Coverage for pySDC/implementations/sweeper_classes/generic_implicit_MPI.py: 93%

98 statements  

« prev     ^ index     » next       coverage.py v7.5.0, created at 2024-04-29 09:02 +0000

1from mpi4py import MPI 

2 

3from pySDC.implementations.sweeper_classes.generic_implicit import generic_implicit 

4from pySDC.core.Sweeper import sweeper, ParameterError 

5import logging 

6 

7 

8class SweeperMPI(sweeper): 

9 """ 

10 MPI based sweeper where each rank administers one collocation node. Adapt sweepers to MPI by use of multiple inheritance. 

11 See for example the `generic_implicit_MPI` sweeper, which has a class definition: 

12 

13 ``` 

14 class generic_implicit_MPI(SweeperMPI, generic_implicit): 

15 ``` 

16 

17 this means in inherits both from `SweeperMPI` and `generic_implicit`. The hierarchy works such that functions are first 

18 called from `SweeperMPI` and then from `generic_implicit`. For instance, in the `__init__` function, the `SweeperMPI` 

19 class adds a communicator and nothing else. The `generic_implicit` implicit class adds a preconditioner and so on. 

20 It's a bit confusing because `self.params` is overwritten in the second call to the `__init__` of the core `sweeper` 

21 class, but the `SweeperMPI` class adds parameters to the `params` dictionary, which will again be added in 

22 `generic_implicit`. 

23 """ 

24 

25 def __init__(self, params): 

26 self.logger = logging.getLogger('sweeper') 

27 

28 if 'comm' not in params.keys(): 

29 params['comm'] = MPI.COMM_WORLD 

30 self.logger.debug('Using MPI.COMM_WORLD for the communicator because none was supplied in the params.') 

31 super().__init__(params) 

32 

33 if self.params.comm.size != self.coll.num_nodes: 

34 raise NotImplementedError( 

35 f'The communicator in the {type(self).__name__} sweeper needs to have one rank for each node as of now! That means we need {self.coll.num_nodes} nodes, but got {self.params.comm.size} processes.' 

36 ) 

37 

38 @property 

39 def comm(self): 

40 return self.params.comm 

41 

42 @property 

43 def rank(self): 

44 return self.comm.rank 

45 

46 def compute_end_point(self): 

47 """ 

48 Compute u at the right point of the interval 

49 

50 The value uend computed here is a full evaluation of the Picard formulation unless do_full_update==False 

51 

52 Returns: 

53 None 

54 """ 

55 

56 L = self.level 

57 P = L.prob 

58 L.uend = P.dtype_u(P.init, val=0.0) 

59 

60 # check if Mth node is equal to right point and do_coll_update is false, perform a simple copy 

61 if self.coll.right_is_node and not self.params.do_coll_update: 

62 # a copy is sufficient 

63 root = self.comm.Get_size() - 1 

64 if self.comm.rank == root: 

65 L.uend[:] = L.u[-1] 

66 self.comm.Bcast(L.uend, root=root) 

67 else: 

68 raise NotImplementedError('require last node to be identical with right interval boundary') 

69 

70 return None 

71 

72 def compute_residual(self, stage=None): 

73 """ 

74 Computation of the residual using the collocation matrix Q 

75 

76 Args: 

77 stage (str): The current stage of the step the level belongs to 

78 """ 

79 

80 L = self.level 

81 

82 # Check if we want to skip the residual computation to gain performance 

83 # Keep in mind that skipping any residual computation is likely to give incorrect outputs of the residual! 

84 if stage in self.params.skip_residual_computation: 

85 L.status.residual = 0.0 if L.status.residual is None else L.status.residual 

86 return None 

87 

88 # compute the residual for each node 

89 

90 # build QF(u) 

91 res = self.integrate(last_only=L.params.residual_type[:4] == 'last') 

92 res += L.u[0] - L.u[self.rank + 1] 

93 # add tau if associated 

94 if L.tau[self.rank] is not None: 

95 res += L.tau[self.rank] 

96 # use abs function from data type here 

97 res_norm = abs(res) 

98 

99 # find maximal residual over the nodes 

100 if L.params.residual_type == 'full_abs': 

101 L.status.residual = self.comm.allreduce(res_norm, op=MPI.MAX) 

102 elif L.params.residual_type == 'last_abs': 

103 L.status.residual = self.comm.bcast(res_norm, root=self.comm.size - 1) 

104 elif L.params.residual_type == 'full_rel': 

105 L.status.residual = self.comm.allreduce(res_norm / abs(L.u[0]), op=MPI.MAX) 

106 elif L.params.residual_type == 'last_rel': 

107 L.status.residual = self.comm.bcast(res_norm / abs(L.u[0]), root=self.comm.size - 1) 

108 else: 

109 raise NotImplementedError(f'residual type \"{L.params.residual_type}\" not implemented!') 

