Coverage for pySDC/implementations/sweeper_classes/imex_1st_order_mass.py: 96%

51 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-20 16:55 +0000

1from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order 

2 

3 

4class imex_1st_order_mass(imex_1st_order): 

5 """ 

6 Custom sweeper class, implements Sweeper.py 

7 

8 First-order IMEX sweeper using implicit/explicit Euler as base integrator, with mass or weighting matrix 

9 """ 

10 

11 def update_nodes(self): 

12 """ 

13 Update the u- and f-values at the collocation nodes -> corresponds to a single sweep over all nodes 

14 

15 Returns: 

16 None 

17 """ 

18 

19 # get current level and problem description 

20 L = self.level 

21 P = L.prob 

22 

23 # only if the level has been touched before 

24 assert L.status.unlocked 

25 

26 # get number of collocation nodes for easier access 

27 M = self.coll.num_nodes 

28 

29 # gather all terms which are known already (e.g. from the previous iteration) 

30 # this corresponds to u0 + QF(u^k) - QIFI(u^k) - QEFE(u^k) + tau 

31 

32 # get QF(u^k) 

33 integral = self.integrate() 

34 

35 # This is somewhat ugly, but we have to apply the mass matrix on u0 only on the finest level 

36 if L.level_index == 0: 

37 u0 = P.apply_mass_matrix(L.u[0]) 

38 else: 

39 u0 = L.u[0] 

40 

41 for m in range(M): 

42 # subtract QIFI(u^k)_m + QEFE(u^k)_m 

43 for j in range(M + 1): 

44 integral[m] -= L.dt * (self.QI[m + 1, j] * L.f[j].impl + self.QE[m + 1, j] * L.f[j].expl) 

45 # add initial value 

46 integral[m] += u0 

47 # add tau if associated 

48 if L.tau[m] is not None: 

49 integral[m] += L.tau[m] 

50 

51 # do the sweep 

52 for m in range(0, M): 

53 # build rhs, consisting of the known values from above and new values from previous nodes (at k+1) 

54 rhs = P.dtype_u(integral[m]) 

55 for j in range(m + 1): 

56 rhs += L.dt * (self.QI[m + 1, j] * L.f[j].impl + self.QE[m + 1, j] * L.f[j].expl) 

57 

58 # implicit solve with prefactor stemming from QI 

59 L.u[m + 1] = P.solve_system( 

60 rhs, L.dt * self.QI[m + 1, m + 1], L.u[m + 1], L.time + L.dt * self.coll.nodes[m] 

61 ) 

62 # update function values 

63 L.f[m + 1] = P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m]) 

64 

65 # indicate presence of new values at this level 

66 L.status.updated = True 

67 

68 return None 

69 

70 def compute_end_point(self): 

71 """ 

72 Compute u at the right point of the interval 

73 

74 The value uend computed here is a full evaluation of the Picard formulation unless do_full_update==False 

75 

76 Returns: 

77 None 

78 """ 

79 

80 # get current level and problem description 

81 L = self.level 

82 P = L.prob 

83 

84 # check if Mth node is equal to right point and do_coll_update is false, perform a simple copy 

85 if self.coll.right_is_node and not self.params.do_coll_update: 

86 # a copy is sufficient 

87 L.uend = P.dtype_u(L.u[-1]) 

88 else: 

89 raise NotImplementedError('Mass matrix sweeper expect u_M = u_end') 

90 

91 return None 

92 

93 def compute_residual(self, stage=None): 

94 """ 

95 Computation of the residual using the collocation matrix Q 

96 

97 Args: 

98 stage (str): The current stage of the step the level belongs to 

99 """ 

100 

101 # get current level and problem description 

102 L = self.level 

103 P = L.prob 

104 

105 # Check if we want to skip the residual computation to gain performance 

106 # Keep in mind that skipping any residual computation is likely to give incorrect outputs of the residual! 

107 if stage in self.params.skip_residual_computation: 

108 L.status.residual = 0.0 if L.status.residual is None else L.status.residual 

109 return None 

110 

111 # check if there are new values (e.g. from a sweep) 

112 # assert L.status.updated 

113 

114 # compute the residual for each node 

115 

116 # build QF(u) 

117 res_norm = [] 

118 res = self.integrate() 

119 for m in range(self.coll.num_nodes): 

120 # This is somewhat ugly, but we have to apply the mass matrix on u0 only on the finest level 

121 if L.level_index == 0: 

122 res[m] += P.apply_mass_matrix(L.u[0] - L.u[m + 1]) 

123 else: 

124 res[m] += L.u[0] - P.apply_mass_matrix(L.u[m + 1]) 

125 # add tau if associated 

126 if L.tau[m] is not None: 

127 res[m] += L.tau[m] 

128 # Due to different boundary conditions we might have to fix the residual 

129 if L.prob.fix_bc_for_residual: 

130 L.prob.fix_residual(res[m]) 

131 # use abs function from data type here 

132 res_norm.append(abs(res[m])) 

133 

134 # find maximal residual over the nodes 

135 L.status.residual = max(res_norm) 

136 

137 # indicate that the residual has seen the new values 

138 L.status.updated = False 

139 

140 return None