Coverage for pySDC/tutorial/step_1/B_spatial_accuracy_check.py: 100%

81 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-20 17:10 +0000

1from pathlib import Path 

2import matplotlib 

3 

4matplotlib.use('Agg') 

5 

6from collections import namedtuple 

7import matplotlib.pylab as plt 

8import numpy as np 

9import os.path 

10 

11from pySDC.implementations.datatype_classes.mesh import mesh 

12from pySDC.implementations.problem_classes.HeatEquation_ND_FD import heatNd_unforced 

13 

14# setup id for gathering the results (will sort by nvars) 

15ID = namedtuple('ID', 'nvars') 

16 

17 

18def main(): 

19 """ 

20 A simple test program to check order of accuracy in space for a simple test problem 

21 """ 

22 

23 # initialize problem parameters 

24 problem_params = dict() 

25 problem_params['nu'] = 0.1 # diffusion coefficient 

26 problem_params['freq'] = 4 # frequency for the test value 

27 problem_params['bc'] = 'dirichlet-zero' # boundary conditions 

28 

29 # create list of nvars to do the accuracy test with 

30 nvars_list = [2**p - 1 for p in range(4, 15)] 

31 

32 # run accuracy test for all nvars 

33 results = run_accuracy_check(nvars_list=nvars_list, problem_params=problem_params) 

34 

35 # compute order of accuracy 

36 order = get_accuracy_order(results) 

37 

38 Path("data").mkdir(parents=True, exist_ok=True) 

39 f = open('data/step_1_B_out.txt', 'w') 

40 for l in range(len(order)): 

41 out = 'Expected order: %2i -- Computed order %4.3f' % (2, order[l]) 

42 f.write(out + '\n') 

43 print(out) 

44 f.close() 

45 

46 # visualize results 

47 plot_accuracy(results) 

48 

49 assert os.path.isfile('data/step_1_accuracy_test_space.png'), 'ERROR: plotting did not create file' 

50 

51 assert all(np.isclose(order, 2, rtol=0.06)), "ERROR: spatial order of accuracy is not as expected, got %s" % order 

52 

53 

54def run_accuracy_check(nvars_list, problem_params): 

55 """ 

56 Routine to check the error of the Laplacian vs. its FD discretization 

57 

58 Args: 

59 nvars_list: list of nvars to do the testing with 

60 problem_params: dictionary containing the problem-dependent parameters 

61 

62 Returns: 

63 a dictionary containing the errors and a header (with nvars_list) 

64 """ 

65 

66 results = {} 

67 # loop over all nvars 

68 for nvars in nvars_list: 

69 # setup problem 

70 problem_params['nvars'] = nvars 

71 prob = heatNd_unforced(**problem_params) 

72 

73 # create x values, use only inner points 

74 xvalues = np.array([(i + 1) * prob.dx for i in range(prob.nvars[0])]) 

75 

76 # create a mesh instance and fill it with a sine wave 

77 u = prob.u_exact(t=0) 

78 

79 # create a mesh instance and fill it with the Laplacian of the sine wave 

80 u_lap = prob.dtype_u(init=prob.init) 

81 u_lap[:] = -((np.pi * prob.freq[0]) ** 2) * prob.nu * np.sin(np.pi * prob.freq[0] * xvalues) 

82 

83 # compare analytic and computed solution using the eval_f routine of the problem class 

84 err = abs(prob.eval_f(u, 0) - u_lap) 

85 

86 # get id for this nvars and put error into dictionary 

87 id = ID(nvars=nvars) 

88 results[id] = err 

89 

90 # add nvars_list to dictionary for easier access later on 

91 results['nvars_list'] = nvars_list 

92 

93 return results 

94 

95 

96def get_accuracy_order(results): 

97 """ 

98 Routine to compute the order of accuracy in space 

99 

100 Args: 

101 results: the dictionary containing the errors 

102 

103 Returns: 

104 the list of orders 

105 """ 

106 

107 # retrieve the list of nvars from results 

108 assert 'nvars_list' in results, 'ERROR: expecting the list of nvars in the results dictionary' 

109 nvars_list = sorted(results['nvars_list']) 

110 

111 order = [] 

112 # loop over two consecutive errors/nvars pairs 

113 for i in range(1, len(nvars_list)): 

114 # get ids 

115 id = ID(nvars=nvars_list[i]) 

116 id_prev = ID(nvars=nvars_list[i - 1]) 

117 

118 # compute order as log(prev_error/this_error)/log(this_nvars/old_nvars) <-- depends on the sorting of the list! 

119 tmp = np.log(results[id_prev] / results[id]) / np.log(nvars_list[i] / nvars_list[i - 1]) 

120 order.append(tmp) 

121 

122 return order 

123 

124 

125def plot_accuracy(results): 

126 """ 

127 Routine to visualize the errors as well as the expected errors 

128 

129 Args: 

130 results: the dictionary containing the errors 

131 """ 

132 

133 # retrieve the list of nvars from results 

134 assert 'nvars_list' in results, 'ERROR: expecting the list of nvars in the results dictionary' 

135 nvars_list = sorted(results['nvars_list']) 

136 

137 # Set up plotting parameters 

138 params = { 

139 'legend.fontsize': 20, 

140 'figure.figsize': (12, 8), 

141 'axes.labelsize': 20, 

142 'axes.titlesize': 20, 

143 'xtick.labelsize': 16, 

144 'ytick.labelsize': 16, 

145 'lines.linewidth': 3, 

146 } 

147 plt.rcParams.update(params) 

148 

149 # create new figure 

150 plt.figure() 

151 # take x-axis limits from nvars_list + some spacing left and right 

152 plt.xlim([min(nvars_list) / 2, max(nvars_list) * 2]) 

153 plt.xlabel('nvars') 

154 plt.ylabel('abs. error') 

155 plt.grid() 

156 

157 # get guide for the order of accuracy, i.e. the errors to expect 

158 # get error for first entry in nvars_list 

159 id = ID(nvars=nvars_list[0]) 

160 base_error = results[id] 

161 # assemble optimal errors for 2nd order method and plot 

162 order_guide_space = [base_error / (2 ** (2 * i)) for i in range(0, len(nvars_list))] 

163 plt.loglog(nvars_list, order_guide_space, color='k', ls='--', label='2nd order') 

164 

165 min_err = 1e99 

166 max_err = 0e00 

167 err_list = [] 

168 # loop over nvars, get errors and find min/max error for y-axis limits 

169 for nvars in nvars_list: 

170 id = ID(nvars=nvars) 

171 err = results[id] 

172 min_err = min(err, min_err) 

173 max_err = max(err, max_err) 

174 err_list.append(err) 

175 plt.loglog(nvars_list, err_list, ls=' ', marker='o', markersize=10, label='experiment') 

176 

177 # adjust y-axis limits, add legend 

178 plt.ylim([min_err / 10, max_err * 10]) 

179 plt.legend(loc=1, ncol=1, numpoints=1) 

180 

181 # save plot as PDF, beautify 

182 fname = 'data/step_1_accuracy_test_space.png' 

183 plt.savefig(fname, bbox_inches='tight') 

184 

185 return None 

186 

187 

188if __name__ == "__main__": 

189 main()