Coverage for pySDC/implementations/sweeper_classes/generic_implicit_MPI.py: 90%

106 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-19 09:13 +0000

1from mpi4py import MPI 

2 

3from pySDC.implementations.sweeper_classes.generic_implicit import generic_implicit 

4from pySDC.core.sweeper import Sweeper, ParameterError 

5import logging 

6 

7 

8class SweeperMPI(Sweeper): 

9 """ 

10 MPI based sweeper where each rank administers one collocation node. Adapt sweepers to MPI by use of multiple inheritance. 

11 See for example the `generic_implicit_MPI` sweeper, which has a class definition: 

12 

13 ``` 

14 class generic_implicit_MPI(SweeperMPI, generic_implicit): 

15 ``` 

16 

17 this means in inherits both from `SweeperMPI` and `generic_implicit`. The hierarchy works such that functions are first 

18 called from `SweeperMPI` and then from `generic_implicit`. For instance, in the `__init__` function, the `SweeperMPI` 

19 class adds a communicator and nothing else. The `generic_implicit` implicit class adds a preconditioner and so on. 

20 It's a bit confusing because `self.params` is overwritten in the second call to the `__init__` of the core `sweeper` 

21 class, but the `SweeperMPI` class adds parameters to the `params` dictionary, which will again be added in 

22 `generic_implicit`. 

23 """ 

24 

25 def __init__(self, params): 

26 self.logger = logging.getLogger('sweeper') 

27 

28 if 'comm' not in params.keys(): 

29 params['comm'] = MPI.COMM_WORLD 

30 self.logger.debug('Using MPI.COMM_WORLD for the communicator because none was supplied in the params.') 

31 super().__init__(params) 

32 

33 if self.params.comm.size != self.coll.num_nodes: 

34 raise NotImplementedError( 

35 f'The communicator in the {type(self).__name__} sweeper needs to have one rank for each node as of now! That means we need {self.coll.num_nodes} nodes, but got {self.params.comm.size} processes.' 

36 ) 

37 

38 @property 

39 def comm(self): 

40 return self.params.comm 

41 

42 @property 

43 def rank(self): 

44 return self.comm.rank 

45 

46 def compute_end_point(self): 

47 """ 

48 Compute u at the right point of the interval 

49 

50 The value uend computed here is a full evaluation of the Picard formulation unless do_full_update==False 

51 

52 Returns: 

53 None 

54 """ 

55 

56 L = self.level 

57 P = L.prob 

58 L.uend = P.dtype_u(P.init, val=0.0) 

59 

60 # check if Mth node is equal to right point and do_coll_update is false, perform a simple copy 

61 if self.coll.right_is_node and not self.params.do_coll_update: 

62 # a copy is sufficient 

63 root = self.comm.Get_size() - 1 

64 if self.comm.rank == root: 

65 L.uend[:] = L.u[-1] 

66 self.comm.Bcast(L.uend, root=root) 

67 else: 

68 raise NotImplementedError('require last node to be identical with right interval boundary') 

69 

70 return None 

71 

72 def compute_residual(self, stage=None): 

73 """ 

74 Computation of the residual using the collocation matrix Q 

75 

76 Args: 

77 stage (str): The current stage of the step the level belongs to 

78 """ 

79 

80 L = self.level 

81 

82 # Check if we want to skip the residual computation to gain performance 

83 # Keep in mind that skipping any residual computation is likely to give incorrect outputs of the residual! 

84 if stage in self.params.skip_residual_computation: 

85 L.status.residual = 0.0 if L.status.residual is None else L.status.residual 

86 return None 

87 

88 # compute the residual for each node 

89 

90 # build QF(u) 

91 res = self.integrate(last_only=L.params.residual_type[:4] == 'last') 

92 res += L.u[0] - L.u[self.rank + 1] 

93 # add tau if associated 

94 if L.tau[self.rank] is not None: 

95 res += L.tau[self.rank] 

96 # use abs function from data type here 

97 res_norm = abs(res) 

98 

99 # find maximal residual over the nodes 

100 if L.params.residual_type == 'full_abs': 

101 L.status.residual = self.comm.allreduce(res_norm, op=MPI.MAX) 

102 elif L.params.residual_type == 'last_abs': 

103 L.status.residual = self.comm.bcast(res_norm, root=self.comm.size - 1) 

104 elif L.params.residual_type == 'full_rel': 

105 L.status.residual = self.comm.allreduce(res_norm / abs(L.u[0]), op=MPI.MAX) 

106 elif L.params.residual_type == 'last_rel': 

107 L.status.residual = self.comm.bcast(res_norm / abs(L.u[0]), root=self.comm.size - 1) 

108 else: 

109 raise NotImplementedError(f'residual type \"{L.params.residual_type}\" not implemented!') 

