Source code for implementations.problem_classes.GrayScott_1D_FEniCS_implicit

import logging
import random

import dolfin as df
import numpy as np

from pySDC.core.Errors import ParameterError
from pySDC.core.Problem import ptype
from pySDC.implementations.datatype_classes.fenics_mesh import fenics_mesh


# noinspection PyUnusedLocal
[docs] class fenics_grayscott(ptype): r""" The Gray-Scott system [1]_ describes a reaction-diffusion process of two substances :math:`u` and :math:`v`, where they diffuse over time. During the reaction :math:`u` is used up with overall decay rate :math:`B`, whereas :math:`v` is produced with feed rate :math:`A`. :math:`D_u,\, D_v` are the diffusion rates for :math:`u,\, v`. This process is described by the one-dimensional model using Dirichlet boundary conditions .. math:: \frac{\partial u}{\partial t} = D_u \Delta u - u v^2 + A (1 - u), .. math:: \frac{\partial v}{\partial t} = D_v \Delta v + u v^2 - B u for :math:`x \in \Omega:=[0, 100]`. The *weak formulation* of the problem can be obtained by multiplying the system with a test function :math:`q`: .. math:: \int_\Omega u_t q\,dx = \int_\Omega D_u \Delta u q - u v^2 q + A (1 - u) q\,dx, .. math:: \int_\Omega v_t q\,dx = \int_\Omega D_v \Delta v q + u v^2 q - B u q\,dx, The spatial solve of the weak formulation is realized by ``FEniCS`` [2]_. Parameters ---------- c_nvars : int, optional Spatial resolution, i.e., number of degrees of freedom in space. t0 : float, optional Starting time. family : str, optional Indicates the family of elements used to create the function space for the trail and test functions. The default is ``'CG'``, which are the class of Continuous Galerkin, a *synonym* for the Lagrange family of elements, see [3]_. order : int, optional Defines the order of the elements in the function space. refinements : list or tuple, optional Defines the refinement for the spatial grid. Needs to be a list or tuple, e.g. ``refinements=[2, 2]`` or ``refinements=(2, 2)``. Du : float, optional Diffusion rate for :math:`u`. Dv: float, optional Diffusion rate for :math:`v`. A : float, optional Feed rate for :math:`v`. B : float, optional Overall decay rate for :math:`u`. Attributes ---------- V : FunctionSpace Defines the function space of the trial and test functions. w : Function Function for the right-hand side. w1 : Function Split of w, part 1. w2 : Function Split of w, part 2. F1 : scalar, vector, matrix or higher rank tensor Weak form of right-hand side, first part. F2 : scalar, vector, matrix or higher rank tensor Weak form of right-hand side, second part. F : scalar, vector, matrix or higher rank tensor Weak form of full right-hand side. M : matrix Full mass matrix for both parts. References ---------- .. [1] Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability. P. Gray, S. K. Scott. Chem. Eng. Sci. 38, 1 (1983). .. [2] The FEniCS Project Version 1.5. M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, G. N. Wells. Archive of Numerical Software (2015). .. [3] Automated Solution of Differential Equations by the Finite Element Method. A. Logg, K.-A. Mardal, G. N. Wells and others. Springer (2012). """ dtype_u = fenics_mesh dtype_f = fenics_mesh def __init__(self, c_nvars=256, t0=0.0, family='CG', order=4, refinements=None, Du=1.0, Dv=0.01, A=0.09, B=0.086): """Initialization routine""" if refinements is None: refinements = [1, 0] # define the Dirichlet boundary def Boundary(x, on_boundary): return on_boundary # set logger level for FFC and dolfin df.set_log_level(df.WARNING) logging.getLogger('FFC').setLevel(logging.WARNING) # set solver and form parameters df.parameters["form_compiler"]["optimize"] = True df.parameters["form_compiler"]["cpp_optimize"] = True # set mesh and refinement (for multilevel) mesh = df.IntervalMesh(c_nvars, 0, 100) for _ in range(refinements): mesh = df.refine(mesh) # define function space for future reference V = df.FunctionSpace(mesh, family, order) self.V = V * V # invoke super init, passing number of dofs super(fenics_grayscott).