Coverage for pySDC/projects/Second_orderSDC/plot_helper.py: 100%

4 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-19 09:13 +0000

1# import matplotlib 

2 

3# matplotlib.use('Agg') 

4# import os 

5 

6import numpy as np 

7import matplotlib.pyplot as plt 

8 

9FONT_SIZE = 16 

10FIG_SIZE = (7.44, 6.74) 

11 

12 

13def set_fixed_plot_params(): # pragma: no cover 

14 """ 

15 Set fixed parameters for all plots 

16 """ 

17 plt.rcParams['figure.figsize'] = FIG_SIZE 

18 plt.rcParams['pgf.rcfonts'] = False 

19 

20 plt.rcParams['lines.linewidth'] = 2.5 

21 plt.rcParams['axes.titlesize'] = FONT_SIZE + 5 

22 plt.rcParams['axes.labelsize'] = FONT_SIZE + 5 

23 plt.rcParams['xtick.labelsize'] = FONT_SIZE 

24 plt.rcParams['ytick.labelsize'] = FONT_SIZE 

25 plt.rcParams['xtick.major.pad'] = 5 

26 plt.rcParams['ytick.major.pad'] = 5 

27 plt.rcParams['axes.labelpad'] = 6 

28 plt.rcParams['lines.markersize'] = FONT_SIZE - 2 

29 plt.rcParams['lines.markeredgewidth'] = 1 

30 plt.rcParams['mathtext.fontset'] = 'cm' 

31 plt.rcParams['mathtext.rm'] = 'serif' 

32 plt.rc('font', size=FONT_SIZE) 

33 

34 

35class PlotManager(object): # pragma: no cover 

36 """ 

37 This class generates all of the plots of the Second-order SDC plots. 

38 """ 

39 

40 def __init__(self, controller_params, description, time_iter=3, K_iter=(1, 2, 3), Tend=2, axes=(1,), cwd=''): 

41 self.controller_params = controller_params 

42 self.description = description 

43 self.time_iter = time_iter 

44 self.K_iter = K_iter 

45 self.Tend = Tend 

46 self.axes = axes 

47 self.cwd = cwd 

48 self.quad_type = self.description['sweeper_params']['quad_type'] 

49 self.num_nodes = self.description['sweeper_params']['num_nodes'] 

50 self.error_type = 'local' 

51 

52 def plot_convergence(self): 

53 """ 

54 Plot convergence order plots for the position and velocity 

55 If you change parameters of the values you need set y_lim values need to set manually 

56 """ 

57 set_fixed_plot_params() 

58 [N, time_data, error_data, order_data, convline] = self.organize_data( 

59 filename='data/dt_vs_{}_errorSDC.csv'.format(self.error_type) 

60 ) 

61 

62 color = ['r', 'brown', 'g', 'blue'] 

63 shape = ['o', 'd', 's', 'x'] 

64 

65 fig1, ax1 = plt.subplots() 

66 fig2, ax2 = plt.subplots() 

67 value = self.axes[0] 

68 for ii in range(0, N): 

69 ax1.loglog(time_data[ii, :], convline['pos'][value, ii, :], color='black') 

70 ax1.loglog( 

71 time_data[ii, :], 

72 error_data['pos'][value, ii, :], 

73 ' ', 

74 color=color[ii], 

75 marker=shape[ii], 

76 label='k={}'.format(int(self.K_iter[ii])), 

77 ) 

78 if value == 2: 

79 ax1.text( 

80 time_data[ii, 1], 

81 0.25 * convline['pos'][value, ii, 1], 

82 r"$\mathcal{O}(\Delta t^{%d})$" % (order_data['pos'][ii, 0, 1]), 

83 size=18, 

84 ) 

85 else: 

86 ax1.text( 

87 time_data[ii, 1], 

88 0.25 * convline['pos'][value, ii, 1], 

89 r"$\mathcal{O}(\Delta t^{%d})$" % (order_data['pos'][ii, 0, 0]), 

90 size=18, 

91 ) 

