Source code for implementations.convergence_controller_classes.adaptivity

import numpy as np
from pySDC.core.convergence_controller import ConvergenceController, Status
from pySDC.implementations.convergence_controller_classes.step_size_limiter import (
    StepSizeLimiter,
)


[docs] class AdaptivityBase(ConvergenceController): """ Abstract base class for convergence controllers that implement adaptivity based on arbitrary local error estimates and update rules. """
[docs] def setup(self, controller, params, description, **kwargs): """ Define default parameters here. Default parameters are: - control_order (int): The order relative to other convergence controllers - beta (float): The safety factor Args: controller (pySDC.Controller): The controller params (dict): The params passed for this specific convergence controller description (dict): The description object used to instantiate the controller Returns: (dict): The updated params dictionary """ defaults = { "control_order": -50, "beta": 0.9, } from pySDC.implementations.hooks.log_step_size import LogStepSize controller.add_hook(LogStepSize) from pySDC.implementations.convergence_controller_classes.check_convergence import CheckConvergence self.communicate_convergence = CheckConvergence.communicate_convergence return {**defaults, **super().setup(controller, params, description, **kwargs)}
[docs] def dependencies(self, controller, description, **kwargs): """ Load step size limiters here, if they are desired. Args: controller (pySDC.Controller): The controller description (dict): The description object used to instantiate the controller Returns: None """ step_limiter_keys = ['dt_min', 'dt_max', 'dt_slope_min', 'dt_slope_max', 'dt_rel_min_slope'] available_keys = [me for me in step_limiter_keys if me in self.params.__dict__.keys()] if len(available_keys) > 0: step_limiter_params = {key: self.params.__dict__[key] for key in available_keys} controller.add_convergence_controller(StepSizeLimiter, params=step_limiter_params, description=description) if self.params.useMPI: self.prepare_MPI_logical_operations() return None
[docs] def get_new_step_size(self, controller, S, **kwargs): """ Determine a step size for the next step from an estimate of the local error of the current step. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: None """ raise NotImplementedError("Please implement a rule for updating the step size!")
[docs] def compute_optimal_step_size(self, beta, dt, e_tol, e_est, order): """ Compute the optimal step size for the current step based on the order of the scheme. This function can be called from `get_new_step_size` for various implementations of adaptivity, but notably not all! We require to know the order of the error estimate and if we do adaptivity based on the residual, for instance, we do not know that and we can't use this function. Args: beta (float): Safety factor dt (float): Current step size e_tol (float): The desired tolerance e_est (float): The estimated local error order (int): The order of the local error estimate Returns: float: The optimal step size """ return beta * dt * (e_tol / e_est) ** (1.0 / order)
[docs] def get_local_error_estimate(self, controller, S, **kwargs): """ Get the local error estimate for updating the step size. It does not have to be an error estimate, but could be the residual or something else. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: float: The error estimate """ raise NotImplementedError("Please implement a way to get the local error")
[docs] def determine_restart(self, controller, S, **kwargs): """ Check if the step wants to be restarted by comparing the estimate of the local error to a preset tolerance Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: None """ if S.status.iter >= S.params.maxiter: e_est = self.get_local_error_estimate(controller, S) if e_est >= self.params.e_tol: # see if we try to avoid restarts if self.params.get('avoid_restarts'): more_iter_needed = max([L.status.iter_to_convergence for L in S.levels]) k_final = S.status.iter + more_iter_needed rho = max([L.status.contraction_factor for L in S.levels]) coll_order = S.levels[0].sweep.coll.order if rho > 1: S.status.restart = True self.log(f"Convergence factor = {rho:.2e} > 1 -> restarting", S) elif k_final > 2 * S.params.maxiter: S.status.restart = True self.log( f"{more_iter_needed} more iterations needed for convergence -> restart is more efficient", S ) elif k_final > coll_order: S.status.restart = True self.log( f"{more_iter_needed} more iterations needed for convergence -> restart because collocation problem would be over resolved", S, ) else: S.status.force_continue = True self.log(f"{more_iter_needed} more iterations needed for convergence -> no restart", S) else: S.status.restart = True self.log(f"Restarting: e={e_est:.2e} >= e_tol={self.params.e_tol:.2e}", S) return None
[docs] class AdaptivityForConvergedCollocationProblems(AdaptivityBase):
[docs] def dependencies(self, controller, description, **kwargs): """ Load interpolation between restarts. Args: controller (pySDC.Controller): The controller description (dict): The description object used to instantiate the controller Returns: None """ super().dependencies(controller, description, **kwargs) if self.params.interpolate_between_restarts: from pySDC.implementations.convergence_controller_classes.interpolate_between_restarts import ( InterpolateBetweenRestarts, ) controller.add_convergence_controller( InterpolateBetweenRestarts, description=description, params={}, ) if self.params.interpolate_between_restarts: self.interpolator = controller.convergence_controllers[-1] return None
[docs] def get_convergence(self, controller, S, **kwargs): raise NotImplementedError("Please implement a way to check if the collocation problem is converged!")
