Source code for implementations.problem_classes.BuckConverter

import numpy as np

from pySDC.core.problem import Problem
from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh


[docs] class buck_converter(Problem): r""" Example implementing the model of a buck converter, which is also called a step-down converter. The converter has two different states and each of this state can be expressed as a nonhomogeneous linear system of ordinary differential equations (ODEs) .. math:: \frac{d u(t)}{dt} = A_k u(t) + f_k (t) for :math:`k=1,2`. The two states are the following. Define :math:`T_{sw}:=\frac{1}{f_{sw}}` as the switching period with switching frequency :math:`f_{sw}`. The duty cycle :math:`d` defines the period of how long the switches are in one state until they switch to the other state. Roughly saying, the duty cycle can be seen as a percentage [1]_. A duty cycle of one means that the switches are always in only one state. If :math:`0 \leq \frac{t}{T_{sw}} \bmod 1 \leq d` [2]_: .. math:: \frac{d v_{C_1} (t)}{dt} = -\frac{1}{R_s C_1}v_{C_1} (t) - \frac{1}{C_1} i_{L_1} (t) + \frac{V_s}{R_s C_1}, .. math:: \frac{d v_{C_2} (t)}{dt} = -\frac{1}{R_\ell C_2}v_{C_2} (t) + \frac{1}{C_2} i_{L_1} (t), .. math:: \frac{d i_{L_1} (t)}{dt} = \frac{1}{L_1} v_{C_1} (t) - \frac{1}{L_1} v_{C_2} (t) - \frac{R_\pi}{L_1} i_{L_1} (t), Otherwise, the equations are .. math:: \frac{d v_{C_1} (t)}{dt} = -\frac{1}{R_s C_1}v_{C_1} (t) + \frac{V_s}{R_s C_1}, .. math:: \frac{d v_{C_2} (t)}{dt} = -\frac{1}{R_\ell C_2}v_{C_2} (t) + \frac{1}{C_2} i_{L_1} (t), .. math:: \frac{d i_{L_1} (t)}{dt} = \frac{R_\pi}{R_s L_1} v_{C_1} (t) - \frac{1}{L_1} v_{C_2} (t) - \frac{R_\pi V_s}{L_1 R_s}. using an initial condition. Parameters ---------- duty : float, optional Duty cycle :math:`d` between zero and one indicates the time period how long the converter stays on one switching state until it switches to the other state. fsw : int, optional Switching frequency, it is used to determine the number of time steps after the switching state is changed. Vs : float, optional Voltage at the voltage source :math:`V_s`. Rs : float, optional Resistance of the resistor :math:`R_s` at the voltage source. C1 : float, optional Capacitance of the capacitor :math:`C_1`. Rp : float, optional Resistance of the resistor in front of the inductor :math:`R_\pi`. L1 : float, optional Inductance of the inductor :math:`L_1`. C2 : float, optional Capacitance of the capacitor :math:`C_2`. Rl : float, optional Resistance of the resistor :math:`R_\pi` Attributes ---------- A : np.2darray Coefficient matrix of the ODE system. Note ---- The duty cycle needs to be a value in :math:`[0,1]`. References ---------- .. [1] J. Sun. Pulse-Width Modulation. 25-61. Springer, (2012). .. [2] J. Gyselinck, C. Martis, R. V. Sabariego. Using dedicated time-domain basis functions for the simulation of pulse-width-modulation controlled devices - application to the steady-state regime of a buck converter. Electromotion (2013). """ dtype_u = mesh dtype_f = imex_mesh def __init__(self, duty=0.5, fsw=1e3, Vs=10.0, Rs=0.5, C1=1e-3, Rp=0.01, L1=1e-3, C2=1e-3, Rl=10): """Initialization routine""" # invoke super init, passing number of dofs nvars = 3 super().__init__(init=(nvars, None, np.dtype('float64'))) self._makeAttributeAndRegister( 'nvars', 'duty', 'fsw', 'Vs', 'Rs', 'C1', 'Rp', 'L1', 'C2', 'Rl', localVars=locals(), readOnly=True ) self.A = np.zeros((nvars, nvars))
[docs] def eval_f(self, u, t): """ Routine to evaluate the right-hand side of the problem. Parameters ---------- u : dtype_u Current values of the numerical solution. t : float Current time of the numerical solution is computed. Returns ------- f : dtype_f The right-hand side of the problem. """ Tsw = 1 / self.fsw f = self.dtype_f(self.init, val=0.0) f.impl[:] = self.A.dot(u) if 0 <= ((t / Tsw) % 1) <= self.duty: f.expl[0] = self.Vs / (self.Rs * self.C1) f.expl[2] = 0 else: f.expl[0] = self.Vs / (self.Rs * self.C1) f.expl[2] = -(self.Rp * self.Vs) / (self.L1 * self.Rs) return f
[docs] def solve_system(self, rhs, factor, u0, t): r""" Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`. Parameters ---------- rhs : dtype_f Right-hand side for the linear system. factor : float Abbrev. for the local stepsize (or any other factor required). u0 : dtype_u Initial guess for the iterative solver. t : float Current time (e.g. for time-dependent BCs). Returns ------- me : dtype_u The solution as mesh. """ Tsw = 1 / self.fsw self.A = np.zeros((3, 3)) if 0 <= ((t / Tsw) % 1) <= self.duty: self.A[0, 0] = -1 / (self.C1 * self.Rs) self.A[0, 2] = -1 / self.C1 self.A[1, 1] = -1 / (self.C2 * self.Rl) self.A[1, 2] = 1 / self.C2 self.A[2, 0] = 1 / self.L1 self.A[2, 1] = -1 / self.L1 self.A[2, 2] = -self.Rp / self.L1 else: self.A[0, 0] = -1 / (self.C1 * self.Rs) self.A[1, 1] = -1 / (self.C2 * self.Rl) self.A[1, 2] = 1 / self.C2 self.A[2, 0] = self.Rp / (self.L1 * self.Rs) self.A[2, 1] = -1 / self.L1 me = self.dtype_u(self.init) me[:] = np.linalg.solve(np.eye(self.nvars) - factor * self.A, rhs) return me
[docs] def u_exact(self, t): r""" Routine to compute the exact solution at time :math:`t`. Parameters ---------- t : float Time of the exact solution. Returns ------- me : dtype_u The exact solution. """ assert t == 0, 'ERROR: u_exact only valid for t=0' me = self.dtype_u(self.init) me[0] = 0.0 # v1 me[1] = 0.0 # v2 me[2] = 0.0 # p3 return me