92 

93 if self.error_type == 'Local': 

94 ax1.set_ylabel(r'$\Delta x^{\mathrm{(abs)}}_{%d}$' % (value + 1)) 

95 else: 

96 ax1.set_ylabel(r'$\Delta x^{\mathrm{(rel)}}_{%d}$' % (value + 1)) 

97 ax1.set_title('{} order of convergence, $M={}$'.format(self.error_type, self.num_nodes)) 

98 ax1.set_xlabel(r'$\omega_{B} \cdot \Delta t$') 

99 

100 ax1.legend(loc='best') 

101 fig1.tight_layout() 

102 fig1.savefig(self.cwd + 'data/{}_conv_plot_pos{}.pdf'.format(self.error_type, value + 1)) 

103 

104 for ii in range(0, N): 

105 ax2.loglog(time_data[ii, :], convline['vel'][value, ii, :], color='black') 

106 ax2.loglog( 

107 time_data[ii, :], 

108 error_data['vel'][value, ii, :], 

109 ' ', 

110 color=color[ii], 

111 marker=shape[ii], 

112 label='k={}'.format(int(self.K_iter[ii])), 

113 ) 

114 

115 if value == 2: 

116 ax2.text( 

117 time_data[ii, 1], 

118 0.25 * convline['vel'][value, ii, 1], 

119 r"$\mathcal{O}(\Delta t^{%d})$" % (order_data['vel'][ii, 0, 1]), 

120 size=18, 

121 ) 

122 else: 

123 ax2.text( 

124 time_data[ii, 1], 

125 0.25 * convline['vel'][value, ii, 1], 

126 r"$\mathcal{O}(\Delta t^{%d})$" % (order_data['vel'][ii, 0, 0]), 

127 size=18, 

128 ) 

129 

130 if self.error_type == 'Local': 

131 ax2.set_ylabel(r'$\Delta v^{\mathrm{(abs)}}_{%d}$' % (value + 1)) 

132 else: 

133 ax2.set_ylabel(r'$\Delta v^{\mathrm{(rel)}}_{%d}$' % (value + 1)) 

134 ax2.set_title(r'{} order of convergence, $M={}$'.format(self.error_type, self.num_nodes)) 

135 ax2.set_xlabel(r'$\omega_{B} \cdot \Delta t$') 

136 # ============================================================================= 

137 # Setting y axis min and max values 

138 # ============================================================================= 

139 if self.error_type == 'global': 

140 ax2.set_ylim(1e-14, 1e1) 

141 ax1.set_ylim(1e-14, 1e1) 

142 else: 

143 ax2.set_ylim(np.min(ax1.get_ylim()), np.max(ax2.get_ylim())) 

144 ax1.set_ylim(np.min(ax1.get_ylim()), np.max(ax2.get_ylim())) 

145 ax2.legend(loc='best') 

146 fig2.tight_layout() 

147 plt.show() 

148 fig2.savefig(self.cwd + 'data/{}_conv_plot_vel{}.pdf'.format(self.error_type, value + 1)) 

149 

150 def format_number(self, data_value, indx): 

151 """ 

152 Change format of the x axis for the work precision plots 

153 """ 

154 if data_value >= 1_000_000: 

155 formatter = "{:1.1f}M".format(data_value * 0.000_001) 

156 else: 

157 formatter = "{:1.0f}K".format(data_value * 0.001) 

158 return formatter 

159 

160 def plot_work_precision(self): 

161 """ 

162 Generate work precision plots 

163 """ 

164 set_fixed_plot_params() 

165 [N, func_eval_SDC, error_SDC, *_] = self.organize_data( 

166 filename=self.cwd + 'data/rhs_eval_vs_global_errorSDC.csv', 

167 time_iter=self.time_iter, 

168 ) 

169 

170 [N, func_eval_picard, error_picard, *_] = self.organize_data( 

171 filename=self.cwd + 'data/rhs_eval_vs_global_errorPicard.csv', 

172 time_iter=self.time_iter, 

173 ) 

