Source code for implementations.controller_classes.controller_nonMPI

import itertools
import copy as cp
import numpy as np
import dill

from pySDC.core.controller import Controller
from pySDC.core import step as stepclass
from pySDC.core.errors import ControllerError, CommunicationError
from pySDC.implementations.convergence_controller_classes.basic_restarting import BasicRestarting


[docs] class controller_nonMPI(Controller): """ PFASST controller, running serialized version of PFASST in blocks (MG-style) """ def __init__(self, num_procs, controller_params, description): """ Initialization routine for PFASST controller Args: num_procs: number of parallel time steps (still serial, though), can be 1 controller_params: parameter set for the controller and the steps description: all the parameters to set up the rest (levels, problems, transfer, ...) """ if 'predict' in controller_params: raise ControllerError('predict flag is ignored, use predict_type instead') # call parent's initialization routine super().__init__(controller_params, description, useMPI=False) self.MS = [stepclass.Step(description)] # try to initialize via dill.copy (much faster for many time-steps) try: for _ in range(num_procs - 1): self.MS.append(dill.copy(self.MS[0])) # if this fails (e.g. due to un-picklable data in the steps), initialize separately except (dill.PicklingError, TypeError, ValueError) as error: self.logger.warning(f'Need to initialize steps separately due to pickling error: {error}') for _ in range(num_procs - 1): self.MS.append(stepclass.Step(description)) self.base_convergence_controllers += [BasicRestarting.get_implementation(useMPI=False)] for convergence_controller in self.base_convergence_controllers: self.add_convergence_controller(convergence_controller, description) if self.params.dump_setup: self.dump_setup(step=self.MS[0], controller_params=controller_params, description=description) if num_procs > 1 and len(self.MS[0].levels) > 1: for S in self.MS: for L in S.levels: if not L.sweep.coll.right_is_node: raise ControllerError("For PFASST to work, we assume uend^k = u_M^k") if all(len(S.levels) == len(self.MS[0].levels) for S in self.MS): self.nlevels = len(self.MS[0].levels) else: raise ControllerError('all steps need to have the same number of levels') if self.nlevels == 0: raise ControllerError('need at least one level') self.nsweeps = [] for nl in range(self.nlevels): if all(S.levels[nl].params.nsweeps == self.MS[0].levels[nl].params.nsweeps for S in self.MS): self.nsweeps.append(self.MS[0].levels[nl].params.nsweeps) if self.nlevels > 1 and self.nsweeps[-1] > 1: raise ControllerError('this controller cannot do multiple sweeps on coarsest level') if self.nlevels == 1 and self.params.predict_type is not None: self.logger.warning( 'you have specified a predictor type but only a single level.. predictor will be ignored' ) for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: C.reset_buffers_nonMPI(self) C.setup_status_variables(self, MS=self.MS)
[docs] def run(self, u0, t0, Tend): """ Main driver for running the serial version of SDC, MSSDC, MLSDC and PFASST (virtual parallelism) Args: u0: initial values t0: starting time Tend: ending time Returns: end values on the finest level stats object containing statistics for each step, each level and each iteration """ # some initializations and reset of statistics uend = None num_procs = len(self.MS) for hook in self.hooks: hook.reset_stats() # initial ordering of the steps: 0,1,...,Np-1 slots = list(range(num_procs)) # initialize time variables of each step time = [t0 + sum(self.MS[j].dt for j in range(p)) for p in slots] # determine which steps are still active (time < Tend) active = [time[p] < Tend - 10 * np.finfo(float).eps for p in slots] if not any(active): raise ControllerError('Nothing to do, check t0, dt and Tend.') # compress slots according to active steps, i.e. remove all steps which have times above Tend active_slots = list(itertools.compress(slots, active)) # initialize block of steps with u0 self.restart_block(active_slots, time, u0) for