[docs] def setup(self, controller, params, description, **kwargs): """ Add a default value for control order to the parameters. Args: controller (pySDC.Controller): The controller params (dict): Parameters for the convergence controller description (dict): The description object used to instantiate the controller Returns: dict: Updated parameters """ defaults = { 'restol_rel': None, 'e_tol_rel': None, 'restart_at_maxiter': True, 'restol_min': 1e-12, 'restol_max': 1e-5, 'factor_if_not_converged': 4.0, 'residual_max_tol': 1e9, 'maxiter': description['sweeper_params'].get('maxiter', 99), 'interpolate_between_restarts': True, 'abort_at_growing_residual': True, **super().setup(controller, params, description, **kwargs), } if defaults['restol_rel']: description['level_params']['restol'] = min( [max([defaults['restol_rel'] * defaults['e_tol'], defaults['restol_min']]), defaults['restol_max']] ) elif defaults['e_tol_rel']: description['level_params']['e_tol'] = min([max([defaults['e_tol_rel'] * defaults['e_tol'], 1e-10]), 1e-5]) if defaults['restart_at_maxiter']: defaults['maxiter'] = description['step_params'].get('maxiter', 99) self.res_last_iter = np.inf return defaults
[docs] def determine_restart(self, controller, S, **kwargs): if self.get_convergence(controller, S, **kwargs): self.res_last_iter = np.inf L = S.levels[0] e_tol_converged = ( L.status.increment < L.params.e_tol if (L.params.get('e_tol') and L.status.get('increment')) else False ) if ( self.params.restart_at_maxiter and S.levels[0].status.residual > S.levels[0].params.restol and not e_tol_converged ): self.trigger_restart_upon_nonconvergence(S) elif self.get_local_error_estimate(controller, S, **kwargs) > self.params.e_tol: S.status.restart = True elif ( S.status.time_size == 1 and self.res_last_iter < S.levels[0].status.residual and S.status.iter > 0 and self.params.abort_at_growing_residual ): self.trigger_restart_upon_nonconvergence(S) elif S.levels[0].status.residual > self.params.residual_max_tol: self.trigger_restart_upon_nonconvergence(S) if self.params.useMPI: self.communicate_convergence(self, controller, S, **kwargs) self.res_last_iter = S.levels[0].status.residual * 1.0
[docs] def trigger_restart_upon_nonconvergence(self, S): S.status.restart = True S.status.force_done = True for L in S.levels: L.status.dt_new = L.params.dt / self.params.factor_if_not_converged self.log( f'Collocation problem not converged. Reducing step size to {L.status.dt_new:.2e}', S, ) if self.params.interpolate_between_restarts: self.interpolator.status.skip_interpolation = True
[docs] class Adaptivity(AdaptivityBase): """ Class to compute time step size adaptively based on embedded error estimate. We have a version working in non-MPI pipelined SDC, but Adaptivity requires you to know the order of the scheme, which you can also know for block-Jacobi, but it works differently and it is only implemented for block Gauss-Seidel so far. There is an option to reduce restarts if continued iterations could yield convergence in fewer iterations than restarting based on an estimate of the contraction factor. Since often only one or two more iterations suffice, this can boost efficiency of adaptivity significantly. Notice that the computed step size is not effected. Be aware that this does not work when Hot Rod is enabled, since that requires us to know the order of the scheme in more detail. Since we reset to the second to last sweep before moving on, we cannot continue to iterate. Set the reduced restart up by setting a boolean value for "avoid_restarts" in the parameters for the convergence controller. The behaviour in multi-step SDC is not well studied and it is unclear if anything useful happens there. """
[docs] def setup(self, controller, params, description, **kwargs): """ Define default parameters here. Default parameters are: - control_order (int): The order relative to other convergence controllers - beta (float): The safety factor Args: controller (pySDC.Controller): The controller params (dict): The params passed for this specific convergence controller description (dict): The description object used to instantiate the controller Returns: (dict): The updated params dictionary """ defaults = { "embedded_error_flavor": 'standard', } return {**defaults, **super().setup(controller, params, description, **kwargs)}
