Source code for implementations.problem_classes.AdvectionDiffusionEquation_1D_FFT

import numpy as np

from pySDC.core.errors import ParameterError, ProblemError
from pySDC.core.problem import Problem, WorkCounter
from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh


# noinspection PyUnusedLocal
[docs] class advectiondiffusion1d_imex(Problem): r""" Example implementing the unforced one-dimensional advection diffusion equation .. math:: \frac{\partial u(x,t)}{\partial t} = - c \frac{\partial u(x,t)}{\partial x} + \nu \frac{\partial^2 u(x,t)}{\partial x^2} with periodic boundary conditions in :math:`[-\frac{L}{2}, \frac{L}{2}]` in spectral space. The advection part :math:`- c \frac{\partial u(x,t)}{\partial x}` is treated explicitly, whereas the diffusion part :math:`\nu \frac{\partial^2 u(x,t)}{\partial x^2}` will be treated numerically in an implicit way. The exact solution is given by .. math:: u(x, t) = \sin(\omega (x - c t)) \exp(-t \nu \omega^2) for :math:`\omega=2 \pi k`, where :math:`k` denotes the wave number. Fast Fourier transform is used for the spatial discretization. Parameters ---------- nvars : int, optional Number of points in spatial discretization. c : float, optional Advection speed :math:`c`. freq : int, optional Wave number :math:`k`. nu : float, optional Diffusion coefficient :math:`\nu`. L : float, optional Denotes the period of the function to be approximated for the Fourier transform. Attributes ---------- xvalues : np.1darray Contains the grid points in space. ddx : np.1darray Spectral operator for gradient. lap : np.1darray Spectral operator for Laplacian. """ dtype_u = mesh dtype_f = imex_mesh def __init__(self, nvars=256, c=1.0, freq=-1, nu=0.02, L=1.0): """Initialization routine""" # invoke super init, passing number of dofs, dtype_u and dtype_f super().__init__(init=(nvars, None, np.dtype('float64'))) self._makeAttributeAndRegister('nvars', 'c', 'freq', 'nu', 'L', localVars=locals(), readOnly=True) # we assert that nvars looks very particular here.. this will be necessary for coarsening in space later on if (self.nvars) % 2 != 0: raise ProblemError('setup requires nvars = 2^p') self.xvalues = np.array([i * self.L / self.nvars - self.L / 2.0 for i in range(self.nvars)]) kx = np.zeros(self.init[0] // 2 + 1) for i in range(0, len(kx)): kx[i] = 2 * np.pi / self.L * i self.ddx = kx * 1j self.lap = -(kx**2) self.work_counters['rhs'] = WorkCounter()
[docs] def eval_f(self, u, t): """ Routine to evaluate the right-hand side of the problem. Parameters ---------- u : dtype_u Current values of the numerical solution. t : float Current time at which the numerical solution is computed. Returns ------- f : dtype_f The right-hand side of the problem. """ f = self.dtype_f(self.init) tmp_u = np.fft.rfft(u) tmp_impl = self.nu * self.lap * tmp_u tmp_expl = -self.c * self.ddx * tmp_u f.impl[:] = np.fft.irfft(tmp_impl) f.expl[:] = np.fft.irfft(tmp_expl) self.work_counters['rhs']() return f
[docs] def solve_system(self, rhs, factor, u0, t): """ Simple FFT solver for the diffusion part. Parameters ---------- rhs : dtype_f Right-hand side for the linear system. factor : float Abbrev. for the node-to-node stepsize (or any other factor required). u0 : dtype_u Initial guess for the iterative solver (not used here so far). t : float Current time (e.g. for time-dependent BCs). Returns ------- me : dtype_u The solution as mesh. """ me = self.dtype_u(self.init) tmp = np.fft.rfft(rhs) / (1.0 - self.nu * factor * self.lap) me[:] = np.fft.irfft(tmp) return me
[docs] def u_exact(self, t): r""" Routine to compute the exact solution at time :math:`t`. Parameters ---------- t : float Time of the exact solution. Returns ------- me : dtype_u The exact solution. """ me = self.dtype_u(self.init, val=0.0) if self.freq > 0: omega = 2.0 * np.pi * self.freq me[:] = np.sin(omega * (self.xvalues - self.c * t)) * np.exp(-t * self.nu * omega**2) elif self.freq == 0: np.random.seed(1) me[:] = np.random.rand(self.nvars) else: t00 = 0.08 if self.nu > 0: nbox = int(np.ceil(np.sqrt(4.0 * self.nu * (t00 + t) * 37.0 / (self.L**2)))) for k in range(-nbox, nbox + 1): for i in range(self.init[0]): x = self.xvalues[i] - self.c * t + k * self.L me[i] += np.sqrt(t00) / np.sqrt(t00 + t) * np.exp(-(x**2) / (4.0 * self.nu * (t00 + t))) else: raise ParameterError("There is no exact solution implemented for negative frequency and negative nu!") return me
[docs] class advectiondiffusion1d_implicit(advectiondiffusion1d_imex): r""" Example implementing the unforced one-dimensional advection diffusion equation .. math:: \frac{\partial u(x,t)}{\partial t} = - c \frac{\partial u(x,t)}{\partial x} + \nu \frac{\partial^2 u(x,t)}{\partial x^2} with periodic boundary conditions in :math:`[-\frac{L}{2}, \frac{L}{2}]` in spectral space. This class implements the problem solving it with fully-implicit time-stepping. The exact solution is given by .. math:: u(x, t) = \sin(\omega (x - c t)) \exp(-t \nu \omega^2) for :math:`\omega=2 \pi k`, where :math:`k` denotes the wave number. Fast Fourier transform is used for the spatial discretization. Note ---- This class has the same attributes as the class it inherits from. """ dtype_u = mesh dtype_f = mesh
[docs] def eval_f(self, u, t): """ Routine to evaluate the right-hand side of the problem. Parameters ---------- u : dtype_u Current values of the numerical solution. t : float Current time at which the numerical solution is computed. Returns ------- f : dtype_f The right-hand side of the problem. """ f = self.dtype_f(self.init) tmp_u = np.fft.rfft(u) tmp = self.nu * self.lap * tmp_u - self.c * self.ddx * tmp_u f[:] = np.fft.irfft(tmp) self.work_counters['rhs'] return f
[docs] def solve_system(self, rhs, factor, u0, t): """ Simple FFT solver for the diffusion and advection part (both are linear!). Parameters ---------- rhs : dtype_f Right-hand side for the linear system. factor : float Abbrev. for the node-to-node stepsize (or any other factor required). u0 : dtype_u Initial guess for the iterative solver (not used here so far). t : float Current time (e.g. for time-dependent BCs). Returns ------- me : dtype_u The solution as mesh. """ me = self.dtype_u(self.init) tmp = np.fft.rfft(rhs) / (1.0 - factor * (self.nu * self.lap - self.c * self.ddx)) me[:] = np.fft.irfft(tmp) return me