Source code for implementations.problem_classes.FastWaveSlowWave_0D

import numpy as np

from pySDC.core.errors import ParameterError
from pySDC.core.problem import Problem
from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh


# noinspection PyUnusedLocal
[docs] class swfw_scalar(Problem): r""" This class implements the fast-wave-slow-wave scalar problem fully investigated in [1]_. It is defined by .. math:: \frac{d u(t)}{dt} = \lambda_f u(t) + \lambda_s u(t), where :math:`\lambda_f` denotes the part of the fast wave, and :math:`\lambda_s` is the part of the slow wave with :math:`\lambda_f \gg \lambda_s`. Let :math:`u_0` be the initial condition to the problem, then the exact solution is given by .. math:: u(t) = u_0 \exp((\lambda_f + \lambda_s) t). Parameters ---------- lambda_s : np.1darray, optional Part of the slow wave :math:`\lambda_s`. lambda_f : np.1darray, optional Part of the fast wave :math:`\lambda_f`. u0 : np.1darray, optional Initial condition of the problem. References ---------- .. [1] D. Ruprecht, R. Speck. Spectral deferred corrections with fast-wave slow-wave splitting. SIAM J. Sci. Comput. Vol. 38 No. 4 (2016). """ dtype_u = mesh dtype_f = imex_mesh def __init__(self, lambda_s=-1, lambda_f=-1000, u0=1): """Initialization routine""" init = ([lambda_s.size, lambda_f.size], None, np.dtype('complex128')) super().__init__(init) self._makeAttributeAndRegister('lambda_s', 'lambda_f', 'u0', localVars=locals(), readOnly=True)
[docs] def solve_system(self, rhs, factor, u0, t): r""" Simple im=nversion of :math:`(1 - \Delta t \cdot \lambda)\vec{u} = \vec{rhs}`. Parameters ---------- rhs : dtype_f Right-hand side for the nonlinear system. factor : float Abbrev. for the node-to-node stepsize (or any other factor required). u0 : dtype_u Initial guess for the iterative solver (not used here so far). t : float Current time (e.g. for time-dependent BCs). Returns ------- me : dtype_u The solution as mesh. """ me = self.dtype_u(self.init) for i in range(self.lambda_s.size): for j in range(self.lambda_f.size): me[i, j] = rhs[i, j] / (1.0 - factor * self.lambda_f[j]) return me
def __eval_fexpl(self, u, t): """ Helper routine to evaluate the explicit part of the right-hand side. Parameters ---------- u : dtype_u Current values of the numerical solution. t : float Current time at which the numerical solution is computed (not used here). Returns ------- fexpl : dtype_u Explicit part of right-hand side. """ fexpl = self.dtype_u(self.init) for i in range(self.lambda_s.size): for j in range(self.lambda_f.size): fexpl[i, j] = self.lambda_s[i] * u[i, j] return fexpl def __eval_fimpl(self, u, t): """ Helper routine to evaluate the implicit part of the right-hand side. Parameters ---------- u : dtype_u Current values of the numerical solution. t : float Current time at which the numerical solution is computed (not used here). Returns ------- fimpl : dtype_u Implicit part of right-hand side. """ fimpl = self.dtype_u(self.init) for i in range(self.lambda_s.size): for j in range(self.lambda_f.size): fimpl[i, j] = self.lambda_f[j] * u[i, j] return fimpl
[docs] def eval_f(self, u, t): """ Routine to evaluate both parts of the right-hand side of the problem. Parameters ---------- u : dtype_u Current values of the numerical solution. t : float Current time at which the numerical solution is computed. Returns ------- f : dtype_f The right-hand side divided into two parts. """ f = self.dtype_f(self.init) f.impl = self.__eval_fimpl(u, t) f.expl = self.__eval_fexpl(u, t) return f
[docs] def u_exact(self, t): r""" Routine to compute the exact solution at time :math:`t`. Parameters ---------- t : float Time of the exact solution. Returns ------- me : dtype_u The exact solution. """ me = self.dtype_u(self.init) for i in range(self.lambda_s.size): for j in range(self.lambda_f.size): me[i, j] = self.u0 * np.exp((self.lambda_f[j] + self.lambda_s[i]) * t) return me