hook in self.hooks: hook.post_setup(step=None, level_number=None) # call pre-run hook for S in self.MS: for hook in self.hooks: hook.pre_run(step=S, level_number=0) # main loop: as long as at least one step is still active (time < Tend), do something while any(active): MS_active = [self.MS[p] for p in active_slots] done = False while not done: done = self.pfasst(MS_active) restarts = [S.status.restart for S in MS_active] restart_at = np.where(restarts)[0][0] if True in restarts else len(MS_active) if True in restarts: # restart part of the block # initial condition to next block is initial condition of step that needs restarting uend = self.MS[restart_at].levels[0].u[0] time[active_slots[0]] = time[restart_at] self.logger.info(f'Starting next block with initial conditions from step {restart_at}') else: # move on to next block # initial condition for next block is last solution of current block uend = self.MS[active_slots[-1]].levels[0].uend time[active_slots[0]] = time[active_slots[-1]] + self.MS[active_slots[-1]].dt for S in MS_active[:restart_at]: for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: C.post_step_processing(self, S, MS=MS_active) for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: [C.prepare_next_block(self, S, len(active_slots), time, Tend, MS=MS_active) for S in self.MS] # setup the times of the steps for the next block for i in range(1, len(active_slots)): time[active_slots[i]] = time[active_slots[i] - 1] + self.MS[active_slots[i] - 1].dt # determine new set of active steps and compress slots accordingly active = [time[p] < Tend - 10 * np.finfo(float).eps for p in slots] active_slots = list(itertools.compress(slots, active)) # restart active steps (reset all values and pass uend to u0) self.restart_block(active_slots, time, uend) # call post-run hook for S in self.MS: for hook in self.hooks: hook.post_run(step=S, level_number=0) for S in self.MS: for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: C.post_run_processing(self, S, MS=MS_active) return uend, self.return_stats()
[docs] def restart_block(self, active_slots, time, u0): """ Helper routine to reset/restart block of (active) steps Args: active_slots: list of active steps time: list of new times u0: initial value to distribute across the steps """ # loop over active slots (not directly, since we need the previous entry as well) for j in range(len(active_slots)): # get slot number p = active_slots[j] # store current slot number for diagnostics self.MS[p].status.slot = p # store link to previous step self.MS[p].prev = self.MS[active_slots[j - 1]] # resets step self.MS[p].reset_step() # determine whether I am the first and/or last in line self.MS[p].status.first = active_slots.index(p) == 0 self.MS[p].status.last = active_slots.index(p) == len(active_slots) - 1 # initialize step with u0 self.MS[p].init_step(u0) # reset some values self.MS[p].status.done = False self.MS[p].status.prev_done = False self.MS[p].status.iter = 0 self.MS[p].status.stage = 'SPREAD' self.MS[p].status.force_done = False self.MS[p].status.time_size = len(active_slots) for l in self.MS[p].levels: l.tag = None l.status.sweep = 1 for p in active_slots: for lvl in self.MS[p].levels: lvl.status.time = time[p] for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: C.reset_status_variables(self, active_slots=active_slots)
[docs] def send_full(self, S, level=None, add_to_stats=False): """ Function to perform the send, including bookkeeping and logging Args: S: the current step level: the level number add_to_stats: a flag to end recording data in the hooks (defaults to False) """ def send(source, tag): """ Send function Args: source: level which has the new values tag: identifier for this message """ # sending here means computing uend ("one-sided communication") source.sweep.compute_end_point() source.tag = cp.deepcopy(tag) for hook in self.hooks: hook.pre_comm(step=S, level_number=level) if not S.status.last: self.logger.debug( 'Process %2i provides data on level %2i with tag %s' % (S.status.slot, level, S.status.iter) ) send(S.levels[level], tag=(level, S.status.iter, S.status.slot)) for hook in self.hooks: hook.post_comm(step=S, level_number=level, add_to_stats=add_to_stats)
