham += 0.5 * (u.pos[0] ** 2 + u.pos[1] ** 2) ham += u.pos[0] ** 2 * u.pos[1] - u.pos[1] ** 3 / 3.0 return ham