174 

175 color = ['r', 'brown', 'g', 'blue'] 

176 shape = ['o', 'd', 's', 'x'] 

177 fig1, ax1 = plt.subplots() 

178 fig2, ax2 = plt.subplots() 

179 value = self.axes[0] 

180 

181 if self.RK: 

182 [N, func_eval_RKN, error_RKN, *_] = self.organize_data( 

183 filename=self.cwd + 'data/rhs_eval_vs_global_errorRKN.csv', 

184 time_iter=self.time_iter, 

185 ) 

186 

187 ax1.loglog( 

188 func_eval_RKN[0], 

189 error_RKN['pos'][value,][0][:], 

190 ls='dashdot', 

191 color='purple', 

192 marker='p', 

193 label='RKN-4', 

194 ) 

195 ax2.loglog( 

196 func_eval_RKN[0], 

197 error_RKN['vel'][value,][0][:], 

198 ls='dashdot', 

199 color='purple', 

200 marker='p', 

201 label='RKN-4', 

202 ) 

203 if self.VV: 

204 [N, func_eval_VV, error_VV, *_] = self.organize_data( 

205 filename=self.cwd + 'data/rhs_eval_vs_global_errorVV.csv', 

206 time_iter=self.time_iter, 

207 ) 

208 

209 ax1.loglog( 

210 func_eval_VV[0], 

211 error_VV['pos'][value,][0][:], 

212 ls='dashdot', 

213 color='blue', 

214 marker='H', 

215 label='Velocity-Verlet', 

216 ) 

217 ax2.loglog( 

218 func_eval_VV[0], 

219 error_VV['vel'][value,][0][:], 

220 ls='dashdot', 

221 color='blue', 

222 marker='H', 

223 label='Velocity-Verlet', 

224 ) 

225 

226 for ii, jj in enumerate(self.K_iter): 

227 # ============================================================================= 

228 # # If you want to get exactly the same picture like in paper uncomment this only for vertical axis 

229 # if ii==0 or ii==1: 

230 # ax1.loglog(func_eval_SDC[ii, :][1:], error_SDC['pos'][value, ii, :][1:], ls='solid', color=color[ii], marker=shape[ii], label='k={}'.format(jj)) 

231 # ax1.loglog(func_eval_picard[ii,:][1:], error_picard['pos'][value, ii, :][1:], ls='--', color=color[ii], marker=shape[ii]) 

232 

233 # ax2.loglog(func_eval_SDC[ii, :][1:], error_SDC['vel'][value, ii, :][1:], ls='solid', color=color[ii], marker=shape[ii], label='k={}'.format(jj)) 

234 # ax2.loglog(func_eval_picard[ii,:][1:], error_picard['vel'][value, ii, :][1:], ls='--', color=color[ii], marker=shape[ii]) 

235 # else: 

236 

237 # ax1.loglog(func_eval_SDC[ii, :][:-1], error_SDC['pos'][value, ii, :][:-1], ls='solid', color=color[ii], marker=shape[ii], label='k={}'.format(jj)) 

238 # ax1.loglog(func_eval_picard[ii,:][:-1], error_picard['pos'][value, ii, :][:-1], ls='--', color=color[ii], marker=shape[ii]) 

239 

240 # ax2.loglog(func_eval_SDC[ii, :][:-1], error_SDC['vel'][value, ii, :][:-1], ls='solid', color=color[ii], marker=shape[ii], label='k={}'.format(jj)) 

241 # ax2.loglog(func_eval_picard[ii,:][:-1], error_picard['vel'][value, ii, :][:-1], ls='--', color=color[ii], marker=shape[ii]) 

242 # 

243 # ============================================================================= 

244 ax1.loglog( 

245 func_eval_SDC[ii, :], 

246 error_SDC['pos'][value, ii, :], 

247 ls='solid', 

248 color=color[ii], 

249 marker=shape[ii], 

250 label='k={}'.format(jj), 

251 ) 