[docs] def recv_full(self, S, level=None, add_to_stats=False): """ Function to perform the recv, including bookkeeping and logging Args: S: the current step level: the level number add_to_stats: a flag to end recording data in the hooks (defaults to False) """ def recv(target, source, tag=None): """ Receive function Args: target: level which will receive the values source: level which initiated the send tag: identifier to check if this message is really for me """ if tag is not None and source.tag != tag: raise CommunicationError('source and target tag are not the same, got %s and %s' % (source.tag, tag)) # simply do a deepcopy of the values uend to become the new u0 at the target target.u[0] = target.prob.dtype_u(source.uend) # re-evaluate f on left interval boundary target.f[0] = target.prob.eval_f(target.u[0], target.time) for hook in self.hooks: hook.pre_comm(step=S, level_number=level) if not S.status.prev_done and not S.status.first: self.logger.debug( 'Process %2i receives from %2i on level %2i with tag %s' % (S.status.slot, S.prev.status.slot, level, S.status.iter) ) recv(S.levels[level], S.prev.levels[level], tag=(level, S.status.iter, S.prev.status.slot)) for hook in self.hooks: hook.post_comm(step=S, level_number=level, add_to_stats=add_to_stats)
[docs] def pfasst(self, local_MS_active): """ Main function including the stages of SDC, MLSDC and PFASST (the "controller") For the workflow of this controller, check out one of our PFASST talks or the pySDC paper This method changes self.MS directly by accessing active steps through local_MS_active. Nothing is returned. Args: local_MS_active (list): all active steps """ # if all stages are the same (or DONE), continue, otherwise abort stages = [S.status.stage for S in local_MS_active if S.status.stage != 'DONE'] if stages[1:] == stages[:-1]: stage = stages[0] else: raise ControllerError('not all stages are equal') self.logger.debug(stage) MS_running = [S for S in local_MS_active if S.status.stage != 'DONE'] switcher = { 'SPREAD': self.spread, 'PREDICT': self.predict, 'IT_CHECK': self.it_check, 'IT_FINE': self.it_fine, 'IT_DOWN': self.it_down, 'IT_COARSE': self.it_coarse, 'IT_UP': self.it_up, } switcher.get(stage, self.default)(MS_running) return all(S.status.done for S in local_MS_active)
[docs] def spread(self, local_MS_running): """ Spreading phase Args: local_MS_running (list): list of currently running steps """ for S in local_MS_running: # first stage: spread values for hook in self.hooks: hook.pre_step(step=S, level_number=0) # call predictor from sweeper S.levels[0].sweep.predict() # update stage if len(S.levels) > 1: # MLSDC or PFASST with predict S.status.stage = 'PREDICT' else: S.status.stage = 'IT_CHECK' for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: C.post_spread_processing(self, S, MS=local_MS_running)
[docs] def predict(self, local_MS_running): """ Predictor phase Args: local_MS_running (list): list of currently running steps """ for S in local_MS_running: for hook in self.hooks: hook.pre_predict(step=S, level_number=0) if self.params.predict_type is None: pass elif self.params.predict_type == 'fine_only': # do a fine sweep only for S in local_MS_running: S.levels[0].sweep.update_nodes() # elif self.params.predict_type == 'libpfasst_style': # # # loop over all steps # for S in local_MS_running: # # # restrict to coarsest level # for l in range(1, len(S.levels)): # S.transfer(source=S.levels[l - 1], target=S.levels[l]) # # # run in serial on coarse level # for S in local_MS_running: # # self.hooks.pre_comm(step=S, level_number=len(S.levels) - 1) # # receive from previous step (if not first) # if not S.status.first: # self.logger.debug('Process %2i receives from %2i on level %2i with tag %s -- PREDICT' % # (S.status.slot, S.prev.status.slot, len(S.levels) - 1, 0)) # self.recv(S.levels[-1], S.prev.levels[-1], tag=(len(S.levels), 