[docs] def dependencies(self, controller, description, **kwargs): """ Load the embedded error estimator. Args: controller (pySDC.Controller): The controller description (dict): The description object used to instantiate the controller Returns: None """ from pySDC.implementations.convergence_controller_classes.estimate_embedded_error import EstimateEmbeddedError super().dependencies(controller, description, **kwargs) controller.add_convergence_controller( EstimateEmbeddedError.get_implementation(self.params.embedded_error_flavor, self.params.useMPI), description=description, ) # load contraction factor estimator if necessary if self.params.get('avoid_restarts'): from pySDC.implementations.convergence_controller_classes.estimate_contraction_factor import ( EstimateContractionFactor, ) params = {'e_tol': self.params.e_tol} controller.add_convergence_controller(EstimateContractionFactor, description=description, params=params) return None
[docs] def check_parameters(self, controller, params, description, **kwargs): """ Check whether parameters are compatible with whatever assumptions went into the step size functions etc. For adaptivity, we need to know the order of the scheme. Args: controller (pySDC.Controller): The controller params (dict): The params passed for this specific convergence controller description (dict): The description object used to instantiate the controller Returns: bool: Whether the parameters are compatible str: The error message """ if description["level_params"].get("restol", -1.0) >= 0: return ( False, "Adaptivity needs constant order in time and hence restol in the step parameters has to be \ smaller than 0!", ) if controller.params.mssdc_jac: return ( False, "Adaptivity needs the same order on all steps, please activate Gauss-Seidel multistep mode!", ) if "e_tol" not in params.keys(): return ( False, "Adaptivity needs a local tolerance! Please pass `e_tol` to the parameters for this convergence controller!", ) return True, ""
[docs] def get_new_step_size(self, controller, S, **kwargs): """ Determine a step size for the next step from an embedded estimate of the local error of the current step. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: None """ # check if we performed the desired amount of sweeps if S.status.iter == S.params.maxiter: L = S.levels[0] # compute next step size order = S.status.iter # embedded error estimate is same order as time marching e_est = self.get_local_error_estimate(controller, S) L.status.dt_new = self.compute_optimal_step_size( self.params.beta, L.params.dt, self.params.e_tol, e_est, order ) self.log(f'Adjusting step size from {L.params.dt:.2e} to {L.status.dt_new:.2e}', S) return None
[docs] def get_local_error_estimate(self, controller, S, **kwargs): """ Get the embedded error estimate of the finest level of the step. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: float: Embedded error estimate """ return S.levels[0].status.error_embedded_estimate
[docs] class AdaptivityRK(Adaptivity): """ Adaptivity for Runge-Kutta methods. Basically, we need to change the order in the step size update """
[docs] def setup(self, controller, params, description, **kwargs): defaults = {} defaults['update_order'] = params.get('update_order', description['sweeper_class'].get_update_order()) return {**defaults, **super().setup(controller, params, description, **kwargs)}
[docs] def get_new_step_size(self, controller, S, **kwargs): """ Determine a step size for the next step from an embedded estimate of the local error of the current step. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: None """ # check if we performed the desired amount of sweeps if S.status.iter == S.params.maxiter: L = S.levels[0] # compute next step size order = self.params.update_order e_est = self.get_local_error_estimate(controller, S) L.status.dt_new = self.compute_optimal_step_size( self.params.beta, L.params.dt, self.params.e_tol, e_est, order ) self.log(f'Adjusting step size from {L.params.dt:.2e} to {L.status.dt_new:.2e}', S) return None
[docs] class AdaptivityResidual(AdaptivityBase): """ Do adaptivity based on residual. Since we don't know a correlation between the residual and the error (for nonlinear problems), we employ a simpler rule to update the step size. Instead of giving a local tolerance that we try to hit as closely as possible, we set two thresholds for the residual. When we exceed the upper one, we reduce the step size by a factor of 2 and if the residual falls below the lower threshold, we double the step size. Please setup these parameters as "e_tol" and "e_tol_low". """
