Coverage for pySDC/implementations/sweeper_classes/generic_implicit.py: 98%
51 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
1from pySDC.core.sweeper import Sweeper
4class generic_implicit(Sweeper):
5 """
6 Generic implicit sweeper, expecting lower triangular matrix type as input
8 Attributes:
9 QI: lower triangular matrix
10 """
12 def __init__(self, params):
13 """
14 Initialization routine for the custom sweeper
16 Args:
17 params: parameters for the sweeper
18 """
20 if 'QI' not in params:
21 params['QI'] = 'IE'
23 # call parent's initialization routine
24 super().__init__(params)
26 # get QI matrix
27 self.QI = self.get_Qdelta_implicit(qd_type=self.params.QI)
29 def integrate(self):
30 """
31 Integrates the right-hand side
33 Returns:
34 list of dtype_u: containing the integral as values
35 """
37 L = self.level
38 P = L.prob
40 me = []
42 # integrate RHS over all collocation nodes
43 for m in range(1, self.coll.num_nodes + 1):
44 # new instance of dtype_u, initialize values with 0
45 me.append(P.dtype_u(P.init, val=0.0))
46 for j in range(1, self.coll.num_nodes + 1):
47 me[-1] += L.dt * self.coll.Qmat[m, j] * L.f[j]
49 return me
51 def update_nodes(self):
52 """
53 Update the u- and f-values at the collocation nodes -> corresponds to a single sweep over all nodes
55 Returns:
56 None
57 """
59 L = self.level
60 P = L.prob
62 # only if the level has been touched before
63 assert L.status.unlocked
65 # get number of collocation nodes for easier access
66 M = self.coll.num_nodes
68 # update the MIN-SR-FLEX preconditioner
69 self.updateVariableCoeffs(L.status.sweep)
71 # gather all terms which are known already (e.g. from the previous iteration)
72 # this corresponds to u0 + QF(u^k) - QdF(u^k) + tau
74 # get QF(u^k)
75 integral = self.integrate()
76 for m in range(M):
77 # get -QdF(u^k)_m
78 for j in range(1, M + 1):
79 integral[m] -= L.dt * self.QI[m + 1, j] * L.f[j]
81 # add initial value
82 integral[m] += L.u[0]
83 # add tau if associated
84 if L.tau[m] is not None:
85 integral[m] += L.tau[m]
87 # do the sweep
88 for m in range(0, M):
89 # build rhs, consisting of the known values from above and new values from previous nodes (at k+1)
90 rhs = P.dtype_u(integral[m])
91 for j in range(1, m + 1):
92 rhs += L.dt * self.QI[m + 1, j] * L.f[j]
94 # implicit solve with prefactor stemming from the diagonal of Qd
95 alpha = L.dt * self.QI[m + 1, m + 1]
96 if alpha == 0:
97 L.u[m + 1] = rhs
98 else:
99 L.u[m + 1] = P.solve_system(rhs, alpha, L.u[m + 1], L.time + L.dt * self.coll.nodes[m])
100 # update function values
101 L.f[m + 1] = P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m])
103 # indicate presence of new values at this level
104 L.status.updated = True
106 return None
108 def compute_end_point(self):
109 """
110 Compute u at the right point of the interval
112 The value uend computed here is a full evaluation of the Picard formulation unless do_full_update==False
114 Returns:
115 None
116 """
118 L = self.level
119 P = L.prob
121 # check if Mth node is equal to right point and do_coll_update is false, perform a simple copy
122 if self.coll.right_is_node and not self.params.do_coll_update:
123 # a copy is sufficient
124 L.uend = P.dtype_u(L.u[-1])
125 else:
126 # start with u0 and add integral over the full interval (using coll.weights)
127 L.uend = P.dtype_u(L.u[0])
128 for m in range(self.coll.num_nodes):
129 L.uend += L.dt * self.coll.weights[m] * L.f[m + 1]
130 # add up tau correction of the full interval (last entry)
131 if L.tau[-1] is not None:
132 L.uend += L.tau[-1]
134 return None