110 

111 # indicate that the residual has seen the new values 

112 L.status.updated = False 

113 

114 return None 

115 

116 def predict(self): 

117 """ 

118 Predictor to fill values at nodes before first sweep 

119 

120 Default prediction for the sweepers, only copies the values to all collocation nodes 

121 and evaluates the RHS of the ODE there 

122 """ 

123 

124 L = self.level 

125 P = L.prob 

126 

127 # evaluate RHS at left point 

128 L.f[0] = P.eval_f(L.u[0], L.time) 

129 

130 m = self.rank 

131 

132 if self.params.initial_guess == 'spread': 

133 # copy u[0] to all collocation nodes, evaluate RHS 

134 L.u[m + 1] = P.dtype_u(L.u[0]) 

135 L.f[m + 1] = P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m]) 

136 elif self.params.initial_guess == 'copy': 

137 # copy u[0] and RHS evaluation to all collocation nodes 

138 L.u[m + 1] = P.dtype_u(L.u[0]) 

139 L.f[m + 1] = P.dtype_f(L.f[0]) 

140 elif self.params.initial_guess == 'zero': 

141 # zeros solution for u and RHS 

142 L.u[m + 1] = P.dtype_u(init=P.init, val=0.0) 

143 L.f[m + 1] = P.dtype_f(init=P.init, val=0.0) 

144 else: 

145 raise ParameterError(f'initial_guess option {self.params.initial_guess} not implemented') 

146 

147 # indicate that this level is now ready for sweeps 

148 L.status.unlocked = True 

149 L.status.updated = True 

150 

151 def communicate_tau_correction_for_full_interval(self): 

152 L = self.level 

153 P = L.prob 

154 if self.rank < self.comm.size - 1: 

155 L.tau[-1] = P.u_init 

156 self.comm.Bcast(L.tau[-1], root=self.comm.size - 1) 

157 

158 

159class generic_implicit_MPI(SweeperMPI, generic_implicit): 

160 """ 

161 Generic implicit sweeper parallelized across the nodes. 

162 Please supply a communicator as `comm` to the parameters! 

163 

164 Attributes: 

165 rank (int): MPI rank 

166 """ 

167 

168 def integrate(self, last_only=False): 

169 """ 

170 Integrates the right-hand side 

171 

172 Args: 

173 last_only (bool): Integrate only the last node for the residual or all of them 

174 

175 Returns: 

176 list of dtype_u: containing the integral as values 

177 """ 

178 L = self.level 

179 P = L.prob 

180 

181 me = P.dtype_u(P.init, val=0.0) 

182 for m in [self.coll.num_nodes - 1] if last_only else range(self.coll.num_nodes): 

183 recvBuf = me if m == self.rank else None 

184 self.comm.Reduce( 

185 L.dt * self.coll.Qmat[m + 1, self.rank + 1] * L.f[self.rank + 1], recvBuf, root=m, op=MPI.SUM 

186 ) 

187 

188 return me 

189 

190 def update_nodes(self): 

191 """ 

192 Update the u- and f-values at the collocation nodes -> corresponds to a single sweep over all nodes 

193 

194 Returns: 

195 None 

196 """ 

197 

198 L = self.level 

199 P = L.prob 

200 

201 # only if the level has been touched before 

202 assert L.status.unlocked 

203 

204 # update the MIN-SR-FLEX preconditioner 

205 self.updateVariableCoeffs(L.status.sweep) 

206 

207 # gather all terms which are known already (e.g. from the previous iteration) 

208 # this corresponds to u0 + QF(u^k) - QdF(u^k) + tau 

209 

210 # get QF(u^k) 

211 rhs = self.integrate() 

212 

213 rhs -= L.dt * self.QI[self.rank + 1, self.rank + 1] * L.f[self.rank + 1] 

214 

215 # add initial value 

216 rhs += L.u[0] 

217 # add tau if associated 

218 if L.tau[self.rank] is not None: 

219 rhs += L.tau[self.rank] 

220 

221 # build rhs, consisting of the known values from above and new values from previous nodes (at k+1) 

222 

223 # implicit solve with prefactor stemming from the diagonal of Qd 

224 L.u[self.rank + 1][:] = P.solve_system( 

225 rhs, 

226 L.dt * self.QI[self.rank + 1, self.rank + 1], 

227 L.u[self.rank + 1], 

228 L.time + L.dt * self.coll.nodes[self.rank], 

229 ) 

230 # update function values 

231 L.f[self.rank + 1] = P.eval_f(L.u[self.rank + 1], L.time + L.dt * self.coll.nodes[self.rank]) 

232 

233 # indicate presence of new values at this level 

234 L.status.updated = True 

235 

236 return None 

237 

238 def compute_end_point(self): 

239 """ 

240 Compute u at the right point of the interval 

241 

242 The value uend computed here is a full evaluation of the Picard formulation unless do_full_update==False 

243 

244 Returns: 

245 None 

246 """ 

247 

248 L = self.level 

249 P = L.prob 

250 L.uend = P.dtype_u(P.init, val=0.0) 

251 

252 # check if Mth node is equal to right point and do_coll_update is false, perform a simple copy 

253 if self.coll.right_is_node and not self.params.do_coll_update: 

254 super().compute_end_point() 

255 else: 

256 L.uend = P.dtype_u(L.u[0]) 

257 self.comm.Allreduce(L.dt * self.coll.weights[self.rank] * L.f[self.rank + 1], L.uend, op=MPI.SUM) 

258 L.uend += L.u[0] 

259 

260 # add up tau correction of the full interval (last entry) 

261 if L.tau[self.rank] is not None: 

262 self.communicate_tau_correction_for_full_interval() 

263 L.uend += L.tau[-1] 

264 return None