[docs] def setup(self, controller, params, description, **kwargs): """ Define default parameters here. Default parameters are: - control_order (int): The order relative to other convergence controllers - e_tol_low (float): Lower absolute threshold for the residual - e_tol (float): Upper absolute threshold for the residual - use_restol (bool): Restart if the residual tolerance was not reached - max_restarts: Override maximum number of restarts Args: controller (pySDC.Controller): The controller params (dict): The params passed for this specific convergence controller description (dict): The description object used to instantiate the controller Returns: (dict): The updated params dictionary """ defaults = { "control_order": -45, "e_tol_low": 0, "e_tol": np.inf, "use_restol": False, "max_restarts": 99 if "e_tol_low" in params else None, "allowed_modifications": ['increase', 'decrease'], # what we are allowed to do with the step size } return {**defaults, **params}
[docs] def setup_status_variables(self, controller, **kwargs): """ Change maximum number of allowed restarts here. Args: controller (pySDC.Controller): The controller Reutrns: None """ from pySDC.implementations.convergence_controller_classes.basic_restarting import BasicRestarting if self.params.max_restarts is not None: conv_controllers = controller.convergence_controllers restart_cont = [me for me in conv_controllers if BasicRestarting in type(me).__bases__] if len(restart_cont) == 0: raise NotImplementedError("Please implement override of maximum number of restarts!") restart_cont[0].params.max_restarts = self.params.max_restarts return None
[docs] def check_parameters(self, controller, params, description, **kwargs): """ Check whether parameters are compatible with whatever assumptions went into the step size functions etc. Args: controller (pySDC.Controller): The controller params (dict): The params passed for this specific convergence controller description (dict): The description object used to instantiate the controller Returns: bool: Whether the parameters are compatible str: The error message """ if controller.params.mssdc_jac: return ( False, "Adaptivity needs the same order on all steps, please activate Gauss-Seidel multistep mode!", ) return True, ""
[docs] def get_new_step_size(self, controller, S, **kwargs): """ Determine a step size for the next step. If we exceed the absolute tolerance of the residual in either direction, we either double or halve the step size. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: None """ # check if we performed the desired amount of sweeps if S.status.iter == S.params.maxiter: L = S.levels[0] res = self.get_local_error_estimate(controller, S) dt_planned = L.status.dt_new if L.status.dt_new is not None else L.params.dt if ( res > self.params.e_tol or (res > L.params.restol and self.params.use_restol) ) and 'decrease' in self.params.allowed_modifications: L.status.dt_new = min([dt_planned, L.params.dt / 2.0]) self.log(f'Adjusting step size from {L.params.dt:.2e} to {L.status.dt_new:.2e}', S) elif res < self.params.e_tol_low and 'increase' in self.params.allowed_modifications: L.status.dt_new = max([dt_planned, L.params.dt * 2.0]) self.log(f'Adjusting step size from {L.params.dt:.2e} to {L.status.dt_new:.2e}', S) return None
[docs] def get_local_error_estimate(self, controller, S, **kwargs): """ Get the residual of the finest level of the step. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: float: Embedded error estimate """ return S.levels[0].status.residual
[docs] class AdaptivityCollocation(AdaptivityForConvergedCollocationProblems): """ Control the step size via a collocation based estimate of the local error. The error estimate works by subtracting two solutions to collocation problems with different order. You can interpolate between collocation methods as much as you want but the adaptive step size selection will always be based on the last switch of quadrature. """