252 ax1.loglog( 

253 func_eval_picard[ii, :], error_picard['pos'][value, ii, :], ls='--', color=color[ii], marker=shape[ii] 

254 ) 

255 

256 ax2.loglog( 

257 func_eval_SDC[ii, :], 

258 error_SDC['vel'][value, ii, :], 

259 ls='solid', 

260 color=color[ii], 

261 marker=shape[ii], 

262 label='k={}'.format(jj), 

263 ) 

264 ax2.loglog( 

265 func_eval_picard[ii, :], error_picard['vel'][value, ii, :], ls='--', color=color[ii], marker=shape[ii] 

266 ) 

267 

268 xmin = np.min(ax1.get_xlim()) 

269 xmax = np.max(ax2.get_xlim()) 

270 xmin = round(xmin, -3) 

271 xmax = round(xmax, -3) 

272 

273 xx = np.linspace(np.log(xmin), np.log(xmax), 5) 

274 xx = 3**xx 

275 xx = xx[np.where(xx < xmax)] 

276 # xx=[2*1e+3,4*1e+3, 8*1e+3] 

277 ax1.grid(True) 

278 

279 ax1.set_title("$M={}$".format(self.num_nodes)) 

280 ax1.set_xlabel("Number of RHS evaluations") 

281 ax1.set_ylabel(r'$\Delta x^{\mathrm{(rel)}}_{%d}$' % (value + 1)) 

282 ax1.loglog([], [], color="black", ls="--", label="Picard iteration") 

283 ax1.loglog([], [], color="black", ls="solid", label="Boris-SDC iteration") 

284 

285 ax1.set_xticks(xx) 

286 ax1.xaxis.set_major_formatter(self.format_number) 

287 ax1.set_ylim(np.min(ax1.get_ylim()), np.max(ax2.get_ylim())) 

288 # ax1.set_ylim(1e-14, 1e+0) 

289 

290 ax1.legend(loc="best", fontsize=12) 

291 fig1.tight_layout() 

292 fig1.savefig(self.cwd + "data/f_eval_pos_{}_M={}.pdf".format(value, self.num_nodes)) 

293 

294 ax2.grid(True) 

295 ax2.xaxis.set_major_formatter(self.format_number) 

296 ax2.set_title("$M={}$".format(self.num_nodes)) 

297 ax2.set_xlabel("Number of RHS evaluations") 

298 ax2.set_ylabel(r'$\Delta v^{\mathrm{(rel)}}_{%d}$' % (value + 1)) 

299 ax2.loglog([], [], color="black", ls="--", label="Picard iteration") 

300 ax2.loglog([], [], color="black", ls="solid", label="Boris-SDC iteration") 

301 ax2.set_xticks(xx) 

302 ax2.xaxis.set_major_formatter(self.format_number) 

303 ax2.set_ylim(np.min(ax1.get_ylim()), np.max(ax2.get_ylim())) 

304 # ax2.set_ylim(1e-14, 1e+0) 

305 ax2.legend(loc="best", fontsize=12) 

306 fig2.tight_layout() 

307 fig2.savefig(self.cwd + "data/f_eval_vel_{}_M={}.pdf".format(value, self.num_nodes)) 

308 plt.show() 

309 

310 def organize_data(self, filename='data/dt_vs_local_errorSDC.csv', time_iter=None): 

311 """ 

312 Organize data according to plot 

313 Args: 

314 filename (string): data to find approximate order 

315 time_iter : in case it you used different time iterations 

316 """ 

317 if time_iter is None: 

318 time_iter = self.time_iter 

319 

320 items = np.genfromtxt(filename, delimiter=',', skip_header=1) 

321 time = items[:, 0] 

322 N = int(np.size(time) / time_iter) 

323 

324 error_data = {'pos': np.zeros([3, N, time_iter]), 'vel': np.zeros([3, N, time_iter])} 

325 order_data = {'pos': np.zeros([N, time_iter, 2]), 'vel': np.zeros([N, time_iter, 2])} 