110 

111 # indicate that the residual has seen the new values 

112 L.status.updated = False 

113 

114 return None 

115 

116 def predict(self): 

117 """ 

118 Predictor to fill values at nodes before first sweep 

119 

120 Default prediction for the sweepers, only copies the values to all collocation nodes 

121 and evaluates the RHS of the ODE there 

122 """ 

123 

124 L = self.level 

125 P = L.prob 

126 

127 # evaluate RHS at left point 

128 L.f[0] = P.eval_f(L.u[0], L.time) 

129 

130 m = self.rank 

131 

132 if self.params.initial_guess == 'spread': 

133 # copy u[0] to all collocation nodes, evaluate RHS 

134 L.u[m + 1] = P.dtype_u(L.u[0]) 

135 L.f[m + 1] = P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m]) 

136 elif self.params.initial_guess == 'copy': 

137 # copy u[0] and RHS evaluation to all collocation nodes 

138 L.u[m + 1] = P.dtype_u(L.u[0]) 

139 L.f[m + 1] = P.dtype_f(L.f[0]) 

140 elif self.params.initial_guess == 'zero': 

141 # zeros solution for u and RHS 

142 L.u[m + 1] = P.dtype_u(init=P.init, val=0.0) 

143 L.f[m + 1] = P.dtype_f(init=P.init, val=0.0) 

144 else: 

145 raise ParameterError(f'initial_guess option {self.params.initial_guess} not implemented') 

146 

147 # indicate that this level is now ready for sweeps 

148 L.status.unlocked = True 

149 L.status.updated = True 

150 

151 

152class generic_implicit_MPI(SweeperMPI, generic_implicit): 

153 """ 

154 Generic implicit sweeper parallelized across the nodes. 

155 Please supply a communicator as `comm` to the parameters! 

156 

157 Attributes: 

158 rank (int): MPI rank 

159 """ 

160 

161 def integrate(self, last_only=False): 

162 """ 

163 Integrates the right-hand side 

164 

165 Args: 

166 last_only (bool): Integrate only the last node for the residual or all of them 

167 

168 Returns: 

169 list of dtype_u: containing the integral as values 

170 """ 

171 L = self.level 

172 P = L.prob 

173 

174 me = P.dtype_u(P.init, val=0.0) 

175 for m in [self.coll.num_nodes - 1] if last_only else range(self.coll.num_nodes): 

176 recvBuf = me if m == self.rank else None 

177 self.comm.Reduce( 

178 L.dt * self.coll.Qmat[m + 1, self.rank + 1] * L.f[self.rank + 1], recvBuf, root=m, op=MPI.SUM 

179 ) 

180 

181 return me 

182 

183 def update_nodes(self): 

184 """ 

185 Update the u- and f-values at the collocation nodes -> corresponds to a single sweep over all nodes 

186 

187 Returns: 

188 None 

189 """ 

190 

191 L = self.level 

192 P = L.prob 

193 

194 # only if the level has been touched before 

195 assert L.status.unlocked 

196 

197 # get number of collocation nodes for easier access 

198 

199 # gather all terms which are known already (e.g. from the previous iteration) 

200 # this corresponds to u0 + QF(u^k) - QdF(u^k) + tau 

201 

202 # get QF(u^k) 

203 rhs = self.integrate() 

204 

205 rhs -= L.dt * self.QI[self.rank + 1, self.rank + 1] * L.f[self.rank + 1] 

206 

207 # add initial value 

208 rhs += L.u[0] 

209 # add tau if associated 

210 if L.tau[self.rank] is not None: 

211 rhs += L.tau[self.rank] 

212 

213 # build rhs, consisting of the known values from above and new values from previous nodes (at k+1) 

214 

215 # implicit solve with prefactor stemming from the diagonal of Qd 

216 L.u[self.rank + 1] = P.solve_system( 

217 rhs, 

218 L.dt * self.QI[self.rank + 1, self.rank + 1], 

219 L.u[self.rank + 1], 

220 L.time + L.dt * self.coll.nodes[self.rank], 

221 ) 

222 # update function values 

223 L.f[self.rank + 1] = P.eval_f(L.u[self.rank + 1], L.time + L.dt * self.coll.nodes[self.rank]) 

224 

225 # indicate presence of new values at this level 

226 L.status.updated = True 

227 

228 return None 

229 

230 def compute_end_point(self): 

231 """ 

232 Compute u at the right point of the interval 

233 

234 The value uend computed here is a full evaluation of the Picard formulation unless do_full_update==False 

235 

236 Returns: 

237 None 

238 """ 

239 

240 L = self.level 

241 P = L.prob 

242 L.uend = P.dtype_u(P.init, val=0.0) 

243 

244 # check if Mth node is equal to right point and do_coll_update is false, perform a simple copy 

245 if self.coll.right_is_node and not self.params.do_coll_update: 

246 super().compute_end_point() 

247 else: 

248 L.uend = P.dtype_u(L.u[0]) 

249 self.comm.Allreduce(L.dt * self.coll.weights[self.rank] * L.f[self.rank + 1], L.uend, op=MPI.SUM) 

250 L.uend += L.u[0] 

251 

252 # add up tau correction of the full interval (last entry) 

253 if L.tau[-1] is not None: 

254 L.uend += L.tau[-1] 

255 return None