[docs] def setup(self, controller, params, description, **kwargs): """ Add a default value for control order to the parameters. Args: controller (pySDC.Controller): The controller params (dict): Parameters for the convergence controller description (dict): The description object used to instantiate the controller Returns: dict: Updated parameters """ defaults = { "adaptive_coll_params": {}, "num_colls": 0, **super().setup(controller, params, description, **kwargs), "control_order": 220, } for key in defaults['adaptive_coll_params'].keys(): if type(defaults['adaptive_coll_params'][key]) == list: defaults['num_colls'] = max([defaults['num_colls'], len(defaults['adaptive_coll_params'][key])]) if defaults['restart_at_maxiter']: defaults['maxiter'] = description['step_params'].get('maxiter', 99) * defaults['num_colls'] return defaults
[docs] def setup_status_variables(self, controller, **kwargs): self.status = Status(['error', 'order']) self.status.error = [] self.status.order = []
[docs] def reset_status_variables(self, controller, **kwargs): self.setup_status_variables(controller, **kwargs)
[docs] def dependencies(self, controller, description, **kwargs): """ Load the `EstimateEmbeddedErrorCollocation` convergence controller to estimate the local error by switching between collocation problems between iterations. Args: controller (pySDC.Controller): The controller description (dict): The description object used to instantiate the controller """ from pySDC.implementations.convergence_controller_classes.estimate_embedded_error import ( EstimateEmbeddedErrorCollocation, ) super().dependencies(controller, description, **kwargs) params = {'adaptive_coll_params': self.params.adaptive_coll_params} controller.add_convergence_controller( EstimateEmbeddedErrorCollocation, params=params, description=description, )
[docs] def get_convergence(self, controller, S, **kwargs): return len(self.status.order) == self.params.num_colls
[docs] def get_local_error_estimate(self, controller, S, **kwargs): """ Get the collocation based embedded error estimate. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: float: Embedded error estimate """ if len(self.status.error) > 1: return self.status.error[-1][1] else: return 0.0
[docs] def post_iteration_processing(self, controller, step, **kwargs): """ Get the error estimate and its order if available. Args: controller (pySDC.Controller.controller): The controller step (pySDC.Step.step): The current step """ if step.status.done: lvl = step.levels[0] self.status.error += [lvl.status.error_embedded_estimate_collocation] self.status.order += [lvl.sweep.coll.order]
[docs] def get_new_step_size(self, controller, S, **kwargs): if len(self.status.order) == self.params.num_colls: lvl = S.levels[0] # compute next step size order = ( min(self.status.order[-2::]) + 1 ) # local order of less accurate of the last two collocation problems e_est = self.get_local_error_estimate(controller, S) lvl.status.dt_new = self.compute_optimal_step_size( self.params.beta, lvl.params.dt, self.params.e_tol, e_est, order ) self.log(f'Adjusting step size from {lvl.params.dt:.2e} to {lvl.status.dt_new:.2e}', S)
[docs] def determine_restart(self, controller, S, **kwargs): """ Check if the step wants to be restarted by comparing the estimate of the local error to a preset tolerance Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: None """ if len(self.status.order) == self.params.num_colls: e_est = self.get_local_error_estimate(controller, S) if e_est >= self.params.e_tol: S.status.restart = True self.log(f"Restarting: e={e_est:.2e} >= e_tol={self.params.e_tol:.2e}", S)
[docs] def check_parameters(self, controller, params, description, **kwargs): """ Check whether parameters are compatible with whatever assumptions went into the step size functions etc. For adaptivity, we need to know the order of the scheme. Args: controller (pySDC.Controller): The controller params (dict): The params passed for this specific convergence controller description (dict): The description object used to instantiate the controller Returns: bool: Whether the parameters are compatible str: The error message """ if "e_tol" not in params.keys(): return ( False, "Adaptivity needs a local tolerance! Please pass `e_tol` to the parameters for this convergence controller!", ) return True, ""
[docs] class AdaptivityExtrapolationWithinQ(AdaptivityForConvergedCollocationProblems): """ Class to compute time step size adaptively based on error estimate obtained from extrapolation within the quadrature nodes. This error estimate depends on solving the collocation problem exactly, so make sure you set a sufficient stopping criterion. """
