Source code for core.collocation

import logging
import numpy as np
from qmat import Q_GENERATORS

from pySDC.core.errors import CollocationError


[docs] class CollBase(object): """ Generic collocation class, that contains everything to do integration over intervals and between nodes. It can be used to produce many kind of quadrature nodes from various distribution (awesome!). It is based on the two main parameters that define the nodes: - node_type: the node distribution used for the collocation method - quad_type: the type of quadrature used (inclusion of not of boundary) Current implementation provides the following available parameter values for node_type: - EQUID: equidistant node distribution - LEGENDRE: distribution from Legendre polynomials - CHEBY-{1,2,3,4}: distribution from Chebyshev polynomials of a given kind The type of quadrature can be GAUSS (only inner nodes), RADAU-LEFT (inclusion of the left boundary), RADAU-RIGHT (inclusion of the right boundary) and LOBATTO (inclusion of left and right boundary). All coefficients are generated using `qmat <https://qmat.readthedocs.io/en/latest/autoapi/qmat/qcoeff/collocation/index.html>`_. Attributes: num_nodes (int): number of collocation nodes tleft (float): left interval point tright (float): right interval point nodes (numpy.ndarray): array of quadrature nodes weights (numpy.ndarray): array of quadrature weights for the full interval Qmat (numpy.ndarray): matrix containing the weights for tleft to node Smat (numpy.ndarray): matrix containing the weights for node to node delta_m (numpy.ndarray): array of distances between nodes right_is_node (bool): flag to indicate whether right point is collocation node left_is_node (bool): flag to indicate whether left point is collocation node """ def __init__(self, num_nodes=None, tleft=0, tright=1, node_type='LEGENDRE', quad_type=None, **kwargs): """ Initialization routine for a collocation object Args: num_nodes (int): number of collocation nodes tleft (float): left interval point tright (float): right interval point """ if not num_nodes > 0: raise CollocationError('at least one quadrature node required, got %s' % num_nodes) if not tleft < tright: raise CollocationError('interval boundaries are corrupt, got %s and %s' % (tleft, tright)) self.logger = logging.getLogger('collocation') try: self.generator = Q_GENERATORS["Collocation"]( nNodes=num_nodes, nodeType=node_type, quadType=quad_type, tLeft=tleft, tRight=tright ) except Exception as e: raise CollocationError(f"could not instantiate qmat generator, got error: {e}") from e # Set base attributes self.num_nodes = num_nodes self.tleft = tleft self.tright = tright self.node_type = node_type self.quad_type = quad_type self.left_is_node = self.quad_type in ['LOBATTO', 'RADAU-LEFT'] self.right_is_node = self.quad_type in ['LOBATTO', 'RADAU-RIGHT'] # Integration order self.order = self.generator.order # Compute coefficients self.nodes = self._getNodes = self.generator.nodes.copy() self.weights = self.generator.weights.copy() Q = np.zeros([num_nodes + 1, num_nodes + 1], dtype=float) Q[1:, 1:] = self.generator.Q self.Qmat = Q S = np.zeros([num_nodes + 1, num_nodes + 1], dtype=float) S[1:, 1:] = super(self.generator.__class__, self.generator).S # Note: qmat redefines the S matrix for collocation with integrals, # instead of differences of the Q matrix coefficients. # This does not passes the pySDC tests ... however the default S computation # in qmat uses Q matrix coefficients differences, and that's what we # use by using the parent property from the generator object. self.Smat = self._gen_Smatrix = S self.delta_m = self._gen_deltas
[docs] @staticmethod def evaluate(weights, data): """ Evaluates the quadrature over the full interval Args: weights (numpy.ndarray): array of quadrature weights for the full interval data (numpy.ndarray): f(x) to be integrated Returns: numpy.ndarray: integral over f(x) between tleft and tright """ if not np.size(weights) == np.size(data): raise CollocationError("Input size does not match number of weights, but is %s" % np.size(data)) return np.dot(weights, data)
@property def _gen_deltas(self): """ Compute distances between the nodes Returns: numpy.ndarray: distances between the nodes """ M = self.num_nodes delta = np.zeros(M) delta[0] = self.nodes[0] - self.tleft for m in np.arange(1, M): delta[m] = self.nodes[m] - self.nodes[m - 1] return delta