Source code for implementations.problem_classes.HarmonicOscillator

import numpy as np

from pySDC.core.errors import ParameterError
from pySDC.core.problem import Problem
from pySDC.implementations.datatype_classes.particles import particles, acceleration


# noinspection PyUnusedLocal
[docs] class harmonic_oscillator(Problem): r""" Example implementing the harmonic oscillator with mass :math:`1` .. math:: \frac{d^2 x}{dt^2} = -kx - \mu \frac{d x}{dt}, which is a second-order problem. The unknown function :math:`x` denotes the position of the mass, and the derivative is the velocity. :math:`\mu` defines the damping and :math:`k` is the spring constant. Parameters ---------- k : float, optional Spring constant :math:`k`. mu : float, optional Damping parameter :math:`\mu`. u0 : tuple, optional Initial condition for the position, and the velocity. Should be a tuple, e.g. ``u0=(1, 0)``. phase : float, optional Phase of the oscillation. amp : float, optional Amplitude of the oscillation. Source: https://beltoforion.de/en/harmonic_oscillator/ """ dtype_u = particles dtype_f = acceleration def __init__(self, k=1.0, mu=0.0, u0=(1, 0), phase=0.0, amp=1.0): """Initialization routine""" # invoke super init, passing nparts, dtype_u and dtype_f u0 = np.asarray(u0) super().__init__((1, None, np.dtype("float64"))) self._makeAttributeAndRegister('k', 'mu', 'u0', 'phase', 'amp', localVars=locals(), readOnly=True)
[docs] def eval_f(self, u, t): """ Routine to compute the right-hand side of the problem. Parameters ---------- u : dtype_u Current values of the particles. t : float Current time of the numerical solution is computed (not used here). Returns ------- me : dtype_f The right-hand side of the problem. """ me = self.dtype_f(self.init) me[:] = -self.k * u.pos - self.mu * u.vel return me
[docs] def u_init(self): """ Helper function to compute the initial condition for u. """ u0 = self.u0 u = self.dtype_u(self.init) u.pos[0] = u0[0] u.vel[0] = u0[1] return u
[docs] def u_exact(self, t): r""" Routine to compute the exact trajectory at time :math:`t`. Parameters ---------- t : float Time of the exact trajectory. Returns ------- me : dtype_u Exact position and velocity. """ me = self.dtype_u(self.init) delta = self.mu / (2) omega = np.sqrt(self.k) U_0 = self.u0 alpha = np.sqrt(np.abs(delta**2 - omega**2)) print(self.mu) if delta > omega: """ Overdamped case """ lam_1 = -delta + alpha lam_2 = -delta - alpha L = np.array([[1, 1], [lam_1, lam_2]]) A, B = np.linalg.solve(L, U_0) me.pos[:] = A * np.exp(lam_1 * t) + B * np.exp(lam_2 * t) me.vel[:] = A * lam_1 * np.exp(lam_1 * t) + B * lam_2 * np.exp(lam_2 * t) elif delta == omega: """ Critically damped case """ A = U_0[0] B = U_0[1] + delta * A me.pos[:] = np.exp(-delta * t) * (A + t * B) me.vel[:] = -delta * me.pos[:] + np.exp(-delta * t) * B elif delta < omega: """ Underdamped case """ lam_1 = -delta + alpha * 1j lam_2 = -delta - alpha * 1j M = np.array([[1, 1], [lam_1, lam_2]], dtype=complex) A, B = np.linalg.solve(M, U_0) me.pos[:] = np.real(A * np.exp(lam_1 * t) + B * np.exp(lam_2 * t)) me.vel[:] = np.real(A * lam_1 * np.exp(lam_1 * t) + B * lam_2 * np.exp(lam_2 * t)) else: pass raise ParameterError("Exact solution is not working") return me
[docs] def eval_hamiltonian(self, u): """ Routine to compute the Hamiltonian. Parameters ---------- u : dtype_u Current values of the particles. Returns ------- ham : float The Hamiltonian. """ ham = 0.5 * self.k * u.pos[0] ** 2 + 0.5 * u.vel[0] ** 2 return ham