326 time_data = np.zeros([N, time_iter]) 

327 convline = {'pos': np.zeros([3, N, time_iter]), 'vel': np.zeros([3, N, time_iter])} 

328 

329 time_data = time.reshape([N, time_iter]) 

330 

331 order_data['pos'][:, :, 0] = items[:, 1].reshape([N, time_iter]) 

332 order_data['pos'][:, :, 1] = items[:, 2].reshape([N, time_iter]) 

333 order_data['vel'][:, :, 0] = items[:, 6].reshape([N, time_iter]) 

334 order_data['vel'][:, :, 1] = items[:, 7].reshape([N, time_iter]) 

335 

336 for ii in range(0, 3): 

337 error_data['pos'][ii, :, :] = items[:, ii + 3].reshape([N, time_iter]) 

338 error_data['vel'][ii, :, :] = items[:, ii + 8].reshape([N, time_iter]) 

339 

340 for jj in range(0, 3): 

341 if jj == 2: 

342 convline['pos'][jj, :, :] = ( 

343 (time_data / time_data[0, 0]).T ** order_data['pos'][:, jj, 1] 

344 ).T * error_data['pos'][jj, :, 0][:, None] 

345 convline['vel'][jj, :, :] = ( 

346 (time_data / time_data[0, 0]).T ** order_data['vel'][:, jj, 1] 

347 ).T * error_data['vel'][jj, :, 0][:, None] 

348 else: 

349 convline['pos'][jj, :, :] = ( 

350 (time_data / time_data[0, 0]).T ** order_data['pos'][:, jj, 0] 

351 ).T * error_data['pos'][jj, :, 0][:, None] 

352 convline['vel'][jj, :, :] = ( 

353 (time_data / time_data[0, 0]).T ** order_data['vel'][:, jj, 0] 

354 ).T * error_data['vel'][jj, :, 0][:, None] 

355 

356 return [N, time_data, error_data, order_data, convline] 

357 

358 # find approximate order 

359 def find_approximate_order(self, filename='data/dt_vs_local_errorSDC.csv'): 

360 """ 

361 This function finds approximate convergence rate and saves in the data folder 

362 Args: 

363 filename: given data 

364 return: 

365 None 

366 """ 

367 [N, time_data, error_data, order_data, convline] = self.organize_data(self.cwd + filename) 

368 approx_order = {'pos': np.zeros([1, N]), 'vel': np.zeros([1, N])} 

369 

370 for jj in range(0, 3): 

371 if jj == 0: 

372 file = open(self.cwd + 'data/{}_order_vs_approx_order.csv'.format(self.error_type), 'w') 

373 

374 else: 

375 file = open(self.cwd + 'data/{}_order_vs_approx_order.csv'.format(self.error_type), 'a') 

376 

377 for ii in range(0, N): 

378 approx_order['pos'][0, ii] = np.polyfit( 

379 np.log(time_data[ii, :]), np.log(error_data['pos'][jj, ii, :]), 1 

380 )[0].real 

381 approx_order['vel'][0, ii] = np.polyfit( 

382 np.log(time_data[ii, :]), np.log(error_data['vel'][jj, ii, :]), 1 

383 )[0].real 

384 if jj == 2: 

385 file.write( 

386 str(order_data['pos'][:, jj, 1]) 

387 + ' | ' 

388 + str(approx_order['pos'][0]) 

389 + ' | ' 

390 + str(order_data['vel'][:, jj, 1]) 

391 + ' | ' 

392 + str(approx_order['vel'][0]) 

393 + '\n' 

394 ) 

395 else: 

396 file.write( 

397 str(order_data['pos'][:, jj, 0]) 

398 + ' | ' 

399 + str(approx_order['pos'][0]) 

400 + ' | ' 

401 + str(order_data['vel'][:, jj, 0]) 

402 + ' | ' 

403 + str(approx_order['vel'][0]) 

404 + '\n' 

405 ) 

406 file.close()