__init__(V) self._makeAttributeAndRegister( 'c_nvars', 't0', 'family', 'order', 'refinements', 'Du', 'Dv', 'A', 'B', localVars=locals(), readOnly=True ) # rhs in weak form self.w = df.Function(self.V) q1, q2 = df.TestFunctions(self.V) self.w1, self.w2 = df.split(self.w) self.F1 = ( -self.Du * df.inner(df.nabla_grad(self.w1), df.nabla_grad(q1)) - self.w1 * (self.w2**2) * q1 + self.A * (1 - self.w1) * q1 ) * df.dx self.F2 = ( -self.Dv * df.inner(df.nabla_grad(self.w2), df.nabla_grad(q2)) + self.w1 * (self.w2**2) * q2 - self.B * self.w2 * q2 ) * df.dx self.F = self.F1 + self.F2 # mass matrix u1, u2 = df.TrialFunctions(self.V) a_M = u1 * q1 * df.dx M1 = df.assemble(a_M) a_M = u2 * q2 * df.dx M2 = df.assemble(a_M) self.M = M1 + M2 def __invert_mass_matrix(self, u): r""" Helper routine to invert mass matrix. Parameters ---------- u : dtype_u Current values of the numerical solution. Returns ------- me : dtype_u The product :math:`M^{-1} \vec{u}`. """ me = self.dtype_u(self.V) A = 1.0 * self.M b = self.dtype_u(u) df.solve(A, me.values.vector(), b.values.vector()) return me
[docs] def solve_system(self, rhs, factor, u0, t): r""" Dolfin's linear solver for :math:`(M - factor \cdot A) \vec{u} = \vec{rhs}`. Parameters ---------- rhs : dtype_f Right-hand side for the nonlinear system. factor : float Abbrev. for the node-to-node stepsize (or any other factor required). u0 : dtype_u Initial guess for the iterative solver (not used here so far). t : float Current time. Returns ------- me : dtype_u Solution as mesh. """ sol = self.dtype_u(self.V) self.w.assign(sol.values) # fixme: is this really necessary to do each time? q1, q2 = df.TestFunctions(self.V) w1, w2 = df.split(self.w) r1, r2 = df.split(rhs.values) F1 = w1 * q1 * df.dx - factor * self.F1 - r1 * q1 * df.dx F2 = w2 * q2 * df.dx - factor * self.F2 - r2 * q2 * df.dx F = F1 + F2 du = df.TrialFunction(self.V) J = df.derivative(F, self.w, du) problem = df.NonlinearVariationalProblem(F, self.w, [], J) solver = df.NonlinearVariationalSolver(problem) prm = solver.parameters prm['newton_solver']['absolute_tolerance'] = 1e-09 prm['newton_solver']['relative_tolerance'] = 1e-08 prm['newton_solver']['maximum_iterations'] = 100 prm['newton_solver']['relaxation_parameter'] = 1.0 solver.solve() sol.values.assign(self.w) return sol
[docs] def eval_f(self, u, t): """ Routine to evaluate both parts of the right-hand side. Parameters ---------- u : dtype_u Current values of the numerical solution. t : float Current time at which the numerical solution is computed. Returns ------- f : dtype_f The right-hand side divided into two parts. """ f = self.dtype_f(self.V) self.w.assign(u.values) f.values = df.Function(self.V, df.assemble(self.F)) f = self.__invert_mass_matrix(f) return f
[docs] def u_exact(self, t): r""" Routine to compute the exact solution at time :math:`t`. Parameters ---------- t : float Time of the exact solution. Returns ------- me : dtype_u Exact solution (only at :math:`t_0 = 0.0`). """ class InitialConditions(df.Expression): def __init__(self): # fixme: why do we need this? random.seed(2) pass def eval(self, values, x): values[0] = 1 - 0.5 * np.power(np.sin(np.pi * x[0] / 100), 100) values[1] = 0.25 * np.power(np.sin(np.pi * x[0] / 100), 100) def value_shape(self): return (2,) assert t == 0, 'ERROR: u_exact only valid for t=0' uinit = InitialConditions() me = self.dtype_u(self.V) me.values = df.interpolate(uinit, self.V) return me