0, S.prev.status.slot)) # self.hooks.post_comm(step=S, level_number=len(S.levels) - 1) # # # do the coarse sweep # S.levels[-1].sweep.update_nodes() # # self.hooks.pre_comm(step=S, level_number=len(S.levels) - 1) # # send to succ step # if not S.status.last: # self.logger.debug('Process %2i provides data on level %2i with tag %s -- PREDICT' # % (S.status.slot, len(S.levels) - 1, 0)) # self.send(S.levels[-1], tag=(len(S.levels), 0, S.status.slot)) # self.hooks.post_comm(step=S, level_number=len(S.levels) - 1, add_to_stats=True) # # # go back to fine level, sweeping # for l in range(self.nlevels - 1, 0, -1): # # for S in local_MS_running: # # prolong values # S.transfer(source=S.levels[l], target=S.levels[l - 1]) # # if l - 1 > 0: # S.levels[l - 1].sweep.update_nodes() # # # end with a fine sweep # for S in local_MS_running: # S.levels[0].sweep.update_nodes() elif self.params.predict_type == 'pfasst_burnin': # loop over all steps for S in local_MS_running: # restrict to coarsest level for l in range(1, len(S.levels)): S.transfer(source=S.levels[l - 1], target=S.levels[l]) # loop over all steps for q in range(len(local_MS_running)): # loop over last steps: [1,2,3,4], [2,3,4], [3,4], [4] for p in range(q, len(local_MS_running)): S = local_MS_running[p] # do the sweep with new values S.levels[-1].sweep.update_nodes() # send updated values on coarsest level self.send_full(S, level=len(S.levels) - 1) # loop over last steps: [2,3,4], [3,4], [4] for p in range(q + 1, len(local_MS_running)): S = local_MS_running[p] # receive values sent during previous sweep self.recv_full(S, level=len(S.levels) - 1, add_to_stats=(p == len(local_MS_running) - 1)) # loop over all steps for S in local_MS_running: # interpolate back to finest level for l in range(len(S.levels) - 1, 0, -1): S.transfer(source=S.levels[l], target=S.levels[l - 1]) # send updated values forward self.send_full(S, level=0) # receive values self.recv_full(S, level=0) # end this with a fine sweep for S in local_MS_running: S.levels[0].sweep.update_nodes() elif self.params.predict_type == 'fmg': # TODO: implement FMG predictor raise NotImplementedError('FMG predictor is not yet implemented') else: raise ControllerError('Wrong predictor type, got %s' % self.params.predict_type) for S in local_MS_running: for hook in self.hooks: hook.post_predict(step=S, level_number=0) for S in local_MS_running: # update stage S.status.stage = 'IT_CHECK'
[docs] def it_check(self, local_MS_running): """ Key routine to check for convergence/termination Args: local_MS_running (list): list of currently running steps """ for S in local_MS_running: # send updated values forward self.send_full(S, level=0) # receive values self.recv_full(S, level=0) # compute current residual S.levels[0].sweep.compute_residual(stage='IT_CHECK') for S in local_MS_running: if S.status.iter > 0: for hook in self.hooks: hook.post_iteration(step=S, level_number=0) # decide if the step is done, needs to be restarted and other things convergence related for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: C.post_iteration_processing(self, S, MS=local_MS_running) C.convergence_control(self, S, MS=local_MS_running) for S in local_MS_running: if not S.status.first: for hook in self.hooks: hook.pre_comm(step=S, level_number=0) S.status.prev_done = S.prev.status.done # "communicate" for hook in self.hooks: hook.post_comm(step=S, level_number=0, add_to_stats=True) S.status.done = S.status.done and S.status.prev_done if self.params.all_to_done: for hook in self.hooks: hook.pre_comm(step=S, level_number=0) S.status.done = all(T.status.done for T in local_MS_running) for hook in self.hooks: hook.post_comm(step=S, level_number=0, add_to_stats=True) if not S.status.done: # increment iteration count here (and only here) S.status.iter += 1 for hook in self.hooks: hook.pre_iteration(step=S, level_number=0) for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: C.pre_iteration_processing(self, S, MS=local_MS_running) if len(S.levels) > 1: # MLSDC or PFASST S.status.stage = 'IT_DOWN' else: # SDC or MSSDC if len(local_MS_running) == 1 or self.params.mssdc_jac: # SDC or parallel MSSDC (Jacobi-like) S.status.stage = 'IT_FINE' else: S.status.stage = 'IT_COARSE' # serial MSSDC (Gauss-like) else: S.levels[0].sweep.compute_end_point() for hook in self.hooks: hook.post_step(step=S, level_number=0) S.status.stage = 'DONE' for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: C.reset_buffers_nonMPI(self)