[docs] def setup(self, controller, params, description, **kwargs): from pySDC.implementations.convergence_controller_classes.check_convergence import CheckConvergence defaults = { 'high_Taylor_order': False, **params, } self.check_convergence = CheckConvergence.check_convergence return {**defaults, **super().setup(controller, params, description, **kwargs)}
[docs] def get_convergence(self, controller, S, **kwargs): return self.check_convergence(S)
[docs] def dependencies(self, controller, description, **kwargs): """ Load the error estimator. Args: controller (pySDC.Controller): The controller description (dict): The description object used to instantiate the controller Returns: None """ from pySDC.implementations.convergence_controller_classes.estimate_extrapolation_error import ( EstimateExtrapolationErrorWithinQ, ) super().dependencies(controller, description, **kwargs) controller.add_convergence_controller( EstimateExtrapolationErrorWithinQ, description=description, params={'high_Taylor_order': self.params.high_Taylor_order}, ) return None
[docs] def get_new_step_size(self, controller, S, **kwargs): """ Determine a step size for the next step from the error estimate. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: None """ if self.get_convergence(controller, S, **kwargs): L = S.levels[0] # compute next step size order = L.sweep.coll.num_nodes + 1 if self.params.high_Taylor_order else L.sweep.coll.num_nodes e_est = self.get_local_error_estimate(controller, S) L.status.dt_new = self.compute_optimal_step_size( self.params.beta, L.params.dt, self.params.e_tol, e_est, order ) self.log( f'Error target: {self.params.e_tol:.2e}, error estimate: {e_est:.2e}, update_order: {order}', S, level=10, ) self.log(f'Adjusting step size from {L.params.dt:.2e} to {L.status.dt_new:.2e}', S) return None
[docs] def get_local_error_estimate(self, controller, S, **kwargs): """ Get the embedded error estimate of the finest level of the step. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: float: Embedded error estimate """ return S.levels[0].status.error_extrapolation_estimate
[docs] class AdaptivityPolynomialError(AdaptivityForConvergedCollocationProblems): """ Class to compute time step size adaptively based on error estimate obtained from interpolation within the quadrature nodes. This error estimate depends on solving the collocation problem exactly, so make sure you set a sufficient stopping criterion. """
[docs] def setup(self, controller, params, description, **kwargs): from pySDC.implementations.convergence_controller_classes.check_convergence import CheckConvergence defaults = { 'control_order': -50, **super().setup(controller, params, description, **kwargs), **params, } self.check_convergence = CheckConvergence.check_convergence return defaults
[docs] def get_convergence(self, controller, S, **kwargs): return self.check_convergence(S)
[docs] def dependencies(self, controller, description, **kwargs): """ Load the error estimator. Args: controller (pySDC.Controller): The controller description (dict): The description object used to instantiate the controller Returns: None """ from pySDC.implementations.convergence_controller_classes.estimate_polynomial_error import ( EstimatePolynomialError, ) super().dependencies(controller, description, **kwargs) controller.add_convergence_controller( EstimatePolynomialError, description=description, params={}, ) return None
[docs] def get_new_step_size(self, controller, S, **kwargs): """ Determine a step size for the next step from the error estimate. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: None """ if self.get_convergence(controller, S, **kwargs): L = S.levels[0] # compute next step size order = L.status.order_embedded_estimate e_est = self.get_local_error_estimate(controller, S) L.status.dt_new = self.compute_optimal_step_size( self.params.beta, L.params.dt, self.params.e_tol, e_est, order ) self.log( f'Error target: {self.params.e_tol:.2e}, error estimate: {e_est:.2e}, update_order: {order}', S, level=10, ) self.log(f'Adjusting step size from {L.params.dt:.2e} to {L.status.dt_new:.2e}', S) return None
[docs] def get_local_error_estimate(self, controller, S, **kwargs): """ Get the embedded error estimate of the finest level of the step. Args: controller (pySDC.Controller): The controller S (pySDC.Step): The current step Returns: float: Embedded error estimate """ return S.levels[0].status.error_embedded_estimate