Coverage for pySDC/projects/Second_orderSDC/penningtrap_run_error.py: 0%
2 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1from pySDC.projects.Second_orderSDC.penningtrap_params import penningtrap_params
2from pySDC.projects.Second_orderSDC.penningtrap_Simulation import ComputeError
4if __name__ == '__main__':
5 """
6 Implementation of the order plots of the Spectral deferred correction method for second-order problems paper.
7 Both local and global convergence-order plots.
8 To implement local convergence plot:
9 Run: conv.run_local_error()
10 To implement global convergence plot:
11 Run: conv.run_global_error()
12 Data:
13 All of the data and plots saved to the data folder
15 Note:
16 Tend: final time value can be given manually by default Tend=2
17 """
18 # This code checks if the "data" folder exists or not.
19 exec(open("check_data_folder.py").read())
20 # Get params for the penning trap problem from the function
21 controller_params, description = penningtrap_params()
22 ## =============================================================================
23 ## dt-timestep and num_nodes can be changed here manually
24 description['level_params']['dt'] = 0.015625 / 4
25 description['sweeper_params']['num_nodes'] = 4
26 ## =============================================================================
27 # Give the parameters to the class
28 conv = ComputeError(controller_params, description, time_iter=3, K_iter=(1, 2, 3), axes=(0,))
29 # Run local convergence order
30 # conv.run_local_error()
31 # Run global convergence order
32 # =============================================================================
33 # To find apporximate order and expected order you can use this function
34 # it is going to save the values in data/global_order_vs_approxorder.csv file
35 # =============================================================================
36 conv.run_global_error()