[docs] def it_fine(self, local_MS_running): """ Fine sweeps Args: local_MS_running (list): list of currently running steps """ for S in local_MS_running: S.levels[0].status.sweep = 0 for k in range(self.nsweeps[0]): for S in local_MS_running: S.levels[0].status.sweep += 1 for S in local_MS_running: # send updated values forward self.send_full(S, level=0) # receive values self.recv_full(S, level=0, add_to_stats=(k == self.nsweeps[0] - 1)) for S in local_MS_running: # standard sweep workflow: update nodes, compute residual, log progress for hook in self.hooks: hook.pre_sweep(step=S, level_number=0) S.levels[0].sweep.update_nodes() S.levels[0].sweep.compute_residual(stage='IT_FINE') for hook in self.hooks: hook.post_sweep(step=S, level_number=0) for S in local_MS_running: # update stage S.status.stage = 'IT_CHECK'
[docs] def it_down(self, local_MS_running): """ Go down the hierarchy from finest to coarsest level Args: local_MS_running (list): list of currently running steps """ for S in local_MS_running: S.transfer(source=S.levels[0], target=S.levels[1]) for l in range(1, self.nlevels - 1): # sweep on middle levels (not on finest, not on coarsest, though) for _ in range(self.nsweeps[l]): for S in local_MS_running: # send updated values forward self.send_full(S, level=l) # receive values self.recv_full(S, level=l) for S in local_MS_running: for hook in self.hooks: hook.pre_sweep(step=S, level_number=l) S.levels[l].sweep.update_nodes() S.levels[l].sweep.compute_residual(stage='IT_DOWN') for hook in self.hooks: hook.post_sweep(step=S, level_number=l) for S in local_MS_running: # transfer further down the hierarchy S.transfer(source=S.levels[l], target=S.levels[l + 1]) for S in local_MS_running: # update stage S.status.stage = 'IT_COARSE'
[docs] def it_coarse(self, local_MS_running): """ Coarse sweep Args: local_MS_running (list): list of currently running steps """ for S in local_MS_running: # receive from previous step (if not first) self.recv_full(S, level=len(S.levels) - 1) # do the sweep for hook in self.hooks: hook.pre_sweep(step=S, level_number=len(S.levels) - 1) S.levels[-1].sweep.update_nodes() S.levels[-1].sweep.compute_residual(stage='IT_COARSE') for hook in self.hooks: hook.post_sweep(step=S, level_number=len(S.levels) - 1) # send to succ step self.send_full(S, level=len(S.levels) - 1, add_to_stats=True) # update stage if len(S.levels) > 1: # MLSDC or PFASST S.status.stage = 'IT_UP' else: # MSSDC S.status.stage = 'IT_CHECK'
[docs] def it_up(self, local_MS_running): """ Prolong corrections up to finest level (parallel) Args: local_MS_running (list): list of currently running steps """ for l in range(self.nlevels - 1, 0, -1): for S in local_MS_running: # prolong values S.transfer(source=S.levels[l], target=S.levels[l - 1]) # on middle levels: do communication and sweep as usual if l - 1 > 0: for k in range(self.nsweeps[l - 1]): for S in local_MS_running: # send updated values forward self.send_full(S, level=l - 1) # receive values self.recv_full(S, level=l - 1, add_to_stats=(k == self.nsweeps[l - 1] - 1)) for S in local_MS_running: for hook in self.hooks: hook.pre_sweep(step=S, level_number=l - 1) S.levels[l - 1].sweep.update_nodes() S.levels[l - 1].sweep.compute_residual(stage='IT_UP') for hook in self.hooks: hook.post_sweep(step=S, level_number=l - 1) for S in local_MS_running: # update stage S.status.stage = 'IT_FINE'
[docs] def default(self, local_MS_running): """ Default routine to catch wrong status Args: local_MS_running (list): list of currently running steps """ raise ControllerError('Unknown stage, got %s' % local_MS_running[0].status.stage) # TODO